"vscode:/vscode.git/clone" did not exist on "c55abac3846776abdf31e4a7ddef5fb4b0347635"
Unverified Commit 7750b91c authored by Hubert Lu's avatar Hubert Lu Committed by GitHub
Browse files

[AMD] Add triton awq_dequantize kernel to support AWQ on ROCm (#7661)

parent c8f31042
...@@ -43,11 +43,20 @@ try: ...@@ -43,11 +43,20 @@ try:
except ImportError: except ImportError:
ops = None ops = None
from sglang.srt.utils import is_cuda from sglang.srt.utils import is_cuda, is_hip
_is_cuda = is_cuda() _is_cuda = is_cuda()
_is_hip = is_hip()
if _is_cuda: if _is_cuda:
from sgl_kernel import awq_dequantize, fused_marlin_moe from sgl_kernel import awq_dequantize, fused_marlin_moe
elif _is_hip:
from sglang.srt.layers.quantization.awq_triton import (
awq_dequantize_triton as awq_dequantize,
)
warnings.warn(f"HIP does not support fused_marlin_moe currently.")
else:
warnings.warn(f"Only CUDA and HIP support AWQ currently.")
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
...@@ -398,7 +407,6 @@ class AWQLinearMethod(LinearMethodBase): ...@@ -398,7 +407,6 @@ class AWQLinearMethod(LinearMethodBase):
pack_factor = self.quant_config.pack_factor pack_factor = self.quant_config.pack_factor
out_shape = x.shape[:-1] + (qweight.shape[-1] * pack_factor,) out_shape = x.shape[:-1] + (qweight.shape[-1] * pack_factor,)
reshaped_x = x.reshape(-1, x.shape[-1]) reshaped_x = x.reshape(-1, x.shape[-1])
out = awq_dequantize(qweight, scales, qzeros) out = awq_dequantize(qweight, scales, qzeros)
out = torch.matmul(reshaped_x, out) out = torch.matmul(reshaped_x, out)
......
# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/layers/quantization/awq_triton.py
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import torch
import triton
import triton.language as tl
AWQ_TRITON_SUPPORTED_GROUP_SIZES = [-1, 32, 64, 128]
@triton.jit
def awq_dequantize_kernel(
qweight_ptr, # quantized matrix
scales_ptr, # scales, per group
zeros_ptr, # zeros, per group
group_size, # Should always be one of the supported group sizes
result_ptr, # Output matrix
num_cols, # input num cols in qweight
num_rows, # input num rows in qweight
BLOCK_SIZE_X: tl.constexpr,
BLOCK_SIZE_Y: tl.constexpr,
):
# Setup the pids.
pid_x = tl.program_id(axis=0)
pid_y = tl.program_id(axis=1)
# Compute offsets and masks for qweight_ptr.
offsets_y = pid_y * BLOCK_SIZE_Y + tl.arange(0, BLOCK_SIZE_Y)
offsets_x = pid_x * BLOCK_SIZE_X + tl.arange(0, BLOCK_SIZE_X)
offsets = num_cols * offsets_y[:, None] + offsets_x[None, :]
masks_y = offsets_y < num_rows
masks_x = offsets_x < num_cols
masks = masks_y[:, None] & masks_x[None, :]
# Compute offsets and masks for result output ptr.
result_offsets_y = pid_y * BLOCK_SIZE_Y + tl.arange(0, BLOCK_SIZE_Y)
result_offsets_x = pid_x * BLOCK_SIZE_X * 8 + tl.arange(0, BLOCK_SIZE_X * 8)
result_offsets = (
8 * num_cols * result_offsets_y[:, None] + result_offsets_x[None, :]
)
result_masks_y = result_offsets_y < num_rows
result_masks_x = result_offsets_x < num_cols * 8
result_masks = result_masks_y[:, None] & result_masks_x[None, :]
# Load the weights.
iweights = tl.load(qweight_ptr + offsets, masks, 0.0)
iweights = tl.interleave(iweights, iweights)
iweights = tl.interleave(iweights, iweights)
iweights = tl.interleave(iweights, iweights)
# Create reverse AWQ order as tensor: [0, 4, 1, 5, 2, 6, 3, 7]
# that will map given indices to the correct order.
reverse_awq_order_tensor = (
(tl.arange(0, 2) * 4)[None, :] + tl.arange(0, 4)[:, None]
).reshape(8)
# Use this to compute a set of shifts that can be used to unpack and
# reorder the values in iweights and zeros.
shifts = reverse_awq_order_tensor * 4
shifts = tl.broadcast_to(shifts[None, :], (BLOCK_SIZE_Y * BLOCK_SIZE_X, 8))
shifts = tl.reshape(shifts, (BLOCK_SIZE_Y, BLOCK_SIZE_X * 8))
# Unpack and reorder: shift out the correct 4-bit value and mask.
iweights = (iweights >> shifts) & 0xF
# Compute zero offsets and masks.
zero_offsets_y = pid_y * BLOCK_SIZE_Y // group_size + tl.arange(0, 1)
zero_offsets_x = pid_x * BLOCK_SIZE_X + tl.arange(0, BLOCK_SIZE_X)
zero_offsets = num_cols * zero_offsets_y[:, None] + zero_offsets_x[None, :]
zero_masks_y = zero_offsets_y < num_rows // group_size
zero_masks_x = zero_offsets_x < num_cols
zero_masks = zero_masks_y[:, None] & zero_masks_x[None, :]
# Load the zeros.
zeros = tl.load(zeros_ptr + zero_offsets, zero_masks, 0.0)
zeros = tl.interleave(zeros, zeros)
zeros = tl.interleave(zeros, zeros)
zeros = tl.interleave(zeros, zeros)
zeros = tl.broadcast_to(zeros, (BLOCK_SIZE_Y, BLOCK_SIZE_X * 8))
# Unpack and reorder: shift out the correct 4-bit value and mask.
zeros = (zeros >> shifts) & 0xF
# Compute scale offsets and masks.
scale_offsets_y = pid_y * BLOCK_SIZE_Y // group_size + tl.arange(0, 1)
scale_offsets_x = pid_x * BLOCK_SIZE_X * 8 + tl.arange(0, BLOCK_SIZE_X * 8)
scale_offsets = num_cols * 8 * scale_offsets_y[:, None] + scale_offsets_x[None, :]
scale_masks_y = scale_offsets_y < num_rows // group_size
scale_masks_x = scale_offsets_x < num_cols * 8
scale_masks = scale_masks_y[:, None] & scale_masks_x[None, :]
# Load the scales.
scales = tl.load(scales_ptr + scale_offsets, scale_masks, 0.0)
scales = tl.broadcast_to(scales, (BLOCK_SIZE_Y, BLOCK_SIZE_X * 8))
# Dequantize.
iweights = (iweights - zeros) * scales
iweights = iweights.to(result_ptr.type.element_ty)
# Finally, store.
tl.store(result_ptr + result_offsets, iweights, result_masks)
@triton.jit
def awq_gemm_kernel(
a_ptr,
b_ptr,
c_ptr,
zeros_ptr,
scales_ptr,
M,
N,
K,
group_size,
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
SPLIT_K: tl.constexpr,
):
pid = tl.program_id(axis=0)
pid_z = tl.program_id(1)
# NOTE: This doesn't work in TRITON_INTERPRET=1 mode. Use below instead.
# num_pid_n = (N + BLOCK_SIZE_N - 1) // BLOCK_SIZE_N
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
pid_m = pid // num_pid_n
pid_n = pid % num_pid_n
accumulator_dtype = c_ptr.type.element_ty
# NOTE: This doesn't work in TRITON_INTERPRET=1 mode. Use below instead.
# accumulator = tl.arange(0, BLOCK_SIZE_N)
# accumulator = tl.broadcast_to(accumulator[None, :],
# (BLOCK_SIZE_M, BLOCK_SIZE_N))
# accumulator = accumulator & 0x0
# accumulator = accumulator.to(accumulator_dtype)
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=accumulator_dtype)
# Create reverse AWQ order as tensor: [0, 4, 1, 5, 2, 6, 3, 7]
# that will map given indices to the correct order.
reverse_awq_order_tensor = (
(tl.arange(0, 2) * 4)[None, :] + tl.arange(0, 4)[:, None]
).reshape(8)
# Create the necessary shifts to use to unpack.
shifts = reverse_awq_order_tensor * 4
shifts = tl.broadcast_to(shifts[None, :], (BLOCK_SIZE_K * (BLOCK_SIZE_N // 8), 8))
shifts = tl.reshape(shifts, (BLOCK_SIZE_K, BLOCK_SIZE_N))
# Offsets and masks.
offsets_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
masks_am = offsets_am < M
offsets_bn = pid_n * (BLOCK_SIZE_N // 8) + tl.arange(0, BLOCK_SIZE_N // 8)
masks_bn = offsets_bn < N // 8
offsets_zn = pid_n * (BLOCK_SIZE_N // 8) + tl.arange(0, BLOCK_SIZE_N // 8)
masks_zn = offsets_zn < N // 8
offsets_sn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
masks_sn = offsets_sn < N
offsets_k = pid_z * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
offsets_a = K * offsets_am[:, None] + offsets_k[None, :]
offsets_b = (N // 8) * offsets_k[:, None] + offsets_bn[None, :]
a_ptrs = a_ptr + offsets_a
b_ptrs = b_ptr + offsets_b
# NOTE: Use this in TRITON_INTERPRET=1 mode instead of tl.cdiv
# block_offset = BLOCK_SIZE_K * SPLIT_K
# for k in range(0, (K + block_offset - 1) // (block_offset)):
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K * SPLIT_K)):
masks_k = offsets_k < K
masks_a = masks_am[:, None] & masks_k[None, :]
a = tl.load(a_ptrs, mask=masks_a, other=0.0)
masks_b = masks_k[:, None] & masks_bn[None, :]
b = tl.load(b_ptrs, mask=masks_b, other=0.0)
b = tl.interleave(b, b)
b = tl.interleave(b, b)
b = tl.interleave(b, b)
# Dequantize b.
offsets_szk = (
BLOCK_SIZE_K * SPLIT_K * k + pid_z * BLOCK_SIZE_K
) // group_size + tl.arange(0, 1)
offsets_z = (N // 8) * offsets_szk[:, None] + offsets_zn[None, :]
masks_zk = offsets_szk < K // group_size
masks_z = masks_zk[:, None] & masks_zn[None, :]
zeros_ptrs = zeros_ptr + offsets_z
zeros = tl.load(zeros_ptrs, mask=masks_z, other=0.0)
zeros = tl.interleave(zeros, zeros)
zeros = tl.interleave(zeros, zeros)
zeros = tl.interleave(zeros, zeros)
zeros = tl.broadcast_to(zeros, (BLOCK_SIZE_K, BLOCK_SIZE_N))
offsets_s = N * offsets_szk[:, None] + offsets_sn[None, :]
masks_sk = offsets_szk < K // group_size
masks_s = masks_sk[:, None] & masks_sn[None, :]
scales_ptrs = scales_ptr + offsets_s
scales = tl.load(scales_ptrs, mask=masks_s, other=0.0)
scales = tl.broadcast_to(scales, (BLOCK_SIZE_K, BLOCK_SIZE_N))
b = (b >> shifts) & 0xF
zeros = (zeros >> shifts) & 0xF
b = (b - zeros) * scales
b = b.to(c_ptr.type.element_ty)
# Accumulate results.
accumulator = tl.dot(a, b, accumulator, out_dtype=accumulator_dtype)
offsets_k += BLOCK_SIZE_K * SPLIT_K
a_ptrs += BLOCK_SIZE_K * SPLIT_K
b_ptrs += BLOCK_SIZE_K * SPLIT_K * (N // 8)
c = accumulator.to(c_ptr.type.element_ty)
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + pid_z * N * M + N * offs_cm[:, None] + offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)
# qweights - [K , M // 8], int32
# scales - [K // G, M ], float16
# zeros - [K // G, M // 8], int32
def awq_dequantize_triton(
qweight: torch.Tensor,
scales: torch.Tensor,
zeros: torch.Tensor,
block_size_x: int = 32,
block_size_y: int = 32,
) -> torch.Tensor:
K = qweight.shape[0]
M = scales.shape[1]
group_size = qweight.shape[0] // scales.shape[0]
assert K > 0 and M > 0
assert scales.shape[0] == K // group_size and scales.shape[1] == M
assert zeros.shape[0] == K // group_size and zeros.shape[1] == M // 8
assert group_size <= K
assert group_size in AWQ_TRITON_SUPPORTED_GROUP_SIZES or group_size == K
# Result tensor:
# number of rows = same as input tensor
# number of cols = 8 x input tensor num cols
result = torch.empty(
qweight.shape[0],
qweight.shape[1] * 8,
device=qweight.device,
dtype=scales.dtype,
)
Y = qweight.shape[0] # num rows
X = qweight.shape[1] # num cols
grid = lambda META: (
triton.cdiv(X, META["BLOCK_SIZE_X"]),
triton.cdiv(Y, META["BLOCK_SIZE_Y"]),
)
awq_dequantize_kernel[grid](
qweight,
scales,
zeros,
group_size,
result,
X,
Y,
BLOCK_SIZE_X=block_size_x,
BLOCK_SIZE_Y=block_size_y,
)
return result
# input - [M, K]
# qweight - [K, N // 8]
# qzeros - [K // G, N // 8]
# scales - [K // G, N]
# split_k_iters - parallelism along K-dimension, int, power of 2.
def awq_gemm_triton(
input: torch.Tensor,
qweight: torch.Tensor,
scales: torch.Tensor,
qzeros: torch.Tensor,
split_k_iters: int,
block_size_m: int = 32,
block_size_n: int = 32,
block_size_k: int = 32,
) -> torch.Tensor:
M, K = input.shape
N = qweight.shape[1] * 8
group_size = qweight.shape[0] // qzeros.shape[0]
assert N > 0 and K > 0 and M > 0
assert qweight.shape[0] == K and qweight.shape[1] == N // 8
assert qzeros.shape[0] == K // group_size and qzeros.shape[1] == N // 8
assert scales.shape[0] == K // group_size and scales.shape[1] == N
assert split_k_iters & (split_k_iters - 1) == 0 and split_k_iters != 0
assert split_k_iters <= 32
assert group_size <= K
assert group_size in AWQ_TRITON_SUPPORTED_GROUP_SIZES or group_size == K
grid = lambda META: (
triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]),
split_k_iters,
)
result = torch.zeros((split_k_iters, M, N), dtype=scales.dtype, device=input.device)
# A = input, B = qweight, C = result
# A = M x K, B = K x N, C = M x N
awq_gemm_kernel[grid](
input,
qweight,
result,
qzeros,
scales,
M,
N,
K,
group_size,
BLOCK_SIZE_M=block_size_m,
BLOCK_SIZE_N=block_size_n,
BLOCK_SIZE_K=block_size_k,
SPLIT_K=split_k_iters,
)
result = result.sum(0)
return result
...@@ -127,6 +127,10 @@ if _is_cuda: ...@@ -127,6 +127,10 @@ if _is_cuda:
) )
elif _is_cpu and _is_cpu_amx_available: elif _is_cpu and _is_cpu_amx_available:
pass pass
elif _is_hip:
from sglang.srt.layers.quantization.awq_triton import (
awq_dequantize_triton as awq_dequantize,
)
else: else:
from vllm._custom_ops import awq_dequantize from vllm._custom_ops import awq_dequantize
...@@ -2176,7 +2180,7 @@ class DeepseekV2ForCausalLM(nn.Module): ...@@ -2176,7 +2180,7 @@ class DeepseekV2ForCausalLM(nn.Module):
) )
if hasattr(self_attn.kv_b_proj, "qweight"): if hasattr(self_attn.kv_b_proj, "qweight"):
# AWQ compatible # AWQ compatible
if _is_cuda: if _is_cuda or _is_hip:
w = awq_dequantize( w = awq_dequantize(
self_attn.kv_b_proj.qweight, self_attn.kv_b_proj.qweight,
self_attn.kv_b_proj.scales, self_attn.kv_b_proj.scales,
......
...@@ -147,6 +147,7 @@ suites = { ...@@ -147,6 +147,7 @@ suites = {
# TestFile("test_vision_chunked_prefill.py", 175), # Disabled temporarily and track in #7701 # TestFile("test_vision_chunked_prefill.py", 175), # Disabled temporarily and track in #7701
TestFile("test_reasoning_parser.py", 5), TestFile("test_reasoning_parser.py", 5),
TestFile("test_rope_rocm.py", 3), TestFile("test_rope_rocm.py", 3),
TestFile("test_awq_dequant.py", 2),
], ],
"per-commit-npu": [ "per-commit-npu": [
TestFile("test_ascend_attention_backend.py", 400), TestFile("test_ascend_attention_backend.py", 400),
......
# Adapted from https://github.com/vllm-project/vllm/blob/main/tests/kernels/quantization/test_awq_triton.py
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
unittest version of the AWQ Triton kernel tests.
Run with:
python -m unittest test_awq_dequant.py
"""
import unittest
import torch
from sglang.srt.layers.quantization.awq_triton import (
AWQ_TRITON_SUPPORTED_GROUP_SIZES,
awq_dequantize_triton,
awq_gemm_triton,
)
from sglang.test.test_utils import CustomTestCase
device = "cuda"
def reverse_awq_order(t: torch.Tensor) -> torch.Tensor:
bits = 4
AWQ_REVERSE_ORDER = [0, 4, 1, 5, 2, 6, 3, 7]
idx = torch.arange(t.shape[-1], dtype=torch.int32, device=t.device)
idx = idx.view(-1, 32 // bits)[:, AWQ_REVERSE_ORDER].view(-1)
return (t[:, idx] & 0xF).contiguous()
def awq_dequantize_torch(
qweight: torch.Tensor,
scales: torch.Tensor,
qzeros: torch.Tensor,
group_size: int,
) -> torch.Tensor:
if group_size == -1:
group_size = qweight.shape[0]
bits = 4
shifts = torch.arange(0, 32, bits, device=qzeros.device)
iweights = torch.bitwise_right_shift(qweight[:, :, None], shifts[None, None, :]).to(
torch.int8
)
iweights = reverse_awq_order(iweights.view(iweights.shape[0], -1))
zeros = torch.bitwise_right_shift(qzeros[:, :, None], shifts[None, None, :]).to(
torch.int8
)
zeros = reverse_awq_order(zeros.view(qzeros.shape[0], -1))
iweights = torch.bitwise_and(iweights, (2**bits) - 1)
zeros = torch.bitwise_and(zeros, (2**bits) - 1)
scales = scales.repeat_interleave(group_size, dim=0)
zeros = zeros.repeat_interleave(group_size, dim=0)
return (iweights - zeros) * scales
class TestAWQTriton(CustomTestCase):
def test_dequantize(self):
rows_list = [3584, 18944, 128, 256, 512, 1024]
cols_list = [448, 576, 4736, 16, 32, 64, 128]
for qweight_rows in rows_list:
for qweight_cols in cols_list:
for group_size in AWQ_TRITON_SUPPORTED_GROUP_SIZES:
with self.subTest(
rows=qweight_rows, cols=qweight_cols, g=group_size
):
self._run_dequant_case(
qweight_rows=qweight_rows,
qweight_cols=qweight_cols,
group_size=group_size,
)
def _run_dequant_case(self, qweight_rows, qweight_cols, group_size):
if group_size == -1:
group_size = qweight_rows
torch.manual_seed(0)
qweight = torch.randint(
0,
torch.iinfo(torch.int32).max,
(qweight_rows, qweight_cols),
dtype=torch.int32,
device=device,
)
scales = torch.rand(
qweight_rows // group_size,
qweight_cols * 8,
dtype=torch.float16,
device=device,
)
zeros = torch.randint(
0,
torch.iinfo(torch.int32).max,
(qweight_rows // group_size, qweight_cols),
dtype=torch.int32,
device=device,
)
ref = awq_dequantize_torch(qweight, scales, zeros, group_size)
tri = awq_dequantize_triton(qweight, scales, zeros)
# sanity
self.assertFalse(torch.any(torch.isinf(tri)) or torch.any(torch.isnan(tri)))
torch.testing.assert_close(ref, tri)
# GEMM
def test_gemm(self):
N_list = [1, 2, 4, 8, 14, 17, 23, 32]
K_list = [128]
M_list = [16, 24, 32]
splitK_list = [1, 8]
for N in N_list:
for K in K_list:
for M in M_list:
for group_size in AWQ_TRITON_SUPPORTED_GROUP_SIZES:
for splitK in splitK_list:
with self.subTest(N=N, K=K, M=M, g=group_size, sk=splitK):
self._run_gemm_case(
N=N,
K=K,
M=M,
group_size=group_size,
splitK=splitK,
)
def _run_gemm_case(self, N, K, M, group_size, splitK):
if group_size == -1:
group_size = K
torch.manual_seed(0)
x = torch.rand((N, K), dtype=torch.float32, device=device)
qweight = torch.randint(
0,
torch.iinfo(torch.int32).max,
(K, M // 8),
dtype=torch.int32,
device=device,
)
qzeros = torch.randint(
0,
torch.iinfo(torch.int32).max,
(K // group_size, M // 8),
dtype=torch.int32,
device=device,
)
scales = torch.rand((K // group_size, M), dtype=torch.float32, device=device)
tri_out = awq_gemm_triton(x, qweight, scales, qzeros, splitK)
self.assertFalse(
torch.any(torch.isinf(tri_out)) or torch.any(torch.isnan(tri_out))
)
# dequantize & compare
w_deq = awq_dequantize_triton(qweight, scales, qzeros)
ref_out = torch.matmul(x, w_deq)
self.assertFalse(
torch.any(torch.isinf(ref_out)) or torch.any(torch.isnan(ref_out))
)
torch.testing.assert_close(tri_out.cpu(), ref_out.cpu(), atol=1e-1, rtol=1e-1)
if __name__ == "__main__":
unittest.main(verbosity=2)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment