Unverified Commit a5317b2f authored by Chunyuan WU's avatar Chunyuan WU Committed by GitHub
Browse files

[CPU] add optimizations for INT8 and FP8 DeepSeek (#6769)


Co-authored-by: default avatarZheng, Beilei <beilei.zheng@intel.com>
parent eb6c2c16
......@@ -291,7 +291,7 @@ class UnquantizedFusedMoEMethod(FusedMoEMethodBase, CustomOp):
torch.float
), # TODO: the topk_weights of llama4 is computed via Llama4MoE:custom_routing_function and is bfloat16 while the kernel requires it to be float32
topk_ids,
True, # inplace
False, # inplace # See [Note] inplace should be False in fused_experts.
False, # use_int8_w8a8
False, # use_fp8_w8a16
None, # w1_scale
......
......@@ -64,6 +64,7 @@ from sglang.srt.layers.quantization.utils import (
)
from sglang.srt.layers.utils import is_sm100_supported
from sglang.srt.utils import (
_process_weight_after_loading,
cpu_has_amx_support,
get_bool_env_var,
is_cpu,
......@@ -330,6 +331,12 @@ class Fp8LinearMethod(LinearMethodBase):
)
layer.input_scale = None
elif _is_cpu:
assert (
_is_cpu_amx_available
), "Fp8LinearMethod on CPU requires that CPU has AMX support"
_process_weight_after_loading(layer, ["weight"])
return
else:
weight, weight_scale = layer.weight.data, layer.weight_scale_inv.data
layer.weight = torch.nn.Parameter(weight, requires_grad=False)
......@@ -426,6 +433,17 @@ class Fp8LinearMethod(LinearMethodBase):
)
if self.block_quant:
if getattr(layer, "use_intel_amx_backend", False):
return torch.ops.sgl_kernel.fp8_scaled_mm_cpu(
x,
layer.weight,
layer.weight_scale_inv,
self.quant_config.weight_block_size,
bias,
x.dtype,
True, # is_vnni
)
return self.w8a8_block_fp8_linear(
input=x,
weight=layer.weight,
......@@ -746,6 +764,13 @@ class Fp8MoEMethod:
layer.w2_weight.data = shuffle_weight(
layer.w2_weight.contiguous(), (16, 16)
)
if _is_cpu:
assert (
_is_cpu_amx_available
), "Fp8MoEMethod on CPU requires that CPU has AMX support"
_process_weight_after_loading(layer, ["w13_weight", "w2_weight"])
return
# If checkpoint is fp16 or bfloat16, quantize in place.
......@@ -971,6 +996,24 @@ class Fp8MoEMethod:
routed_scaling_factor=routed_scaling_factor,
)
if getattr(layer, "use_intel_amx_backend", False):
return torch.ops.sgl_kernel.fused_experts_cpu(
x,
layer.w13_weight,
layer.w2_weight,
topk_weights,
topk_ids,
False, # inplace See [Note] inplace should be False in fused_experts.
False, # use_int8_w8a8
True, # use_fp8_w8a16
layer.w13_weight_scale_inv, # w1_scale
layer.w2_weight_scale_inv, # w2_scale
self.quant_config.weight_block_size, # block_size
None, # a1_scale
None, # a2_scale
True, # is_vnni
)
if _is_hip:
ret = self.maybe_apply_hip_fused_experts(
layer,
......
......@@ -131,7 +131,7 @@ class MoeWNA16Config(QuantizationConfig):
capability_tuple = get_device_capability()
device_capability = (
-1
if capability_tuple is None
if all(capability is None for capability in capability_tuple)
else capability_tuple[0] * 10 + capability_tuple[1]
)
# Avoid circular import
......
......@@ -11,9 +11,17 @@ from sglang.srt.layers.quantization.base_config import (
QuantizeMethodBase,
)
from sglang.srt.layers.quantization.int8_kernel import per_token_quant_int8
from sglang.srt.utils import is_cuda, set_weight_attrs
from sglang.srt.utils import (
_process_weight_after_loading,
cpu_has_amx_support,
is_cpu,
is_cuda,
set_weight_attrs,
)
_is_cuda = is_cuda()
_is_cpu_amx_available = cpu_has_amx_support()
_is_cpu = is_cpu()
if _is_cuda:
from sgl_kernel import int8_scaled_mm
......@@ -72,6 +80,13 @@ class W8A8Int8LinearMethod(LinearMethodBase):
self.quantization_config = quantization_config
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
if _is_cpu:
assert (
_is_cpu_amx_available
), "W8A8Int8LinearMethod on CPU requires that CPU has AMX support"
_process_weight_after_loading(layer, ["weight"])
return
layer.weight = Parameter(layer.weight.t(), requires_grad=False)
layer.weight_scale = Parameter(layer.weight_scale.data, requires_grad=False)
......@@ -112,6 +127,16 @@ class W8A8Int8LinearMethod(LinearMethodBase):
x: torch.Tensor,
bias: Optional[torch.Tensor] = None,
):
if getattr(layer, "use_intel_amx_backend", False):
return torch.ops.sgl_kernel.int8_scaled_mm_with_quant(
x,
layer.weight,
layer.weight_scale,
bias,
x.dtype,
True, # is_vnni
)
x_q, x_scale = per_token_quant_int8(x)
return int8_scaled_mm(
......@@ -206,6 +231,13 @@ class W8A8Int8MoEMethod:
layer.register_parameter("w2_input_scale", w2_input_scale)
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
if _is_cpu:
assert (
_is_cpu_amx_available
), "W8A8Int8MoEMethod on CPU requires that CPU has AMX support"
_process_weight_after_loading(layer, ["w13_weight", "w2_weight"])
return
layer.w13_weight = Parameter(layer.w13_weight, requires_grad=False)
layer.w2_weight = Parameter(layer.w2_weight, requires_grad=False)
layer.w13_weight_scale = Parameter(
......@@ -252,6 +284,24 @@ class W8A8Int8MoEMethod:
routed_scaling_factor=routed_scaling_factor,
)
if getattr(layer, "use_intel_amx_backend", False):
return torch.ops.sgl_kernel.fused_experts_cpu(
x,
layer.w13_weight,
layer.w2_weight,
topk_weights,
topk_ids,
False, # inplace See [Note] inplace should be False in fused_experts.
True, # use_int8_w8a8
False, # use_fp8_w8a16
layer.w13_weight_scale, # w1_scale
layer.w2_weight_scale, # w2_scale
None, # block_size
layer.w13_input_scale, # a1_scale
layer.w2_input_scale, # a2_scale
True, # is_vnni
)
return fused_experts(
x,
layer.w13_weight,
......
......@@ -300,6 +300,9 @@ class DeepseekV2MoE(nn.Module):
),
)
self.shared_experts_is_int8 = False
self.shared_experts_is_fp8 = False
self.shared_experts_weight_block_size = None
if config.n_shared_experts is not None and self.num_fused_shared_experts == 0:
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
# disable tp for shared experts when enable deepep moe
......@@ -316,6 +319,20 @@ class DeepseekV2MoE(nn.Module):
else {}
),
)
self.shared_experts_is_int8 = (
self.shared_experts.gate_up_proj.weight.dtype == torch.int8
)
self.shared_experts_is_fp8 = (
self.shared_experts.gate_up_proj.weight.dtype == torch.float8_e4m3fn
)
if self.shared_experts_is_fp8:
assert (
self.shared_experts.gate_up_proj.quant_method.quant_config.weight_block_size
== self.shared_experts.down_proj.quant_method.quant_config.weight_block_size
)
self.shared_experts_weight_block_size = (
self.shared_experts.gate_up_proj.quant_method.quant_config.weight_block_size
)
self.top_k = config.num_experts_per_tok
......@@ -394,6 +411,11 @@ class DeepseekV2MoE(nn.Module):
return final_hidden_states
def forward_normal(self, hidden_states: torch.Tensor) -> torch.Tensor:
if hasattr(self, "shared_experts") and getattr(
self.shared_experts.gate_up_proj, "use_intel_amx_backend", False
):
return self.forward_cpu(hidden_states)
shared_output = self._forward_shared_experts(hidden_states)
# router_logits: (num_tokens, n_experts)
router_logits = self.gate(hidden_states)
......@@ -409,6 +431,59 @@ class DeepseekV2MoE(nn.Module):
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
return final_hidden_states
def forward_cpu(self, hidden_states: torch.Tensor) -> torch.Tensor:
# router_logits: (num_tokens, n_experts)
router_logits = self.gate(hidden_states)
fused_experts_out = self.experts(
hidden_states=hidden_states, router_logits=router_logits
)
assert getattr(
self.shared_experts.gate_up_proj, "use_intel_amx_backend", False
) == getattr(self.shared_experts.down_proj, "use_intel_amx_backend", False)
# [Note] inplace should be False in fused_experts.
# If inplace is True in fused_experts (self.experts), hidden_states will be changed after fused_experts
# While hidden_states is still needed in shared_expert.
final_hidden_states = torch.ops.sgl_kernel.shared_expert_cpu(
hidden_states,
self.shared_experts.gate_up_proj.weight,
self.shared_experts.down_proj.weight,
fused_experts_out,
self.routed_scaling_factor,
True, # inplace
self.shared_experts_is_int8, # use_int8_w8a8
self.shared_experts_is_fp8, # use_fp8_w8a16
(
self.shared_experts.gate_up_proj.weight_scale
if self.shared_experts_is_int8
else (
self.shared_experts.gate_up_proj.weight_scale_inv
if self.shared_experts_is_fp8
else None
)
), # w1_scale
(
self.shared_experts.down_proj.weight_scale
if self.shared_experts_is_int8
else (
self.shared_experts.down_proj.weight_scale_inv
if self.shared_experts_is_fp8
else None
)
), # w2_scale
(
self.shared_experts_weight_block_size
if self.shared_experts_is_fp8
else None
), # block_size
None, # a1_scale
None, # a2_scale
True, # is_vnni
)
if self.tp_size > 1:
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
return final_hidden_states
def forward_deepep(
self, hidden_states: torch.Tensor, forward_batch: ForwardBatch
) -> torch.Tensor:
......@@ -2107,6 +2182,14 @@ class DeepseekV2ForCausalLM(nn.Module):
)
if _is_hip:
self_attn.w_scale *= 2.0
# TODO: remove this after adding FP8 support in bmm cpu kernel
if _is_cpu and _is_cpu_amx_available and w.dtype == torch.float8_e4m3fn:
self_attn.w_kc = (
self_attn.w_kc.to(torch.bfloat16) * self_attn.w_scale
)
self_attn.w_vc = (
self_attn.w_vc.to(torch.bfloat16) * self_attn.w_scale
)
else:
num_tiles_k = self_attn.qk_nope_head_dim // weight_block_size[1]
num_tiles_n = self_attn.v_head_dim // weight_block_size[0]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment