Unverified Commit 5e023301 authored by JieXin Liang's avatar JieXin Liang Committed by GitHub
Browse files

[perf] dsv3 bmm fallback to bf16 (#5662)

parent fa7d7fd9
......@@ -235,6 +235,41 @@ def block_quant_to_tensor_quant(
return x_q_tensor, scale
def block_quant_dequant(
x_q_block: torch.Tensor,
x_s: torch.Tensor,
block_size: List[int],
dtype: torch.dtype,
) -> torch.Tensor:
"""This function converts block-wise quantization to unquantized.
The inputs are block-wise quantization tensor `x_q_block`, block-wise quantization scale
and the block size.
The output is an unquantized tensor with dtype.
"""
block_n, block_k = block_size[0], block_size[1]
n, k = x_q_block.shape
n_tiles = (n + block_n - 1) // block_n
k_tiles = (k + block_k - 1) // block_k
assert n_tiles == x_s.shape[0]
assert k_tiles == x_s.shape[1]
x_dq_block = torch.empty_like(x_q_block, dtype=dtype)
for j in range(n_tiles):
for i in range(k_tiles):
x_q_block_tile = x_q_block[
j * block_n : min((j + 1) * block_n, n),
i * block_k : min((i + 1) * block_k, k),
]
x_dq_block_tile = x_dq_block[
j * block_n : min((j + 1) * block_n, n),
i * block_k : min((i + 1) * block_k, k),
]
x_dq_block_tile[:, :] = x_q_block_tile.to(torch.float32) * x_s[j][i]
return x_dq_block
def channel_quant_to_tensor_quant(
x_q_channel: torch.Tensor,
x_s: torch.Tensor,
......
......@@ -63,6 +63,7 @@ from sglang.srt.layers.quantization.fp8_kernel import (
per_token_group_quant_mla_deep_gemm_masked_fp8,
)
from sglang.srt.layers.quantization.fp8_utils import (
block_quant_dequant,
block_quant_to_tensor_quant,
channel_quant_to_tensor_quant,
normalize_e4m3fn_to_e4m3fnuz,
......@@ -1589,13 +1590,22 @@ class DeepseekV2ForCausalLM(nn.Module):
if (
_is_cuda
and _ENABLE_JIT_DEEPGEMM
and weight_block_size[0] == 128
and weight_block_size[1] == 128
and model_dtype == torch.bfloat16
):
block_scale = weight_scale
use_deep_gemm_bmm = True
if _ENABLE_JIT_DEEPGEMM and get_bool_env_var(
"SGL_USE_DEEPGEMM_BMM", "false"
):
block_scale = weight_scale
use_deep_gemm_bmm = True
else:
w = block_quant_dequant(
weight,
weight_scale,
weight_block_size,
model_dtype,
)
else:
w, scale = block_quant_to_tensor_quant(
weight, weight_scale, weight_block_size
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment