"vscode:/vscode.git/clone" did not exist on "d8467db727619d486cf04d0a50f245953aff79fe"
deepseek_v2.py 102 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Liangsheng Yin's avatar
Liangsheng Yin committed
15
16
17
# Adapted from:
# https://github.com/vllm-project/vllm/blob/fb6af8bc086328ca6659e72d11ffd4309ce4de22/vllm/model_executor/models/deepseek_v2.py
"""Inference-only DeepseekV2 model."""
18

19
import concurrent.futures
20
import logging
21
import os
22
from enum import IntEnum, auto
Liangsheng Yin's avatar
Liangsheng Yin committed
23
24
25
from typing import Any, Dict, Iterable, Optional, Tuple

import torch
Ke Bao's avatar
Ke Bao committed
26
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
27
from torch import nn
28
from tqdm import tqdm
Liangsheng Yin's avatar
Liangsheng Yin committed
29
from transformers import PretrainedConfig
30
31

from sglang.srt.distributed import (
Liangsheng Yin's avatar
Liangsheng Yin committed
32
    get_tensor_model_parallel_world_size,
33
    parallel_state,
Liangsheng Yin's avatar
Liangsheng Yin committed
34
35
    tensor_model_parallel_all_reduce,
)
fzyzcjy's avatar
fzyzcjy committed
36
37
38
from sglang.srt.eplb.expert_distribution import get_global_expert_distribution_recorder
from sglang.srt.eplb.expert_location import ModelConfigForExpertLocation
from sglang.srt.eplb.expert_location_dispatch import ExpertLocationDispatchInfo
39
from sglang.srt.layers.activation import SiluAndMul
40
from sglang.srt.layers.amx_utils import PackWeightMethod
41
42
43
44
45
from sglang.srt.layers.communicator import (
    LayerCommunicator,
    LayerScatterModes,
    enable_moe_dense_fully_dp,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
46
47
48
from sglang.srt.layers.dp_attention import (
    get_attention_tp_rank,
    get_attention_tp_size,
49
    get_local_attention_dp_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
50
)
51
from sglang.srt.layers.layernorm import RMSNorm
52
53
54
55
56
57
from sglang.srt.layers.linear import (
    ColumnParallelLinear,
    MergedColumnParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
58
from sglang.srt.layers.logits_processor import LogitsProcessor
fzyzcjy's avatar
fzyzcjy committed
59
from sglang.srt.layers.moe.ep_moe.layer import DeepEPMoE, get_moe_impl_class
Lianmin Zheng's avatar
Lianmin Zheng committed
60
from sglang.srt.layers.moe.ep_moe.token_dispatcher import DeepEPDispatcher
61
from sglang.srt.layers.moe.topk import select_experts
62
from sglang.srt.layers.quantization import deep_gemm_wrapper
63
from sglang.srt.layers.quantization.base_config import QuantizationConfig
64
from sglang.srt.layers.quantization.fp8_kernel import (
65
    is_fp8_fnuz,
66
    per_tensor_quant_mla_fp8,
67
    per_token_group_quant_mla_deep_gemm_masked_fp8,
68
)
HandH1998's avatar
HandH1998 committed
69
from sglang.srt.layers.quantization.fp8_utils import (
70
    block_quant_dequant,
HandH1998's avatar
HandH1998 committed
71
    block_quant_to_tensor_quant,
72
    channel_quant_to_tensor_quant,
73
    normalize_e4m3fn_to_e4m3fnuz,
74
    requant_weight_ue8m0_inplace,
HandH1998's avatar
HandH1998 committed
75
)
76
77
78
from sglang.srt.layers.quantization.int8_utils import (
    block_dequant as int8_block_dequant,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
79
from sglang.srt.layers.radix_attention import RadixAttention
80
from sglang.srt.layers.rotary_embedding import get_rope, get_rope_wrapper
81
from sglang.srt.layers.utils import is_sm100_supported
82
83
84
85
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
86
from sglang.srt.managers.schedule_batch import global_server_args_dict
87
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
88
from sglang.srt.model_loader.weight_utils import default_weight_loader
89
90
91
92
from sglang.srt.two_batch_overlap import (
    MaybeTboDeepEPDispatcher,
    model_forward_maybe_tbo,
)
93
94
95
from sglang.srt.utils import (
    BumpAllocator,
    DeepEPMode,
96
    LazyValue,
97
    add_prefix,
98
    bind_or_assign,
99
    cpu_has_amx_support,
100
    get_bool_env_var,
101
    get_device_sm,
102
    get_int_env_var,
103
    is_cpu,
104
    is_cuda,
105
    is_flashinfer_available,
106
    is_hip,
107
    is_non_idle_and_non_empty,
108
    log_info_on_rank0,
109
    use_intel_amx_backend,
110
)
111

112
_is_hip = is_hip()
Yineng Zhang's avatar
Yineng Zhang committed
113
_is_cuda = is_cuda()
114
_is_fp8_fnuz = is_fp8_fnuz()
115
_use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip
116
117
_is_cpu_amx_available = cpu_has_amx_support()
_is_cpu = is_cpu()
118
_device_sm = get_device_sm()
119

Yineng Zhang's avatar
Yineng Zhang committed
120
if _is_cuda:
121
122
123
124
125
126
127
    from sgl_kernel import (
        awq_dequantize,
        bmm_fp8,
        dsv3_fused_a_gemm,
        dsv3_router_gemm,
        merge_state_v2,
    )
128
129
elif _is_cpu and _is_cpu_amx_available:
    pass
Yineng Zhang's avatar
Yineng Zhang committed
130
else:
Lianmin Zheng's avatar
Lianmin Zheng committed
131
    from vllm._custom_ops import awq_dequantize
Liangsheng Yin's avatar
Liangsheng Yin committed
132

133
134
135
136
137
if _is_hip:
    from sglang.srt.layers.attention.triton_ops.rocm_mla_decode_rope import (
        decode_attention_fwd_grouped_rope,
    )

138
139
140
_is_flashinfer_available = is_flashinfer_available()
_is_sm100_supported = is_cuda() and is_sm100_supported()

141

142
143
logger = logging.getLogger(__name__)

Liangsheng Yin's avatar
Liangsheng Yin committed
144

145
146
147
148
149
150
151
152
153
154
155
class AttnForwardMethod(IntEnum):
    # Use multi-head attention
    MHA = auto()

    # Use absorbed multi-latent attention
    MLA = auto()

    # Use multi-head attention, but with KV cache chunked.
    # This method can avoid OOM when prefix lengths are long.
    MHA_CHUNKED_KV = auto()

156
157
158
    # Use MLA but with fused RoPE
    MLA_FUSED_ROPE = auto()

159
160
161
    # Use MLA with fused RoPE kernel for CPU
    MLA_FUSED_ROPE_CPU = auto()

162

Liangsheng Yin's avatar
Liangsheng Yin committed
163
164
165
166
167
168
169
170
class DeepseekV2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
171
        prefix: str = "",
172
173
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
174
175
    ) -> None:
        super().__init__()
176
177
        self.tp_size = tp_size

Liangsheng Yin's avatar
Liangsheng Yin committed
178
        self.gate_up_proj = MergedColumnParallelLinear(
179
180
181
182
183
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("gate_up_proj", prefix),
184
185
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
186
187
188
189
190
191
192
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
193
            prefix=add_prefix("down_proj", prefix),
194
195
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
196
197
198
199
200
201
202
203
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

204
    def forward(self, x, forward_batch=None, can_fuse_mlp_allreduce=False):
205
206
207
        if (self.tp_size == 1) and x.shape[0] == 0:
            return x

Liangsheng Yin's avatar
Liangsheng Yin committed
208
209
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
210
        x, _ = self.down_proj(x, can_fuse_mlp_allreduce=can_fuse_mlp_allreduce)
Liangsheng Yin's avatar
Liangsheng Yin committed
211
212
213
        return x


Ke Bao's avatar
Ke Bao committed
214
class MoEGate(nn.Module):
215
216
217
218
    def __init__(
        self,
        config,
        prefix: str = "",
219
        is_nextn: bool = False,
220
    ):
Ke Bao's avatar
Ke Bao committed
221
        super().__init__()
222
        self.is_nextn = is_nextn
Ke Bao's avatar
Ke Bao committed
223
224
225
226
227
228
229
230
231
        self.weight = nn.Parameter(
            torch.empty((config.n_routed_experts, config.hidden_size))
        )
        if config.topk_method == "noaux_tc":
            self.e_score_correction_bias = nn.Parameter(
                torch.empty((config.n_routed_experts))
            )
        else:
            self.e_score_correction_bias = None
232
233
        if _is_cpu and _is_cpu_amx_available:
            self.quant_method = PackWeightMethod(weight_names=["weight"])
Ke Bao's avatar
Ke Bao committed
234
235

    def forward(self, hidden_states):
236
        if use_intel_amx_backend(self):
237
238
239
240
241
242
243
            return torch.ops.sgl_kernel.weight_packed_linear(
                hidden_states,
                self.weight,
                None,  # bias
                True,  # is_vnni
            )

244
        # NOTE: For some unknown reason, router_gemm seems degrade accept length.
245
        if (
246
            _is_cuda
247
            and not self.is_nextn
248
            and hidden_states.shape[0] < 4
249
250
251
252
253
254
255
256
257
258
            and hidden_states.shape[1] == 7168
            and self.weight.shape[0] == 256
            and _device_sm >= 90
        ):
            logits = dsv3_router_gemm(hidden_states, self.weight).to(
                hidden_states.dtype
            )
        else:
            logits = F.linear(hidden_states, self.weight, None)

Ke Bao's avatar
Ke Bao committed
259
260
261
        return logits


Liangsheng Yin's avatar
Liangsheng Yin committed
262
263
264
265
266
class DeepseekV2MoE(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
fzyzcjy's avatar
fzyzcjy committed
267
        layer_id: int,
Liangsheng Yin's avatar
Liangsheng Yin committed
268
        quant_config: Optional[QuantizationConfig] = None,
269
        prefix: str = "",
270
        alt_stream: Optional[torch.cuda.Stream] = None,
271
        is_nextn: bool = False,
Liangsheng Yin's avatar
Liangsheng Yin committed
272
273
274
275
276
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.routed_scaling_factor = config.routed_scaling_factor
        self.n_shared_experts = config.n_shared_experts
277
278
279
280
281
        self.num_fused_shared_experts = (
            0
            if global_server_args_dict["disable_shared_experts_fusion"]
            else config.n_shared_experts
        )
282
        self.config = config
fzyzcjy's avatar
fzyzcjy committed
283
        self.layer_id = layer_id
284
        self.alt_stream = alt_stream
285

Liangsheng Yin's avatar
Liangsheng Yin committed
286
287
288
289
290
291
292
293
294
295
296
297
        if self.tp_size > config.n_routed_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.n_routed_experts}."
            )

        if config.hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {config.hidden_act}. "
                "Only silu is supported for now."
            )

298
299
300
        self.gate = MoEGate(
            config=config, prefix=add_prefix("gate", prefix), is_nextn=is_nextn
        )
Ke Bao's avatar
Ke Bao committed
301

302
        self.experts = get_moe_impl_class()(
303
            num_experts=config.n_routed_experts
304
            + self.num_fused_shared_experts
305
            + global_server_args_dict["ep_num_redundant_experts"],
306
            top_k=config.num_experts_per_tok + self.num_fused_shared_experts,
307
308
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
fzyzcjy's avatar
fzyzcjy committed
309
            layer_id=self.layer_id,
310
311
312
313
            renormalize=config.norm_topk_prob,
            quant_config=quant_config,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
314
            num_fused_shared_experts=self.num_fused_shared_experts,
315
316
            topk_group=config.topk_group,
            correction_bias=self.gate.e_score_correction_bias,
317
            routed_scaling_factor=self.routed_scaling_factor,
318
319
320
321
322
323
            prefix=add_prefix("experts", prefix),
            **(
                dict(deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]])
                if global_server_args_dict["enable_deepep_moe"]
                else {}
            ),
324
325
326
327
328
329
330
331
332
            # Additional args for FusedMoE
            **(
                dict(
                    enable_flashinfer_moe=True,
                    enable_ep_moe=global_server_args_dict["enable_ep_moe"],
                )
                if global_server_args_dict["enable_flashinfer_moe"]
                else {}
            ),
333
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
334

335
336
337
        self.shared_experts_is_int8 = False
        self.shared_experts_is_fp8 = False
        self.shared_experts_weight_block_size = None
338
        if config.n_shared_experts is not None and self.num_fused_shared_experts == 0:
Liangsheng Yin's avatar
Liangsheng Yin committed
339
            intermediate_size = config.moe_intermediate_size * config.n_shared_experts
340
            # disable tp for shared experts when enable deepep moe
341
342
343
344
345
346
347
348
349
350
351
352
353
            self.shared_experts = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                reduce_results=False,
                prefix=add_prefix("shared_experts", prefix),
                **(
                    dict(tp_rank=0, tp_size=1)
                    if global_server_args_dict["enable_deepep_moe"]
                    else {}
                ),
            )
AniZpZ's avatar
AniZpZ committed
354
355
356
357
            is_packed_weight = hasattr(
                self.shared_experts.gate_up_proj.quant_method, "quant_config"
            ) and self.shared_experts.gate_up_proj.quant_method.quant_config.get_name() in {
                "awq",
358
                "awq_marlin",
AniZpZ's avatar
AniZpZ committed
359
360
                "moe_wna16",
            }
361
            self.shared_experts_is_int8 = (
362
363
                not is_packed_weight
                and self.shared_experts.gate_up_proj.weight.dtype == torch.int8
364
365
            )
            self.shared_experts_is_fp8 = (
366
367
                not is_packed_weight
                and self.shared_experts.gate_up_proj.weight.dtype == torch.float8_e4m3fn
368
369
370
371
372
373
374
375
376
            )
            if self.shared_experts_is_fp8:
                assert (
                    self.shared_experts.gate_up_proj.quant_method.quant_config.weight_block_size
                    == self.shared_experts.down_proj.quant_method.quant_config.weight_block_size
                )
                self.shared_experts_weight_block_size = (
                    self.shared_experts.gate_up_proj.quant_method.quant_config.weight_block_size
                )
377

378
379
        self.top_k = config.num_experts_per_tok

380
        if global_server_args_dict["enable_deepep_moe"]:
381
382
            # TODO: we will support tp < ep in the future
            self.ep_size = get_tensor_model_parallel_world_size()
383
384
385
386
            self.num_experts = (
                config.n_routed_experts
                + global_server_args_dict["ep_num_redundant_experts"]
            )
387
388
389
390
391
392
393
394
395
            self.renormalize = config.norm_topk_prob
            self.topk_group = config.topk_group
            self.num_expert_group = config.n_group
            self.correction_bias = (
                self.gate.e_score_correction_bias.data
                if self.gate.e_score_correction_bias is not None
                else None
            )

396
            self.deepep_dispatcher = MaybeTboDeepEPDispatcher(
397
398
399
                group=parallel_state.get_tp_group().device_group,
                router_topk=self.top_k,
                permute_fusion=True,
400
                num_experts=self.num_experts,
401
                num_local_experts=config.n_routed_experts // self.tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
402
                hidden_size=config.hidden_size,
403
                params_dtype=config.torch_dtype,
404
                deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]],
405
                async_finish=True,
406
                return_recv_hook=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
407
408
            )

409
        self._enable_deepep_moe = global_server_args_dict["enable_deepep_moe"]
410

411
412
413
414
415
416
417
    def get_moe_weights(self):
        return [
            x.data
            for name, x in self.experts.named_parameters()
            if name not in ["correction_bias"]
        ]

418
    def forward(
419
420
421
422
        self,
        hidden_states: torch.Tensor,
        forward_batch: Optional[ForwardBatch] = None,
        can_fuse_mlp_allreduce: bool = False,
423
424
    ) -> torch.Tensor:
        if not self._enable_deepep_moe:
425
426
427
428
429
430
            DUAL_STREAM_TOKEN_THRESHOLD = 1024
            if (
                self.alt_stream is not None
                and self.num_fused_shared_experts == 0
                and hidden_states.shape[0] <= DUAL_STREAM_TOKEN_THRESHOLD
            ):
431
432
433
                return self.forward_normal_dual_stream(
                    hidden_states, can_fuse_mlp_allreduce
                )
434
            else:
435
                return self.forward_normal(hidden_states, can_fuse_mlp_allreduce)
436
437
438
        else:
            return self.forward_deepep(hidden_states, forward_batch)

439
440
441
    def forward_normal_dual_stream(
        self, hidden_states: torch.Tensor, can_fuse_mlp_allreduce: bool = False
    ) -> torch.Tensor:
442

443
444
445
        current_stream = torch.cuda.current_stream()
        self.alt_stream.wait_stream(current_stream)
        shared_output = self._forward_shared_experts(hidden_states)
446

447
        with torch.cuda.stream(self.alt_stream):
448
449
            # router_logits: (num_tokens, n_experts)
            router_logits = self.gate(hidden_states)
450
451
452
453
454
455
            final_hidden_states = self.experts(
                hidden_states=hidden_states, router_logits=router_logits
            )
            if not _is_cuda:
                final_hidden_states *= self.routed_scaling_factor
        current_stream.wait_stream(self.alt_stream)
456
        final_hidden_states += shared_output
457
        if self.tp_size > 1 and not can_fuse_mlp_allreduce:
458
459
460
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

461
462
463
    def forward_normal(
        self, hidden_states: torch.Tensor, can_fuse_mlp_allreduce: bool = False
    ) -> torch.Tensor:
464
465
        if hasattr(self, "shared_experts") and use_intel_amx_backend(
            self.shared_experts.gate_up_proj
466
        ):
467
            return self.forward_cpu(hidden_states, can_fuse_mlp_allreduce)
468

469
470
471
472
473
474
        shared_output = self._forward_shared_experts(hidden_states)
        # router_logits: (num_tokens, n_experts)
        router_logits = self.gate(hidden_states)
        final_hidden_states = self.experts(
            hidden_states=hidden_states, router_logits=router_logits
        )
475
476
        if not _is_cuda and not _use_aiter:
            # fused in biased_grouped_topk so we can skip here
477
            final_hidden_states *= self.routed_scaling_factor
478
479
        if shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output
480
        if self.tp_size > 1 and not can_fuse_mlp_allreduce:
481
482
483
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

484
485
486
    def forward_cpu(
        self, hidden_states: torch.Tensor, can_fuse_mlp_allreduce: bool = False
    ) -> torch.Tensor:
487
488
489
490
491
492
        # router_logits: (num_tokens, n_experts)
        router_logits = self.gate(hidden_states)
        fused_experts_out = self.experts(
            hidden_states=hidden_states, router_logits=router_logits
        )

493
494
495
        assert use_intel_amx_backend(
            self.shared_experts.gate_up_proj
        ) == use_intel_amx_backend(self.shared_experts.down_proj)
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
        # [Note] inplace should be False in fused_experts.
        # If inplace is True in fused_experts (self.experts), hidden_states will be changed after fused_experts
        # While hidden_states is still needed in shared_expert.
        final_hidden_states = torch.ops.sgl_kernel.shared_expert_cpu(
            hidden_states,
            self.shared_experts.gate_up_proj.weight,
            self.shared_experts.down_proj.weight,
            fused_experts_out,
            self.routed_scaling_factor,
            True,  # inplace
            self.shared_experts_is_int8,  # use_int8_w8a8
            self.shared_experts_is_fp8,  # use_fp8_w8a16
            (
                self.shared_experts.gate_up_proj.weight_scale
                if self.shared_experts_is_int8
                else (
                    self.shared_experts.gate_up_proj.weight_scale_inv
                    if self.shared_experts_is_fp8
                    else None
                )
            ),  # w1_scale
            (
                self.shared_experts.down_proj.weight_scale
                if self.shared_experts_is_int8
                else (
                    self.shared_experts.down_proj.weight_scale_inv
                    if self.shared_experts_is_fp8
                    else None
                )
            ),  # w2_scale
            (
                self.shared_experts_weight_block_size
                if self.shared_experts_is_fp8
                else None
            ),  # block_size
            None,  # a1_scale
            None,  # a2_scale
            True,  # is_vnni
        )
535
        if self.tp_size > 1 and not can_fuse_mlp_allreduce:
536
537
538
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
    def forward_deepep(
        self, hidden_states: torch.Tensor, forward_batch: ForwardBatch
    ) -> torch.Tensor:
        forward_mode = forward_batch.forward_mode
        shared_output = None
        if is_non_idle_and_non_empty(forward_mode, hidden_states):
            # router_logits: (num_tokens, n_experts)
            router_logits = self.gate(hidden_states)
            shared_output = self._forward_shared_experts(hidden_states)
            topk_weights, topk_idx = select_experts(
                hidden_states=hidden_states,
                router_logits=router_logits,
                top_k=self.top_k,
                use_grouped_topk=True,
                renormalize=self.renormalize,
                topk_group=self.topk_group,
                num_expert_group=self.num_expert_group,
556
                num_fused_shared_experts=self.num_fused_shared_experts,
557
558
559
                correction_bias=self.correction_bias,
                routed_scaling_factor=self.routed_scaling_factor,
                num_token_non_padded=forward_batch.num_token_non_padded,
560
561
562
                expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                    layer_id=self.layer_id,
                ),
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
            )
        else:
            topk_idx = torch.full(
                (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
            )
            topk_weights = torch.empty(
                (0, self.top_k), dtype=torch.float32, device=hidden_states.device
            )
        if self.ep_size > 1:
            # TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
            (
                hidden_states,
                topk_idx,
                topk_weights,
                reorder_topk_ids,
                num_recv_tokens_per_expert,
                seg_indptr,
                masked_m,
                expected_m,
            ) = self.deepep_dispatcher.dispatch(
                hidden_states=hidden_states,
                topk_idx=topk_idx,
                topk_weights=topk_weights,
586
                forward_batch=forward_batch,
587
588
589
590
591
592
593
594
595
596
            )
        final_hidden_states = self.experts(
            hidden_states=hidden_states,
            topk_idx=topk_idx,
            topk_weights=topk_weights,
            reorder_topk_ids=reorder_topk_ids,
            seg_indptr=seg_indptr,
            masked_m=masked_m,
            expected_m=expected_m,
            num_recv_tokens_per_expert=num_recv_tokens_per_expert,
597
            forward_batch=forward_batch,
598
599
600
601
602
603
        )
        if self.ep_size > 1:
            final_hidden_states = self.deepep_dispatcher.combine(
                hidden_states=final_hidden_states,
                topk_idx=topk_idx,
                topk_weights=topk_weights,
604
                forward_batch=forward_batch,
605
606
607
            )

        if shared_output is not None:
608
609
610
611
612
            x = shared_output
            x.add_(final_hidden_states, alpha=self.routed_scaling_factor)
            final_hidden_states = x
        else:
            final_hidden_states *= self.routed_scaling_factor
613
614
615
616

        return final_hidden_states

    def _forward_shared_experts(self, hidden_states):
617
        if self.num_fused_shared_experts == 0:
618
619
620
621
            return self.shared_experts(hidden_states)
        else:
            return None

622
    def op_gate(self, state):
623
        if is_non_idle_and_non_empty(
624
            state.forward_batch.forward_mode, state.hidden_states_mlp_input
625
        ):
626
            # router_logits: (num_tokens, n_experts)
627
            state.router_logits = self.gate(state.hidden_states_mlp_input)
628
        else:
629
            state.router_logits = None
630

631
    def op_shared_experts(self, state):
632
        hidden_states_mlp_input = state.pop("hidden_states_mlp_input")
633
        if (self.num_fused_shared_experts == 0) and is_non_idle_and_non_empty(
634
            state.forward_batch.forward_mode, hidden_states_mlp_input
635
        ):
636
            state.shared_output = self.shared_experts(hidden_states_mlp_input)
637
        else:
638
            state.shared_output = None
639

640
    def op_select_experts(self, state):
641
        router_logits = state.pop("router_logits")
642
643
        hidden_states = state.hidden_states_mlp_input

644
        if router_logits is not None:
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
            with get_global_expert_distribution_recorder().with_current_layer(
                self.layer_id
            ):
                state.topk_weights_local, state.topk_idx_local = select_experts(
                    hidden_states=hidden_states,
                    router_logits=router_logits,
                    top_k=self.top_k,
                    use_grouped_topk=True,
                    renormalize=self.renormalize,
                    topk_group=self.topk_group,
                    num_expert_group=self.num_expert_group,
                    num_fused_shared_experts=self.num_fused_shared_experts,
                    correction_bias=self.correction_bias,
                    routed_scaling_factor=self.routed_scaling_factor,
                    num_token_non_padded=state.forward_batch.num_token_non_padded,
                    expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                        layer_id=self.layer_id,
                    ),
                )
664
665
666
667
668
669
670
        else:
            state.topk_idx_local = torch.full(
                (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
            )
            state.topk_weights_local = torch.empty(
                (0, self.top_k), dtype=torch.float32, device=hidden_states.device
            )
671

672
    def op_dispatch_a(self, state):
673
        if self.ep_size > 1:
674
            # TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
675
            self.deepep_dispatcher.dispatch_a(
676
                hidden_states=state.hidden_states_mlp_input,
677
678
                topk_idx=state.pop("topk_idx_local"),
                topk_weights=state.pop("topk_weights_local"),
679
                forward_batch=state.forward_batch,
680
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
681
            )
682

683
    def op_dispatch_b(self, state):
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
        if self.ep_size > 1:
            with get_global_expert_distribution_recorder().with_current_layer(
                self.layer_id
            ):
                (
                    state.hidden_states_experts_input,
                    state.topk_idx_dispatched,
                    state.topk_weights_dispatched,
                    state.reorder_topk_ids,
                    state.num_recv_tokens_per_expert,
                    state.seg_indptr,
                    state.masked_m,
                    state.expected_m,
                ) = self.deepep_dispatcher.dispatch_b(
                    tbo_subbatch_index=state.get("tbo_subbatch_index"),
                )
700
701

    def op_experts(self, state):
702
703
704
705
706
707
708
709
710
        state.hidden_states_experts_output = self.experts(
            hidden_states=state.pop("hidden_states_experts_input"),
            topk_idx=state.topk_idx_dispatched,
            topk_weights=state.topk_weights_dispatched,
            reorder_topk_ids=state.pop("reorder_topk_ids"),
            seg_indptr=state.pop("seg_indptr"),
            masked_m=state.pop("masked_m"),
            expected_m=state.pop("expected_m"),
            num_recv_tokens_per_expert=state.pop("num_recv_tokens_per_expert"),
711
            forward_batch=state.forward_batch,
712
        )
713

714
    def op_combine_a(self, state):
715
        if self.ep_size > 1:
716
            self.deepep_dispatcher.combine_a(
717
                hidden_states=state.pop("hidden_states_experts_output"),
718
719
                topk_idx=state.pop("topk_idx_dispatched"),
                topk_weights=state.pop("topk_weights_dispatched"),
720
                forward_batch=state.forward_batch,
721
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
722
            )
723

724
    def op_combine_b(self, state):
725
726
727
728
        if self.ep_size > 1:
            state.hidden_states_after_combine = self.deepep_dispatcher.combine_b(
                tbo_subbatch_index=state.get("tbo_subbatch_index"),
            )
729
730

    def op_output(self, state):
731
        final_hidden_states = state.pop("hidden_states_after_combine")
732
733
734
735
736
737
738

        if (shared_output := state.pop("shared_output")) is not None:
            x = shared_output
            x.add_(final_hidden_states, alpha=self.routed_scaling_factor)
            final_hidden_states = x
        else:
            final_hidden_states *= self.routed_scaling_factor
Liangsheng Yin's avatar
Liangsheng Yin committed
739

740
        state.hidden_states_mlp_output = final_hidden_states
741

Liangsheng Yin's avatar
Liangsheng Yin committed
742
743
744
745
746
747
748
749
750

def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
    import math

    if scale <= 1:
        return 1.0
    return 0.1 * mscale * math.log(scale) + 1.0


751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
class DeepseekV2AttentionMLA(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
767
768
        reduce_results: bool = True,
        layer_id: int = None,
769
        prefix: str = "",
770
        alt_stream: Optional[torch.cuda.Stream] = None,
771
772
773
774
775
776
777
778
779
780
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
Lianmin Zheng's avatar
Lianmin Zheng committed
781
782
783
        attn_tp_rank = get_attention_tp_rank()
        attn_tp_size = get_attention_tp_size()

784
        self.num_heads = num_heads
Lianmin Zheng's avatar
Lianmin Zheng committed
785
786
        assert num_heads % attn_tp_size == 0
        self.num_local_heads = num_heads // attn_tp_size
787
788
789
790
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

Lianmin Zheng's avatar
Lianmin Zheng committed
791
792
        # For tensor parallel attention
        if self.q_lora_rank is not None:
793
            self.fused_qkv_a_proj_with_mqa = ReplicatedLinear(
Ke Bao's avatar
Ke Bao committed
794
                self.hidden_size,
795
                self.q_lora_rank + self.kv_lora_rank + self.qk_rope_head_dim,
796
797
                bias=False,
                quant_config=quant_config,
798
                prefix=add_prefix("fused_qkv_a_proj_with_mqa", prefix),
799
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
800
801
802
803
            self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(
                q_lora_rank,
                self.num_heads * self.qk_head_dim,
Ke Bao's avatar
Ke Bao committed
804
805
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
806
807
808
                prefix=add_prefix("q_b_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
Ke Bao's avatar
Ke Bao committed
809
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
810
811
        else:
            self.q_proj = ColumnParallelLinear(
812
                self.hidden_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
813
                self.num_heads * self.qk_head_dim,
814
815
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
816
817
818
                prefix=add_prefix("q_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
819
            )
820
821
822
823
824
825
826
827
            self.kv_a_proj_with_mqa = ReplicatedLinear(
                self.hidden_size,
                self.kv_lora_rank + self.qk_rope_head_dim,
                bias=False,
                quant_config=quant_config,
                prefix=add_prefix("kv_a_proj_with_mqa", prefix),
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("kv_b_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
        # O projection.
        self.o_proj = RowParallelLinear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
            prefix=add_prefix("o_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
848
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
Ke Bao's avatar
Ke Bao committed
849
850
851
852

        if rope_scaling:
            rope_scaling["rope_type"] = "deepseek_yarn"

853
        self.rotary_emb = get_rope_wrapper(
854
855
856
857
858
859
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
860
            device=global_server_args_dict["device"],
861
862
863
864
865
866
867
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale
Ke Bao's avatar
Ke Bao committed
868
869
        else:
            self.rotary_emb.forward = self.rotary_emb.forward_native
870

871
        self.attn_mqa = RadixAttention(
872
873
874
875
876
877
            self.num_local_heads,
            self.kv_lora_rank + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=1,
            layer_id=layer_id,
            v_head_dim=self.kv_lora_rank,
878
            quant_config=quant_config,
879
            prefix=add_prefix("attn_mqa", prefix),
880
881
        )

882
883
884
885
886
887
888
        self.attn_mha = RadixAttention(
            self.num_local_heads,
            self.qk_nope_head_dim + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=self.num_local_heads,
            layer_id=layer_id,
            v_head_dim=self.v_head_dim,
889
            quant_config=quant_config,
890
            prefix=add_prefix("attn_mha", prefix),
891
892
        )

893
        self.alt_stream = alt_stream
894
        self.attn_mha.kv_b_proj = None
895

Ke Bao's avatar
Ke Bao committed
896
897
        self.w_kc = None
        self.w_vc = None
898
        self.w_scale = 1.0
899

900
901
902
903
        self.w_scale_k = None
        self.w_scale_v = None
        self.use_deep_gemm_bmm = False

Lianmin Zheng's avatar
Lianmin Zheng committed
904
905
906
        self.flashinfer_mla_disable_ragged = global_server_args_dict[
            "flashinfer_mla_disable_ragged"
        ]
907
908
909
        self.disable_chunked_prefix_cache = global_server_args_dict[
            "disable_chunked_prefix_cache"
        ]
910
        self.attention_backend = global_server_args_dict["attention_backend"]
911
912
913
        self.rocm_fused_decode_mla = get_bool_env_var(
            "SGLANG_ROCM_FUSED_DECODE_MLA", "false"
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
914

915
        # TODO: Design a finer way to determine the threshold
916
917
918
        self.chunked_prefix_cache_threshold = get_int_env_var(
            "SGL_CHUNKED_PREFIX_CACHE_THRESHOLD", 8192
        )
919

920
921
922
        # If we have self.fused_qkv_a_proj_with_mqa and we're running on CPU, we will choose the torch.ops.sgl_kernel.qkv_proj_with_rope_fused_weight kernel
        # which requires self.w_kc and self.w_vc to be packed.
        # If not, we will use torch.bmm and weight shouldn't be packed in this case
AniZpZ's avatar
AniZpZ committed
923
924
        has_fused_proj = hasattr(self, "fused_qkv_a_proj_with_mqa")
        if has_fused_proj and _is_cpu and _is_cpu_amx_available:
925
926
927
928
            self.quant_method = PackWeightMethod(
                weight_names=["w_kc", "w_vc"], transpose_dims=[[1, 2], [1, 2]]
            )

929
        is_packed_weight = (
AniZpZ's avatar
AniZpZ committed
930
931
932
            has_fused_proj
            and hasattr(self.fused_qkv_a_proj_with_mqa.quant_method, "quant_config")
            and self.fused_qkv_a_proj_with_mqa.quant_method.quant_config.get_name()
933
            in {"awq", "awq_marlin", "moe_wna16"}
934
        )
935
        self.use_min_latency_fused_a_gemm = (
AniZpZ's avatar
AniZpZ committed
936
            has_fused_proj
937
            and not is_packed_weight
938
939
940
            and self.fused_qkv_a_proj_with_mqa.weight.dtype == torch.bfloat16
            and self.fused_qkv_a_proj_with_mqa.weight.shape[0] == 2112
            and self.fused_qkv_a_proj_with_mqa.weight.shape[1] == 7168
941
            and _is_cuda
942
            and _device_sm >= 90
943
944
        )

945
        self.qkv_proj_with_rope_is_int8 = (
AniZpZ's avatar
AniZpZ committed
946
            has_fused_proj
947
            and not is_packed_weight
948
949
950
            and self.fused_qkv_a_proj_with_mqa.weight.dtype == torch.int8
        )
        self.qkv_proj_with_rope_is_fp8 = (
AniZpZ's avatar
AniZpZ committed
951
            has_fused_proj
952
            and not is_packed_weight
953
954
955
956
            and self.fused_qkv_a_proj_with_mqa.weight.dtype == torch.float8_e4m3fn
        )

        self.weight_block_size = None
957
958
959
960
961
962
        if self.qkv_proj_with_rope_is_fp8 and _is_cpu and _is_cpu_amx_available:
            assert getattr(
                self.fused_qkv_a_proj_with_mqa.quant_method, "block_quant", False
            ) == getattr(self.q_b_proj.quant_method, "block_quant", False)
            use_block_quant = getattr(
                self.fused_qkv_a_proj_with_mqa.quant_method, "block_quant", False
963
964
            )

965
966
967
968
969
970
971
972
973
            if use_block_quant:
                assert (
                    self.fused_qkv_a_proj_with_mqa.quant_method.quant_config.weight_block_size
                    == self.q_b_proj.quant_method.quant_config.weight_block_size
                )
                self.weight_block_size = (
                    self.fused_qkv_a_proj_with_mqa.quant_method.quant_config.weight_block_size
                )

974
975
976
    def dispatch_attn_forward_method(
        self, forward_batch: ForwardBatch
    ) -> AttnForwardMethod:
977
978
979
980
981
982
983
984
985
986
        def _dispatch_mla_subtype():
            if _is_hip:
                if (
                    self.rocm_fused_decode_mla
                    and forward_batch.forward_mode.is_decode()
                ):
                    return AttnForwardMethod.MLA_FUSED_ROPE
                else:
                    return AttnForwardMethod.MLA
            else:
987
988
                if hasattr(self, "fused_qkv_a_proj_with_mqa") and use_intel_amx_backend(
                    self
989
990
991
992
                ):
                    return AttnForwardMethod.MLA_FUSED_ROPE_CPU
                else:
                    return AttnForwardMethod.MLA
993

994
995
996
        if self.attention_backend == "ascend":
            return AttnForwardMethod.MLA
        elif self.attention_backend == "flashinfer":
Lianmin Zheng's avatar
Lianmin Zheng committed
997
            # Flashinfer MLA: Do not absorb when enabling ragged prefill
998
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
999
1000
1001
1002
                not self.flashinfer_mla_disable_ragged
                and forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
1003
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
1004
1005
1006
            ):
                return AttnForwardMethod.MHA
            else:
1007
                return _dispatch_mla_subtype()
1008
        elif self.attention_backend == "fa3":
1009
            # Flash Attention: Use MHA with chunked KV cache when prefilling on long sequences.
1010
1011
            if forward_batch.extend_prefix_lens_cpu is not None:
                sum_extend_prefix_lens = sum(forward_batch.extend_prefix_lens_cpu)
1012
1013
1014
1015
1016
            if (
                forward_batch.forward_mode.is_extend()
                and not self.disable_chunked_prefix_cache
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
1017
1018
1019
1020
                and (
                    sum_extend_prefix_lens >= self.chunked_prefix_cache_threshold
                    or sum_extend_prefix_lens == 0
                )
1021
1022
1023
            ):
                return AttnForwardMethod.MHA_CHUNKED_KV
            else:
1024
                return _dispatch_mla_subtype()
1025
1026
1027
1028
1029
1030
1031
1032
1033
        elif self.attention_backend == "aiter":
            if (
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
            ):
                return AttnForwardMethod.MHA
            else:
                return AttnForwardMethod.MLA
Lianmin Zheng's avatar
Lianmin Zheng committed
1034
1035
        else:
            # Triton: Use normal computation for prefill and use weight absorption for extend/decode
1036
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
1037
1038
1039
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
1040
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
1041
1042
1043
            ):
                return AttnForwardMethod.MHA
            else:
1044
                return _dispatch_mla_subtype()
Lianmin Zheng's avatar
Lianmin Zheng committed
1045

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
    def op_prepare(self, state):
        state.attn_intermediate_state = self.forward_prepare(
            positions=state.positions,
            hidden_states=state.pop("hidden_states_after_comm_pre_attn"),
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
        )

    def op_core(self, state):
        state.hidden_states_after_attn = self.forward_core(
            state.pop("attn_intermediate_state")
        )

1059
1060
1061
1062
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
1063
        forward_batch: ForwardBatch,
1064
        zero_allocator: BumpAllocator,
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
    ):
        s = self.forward_prepare(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )
        return self.forward_core(s)

    def forward_prepare(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        zero_allocator: BumpAllocator,
    ):
1081
1082
1083
        if self.attn_mha.kv_b_proj is None:
            self.attn_mha.kv_b_proj = self.kv_b_proj

Lianmin Zheng's avatar
Lianmin Zheng committed
1084
1085
1086
1087
        if hidden_states.shape[0] == 0:
            assert (
                not self.o_proj.reduce_results
            ), "short-circuiting allreduce will lead to hangs"
1088
            return hidden_states, None, forward_batch, None
1089

1090
1091
1092
        attn_forward_method = self.dispatch_attn_forward_method(forward_batch)

        if attn_forward_method == AttnForwardMethod.MHA:
1093
1094
1095
            inner_state = self.forward_normal_prepare(
                positions, hidden_states, forward_batch, zero_allocator
            )
1096
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
1097
1098
            inner_state = self.forward_normal_chunked_kv_prepare(
                positions, hidden_states, forward_batch, zero_allocator
1099
            )
1100
        elif attn_forward_method == AttnForwardMethod.MLA:
1101
            inner_state = self.forward_absorb_prepare(
1102
1103
1104
                positions, hidden_states, forward_batch, zero_allocator
            )
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
1105
1106
            inner_state = self.forward_absorb_fused_mla_rope_prepare(
                positions, hidden_states, forward_batch, zero_allocator
1107
            )
1108
1109
1110
1111
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE_CPU:
            inner_state = self.forward_absorb_fused_mla_rope_cpu_prepare(
                positions, hidden_states, forward_batch, zero_allocator
            )
1112
        else:
1113
            raise NotImplementedError
1114
        return None, attn_forward_method, forward_batch, inner_state
1115

1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
    def forward_core(self, intermediate_state):
        hidden_states, attn_forward_method, forward_batch, inner_state = (
            intermediate_state
        )
        if inner_state is None:
            return hidden_states

        if attn_forward_method == AttnForwardMethod.MHA:
            return self.forward_normal_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
            return self.forward_normal_chunked_kv_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MLA:
            return self.forward_absorb_core(*inner_state)
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE:
            return self.forward_absorb_fused_mla_rope_core(*inner_state)
1131
1132
        elif attn_forward_method == AttnForwardMethod.MLA_FUSED_ROPE_CPU:
            return self.forward_absorb_fused_mla_rope_cpu_core(*inner_state)
1133
1134
1135
1136
        else:
            raise NotImplementedError

    def forward_normal_prepare(
1137
1138
1139
1140
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1141
1142
        zero_allocator: BumpAllocator,
    ):
1143
        if self.q_lora_rank is not None:
1144
1145
1146
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1147
1148
1149
1150
1151
1152
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1153
1154
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]

1155
1156
1157
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
1158
        kv_a = self.kv_a_layernorm(kv_a)
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )
1177
1178
1179
1180

        return q, k, v, forward_batch

    def forward_normal_core(self, q, k, v, forward_batch):
1181
1182
1183
1184
1185
        attn_output = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

1186
    def forward_absorb_prepare(
1187
1188
1189
1190
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1191
        zero_allocator: BumpAllocator,
1192
    ):
1193
1194
        from sglang.srt.model_executor.cuda_graph_runner import get_is_capture_mode

1195
        if self.q_lora_rank is not None:
1196
1197
1198
1199
1200
1201
1202
            if hidden_states.shape[0] <= 16 and self.use_min_latency_fused_a_gemm:
                fused_qkv_a_proj_out = dsv3_fused_a_gemm(
                    hidden_states, self.fused_qkv_a_proj_with_mqa.weight.T
                )
            else:
                fused_qkv_a_proj_out = self.fused_qkv_a_proj_with_mqa(hidden_states)[0]
            q, latent_cache = fused_qkv_a_proj_out.split(
1203
1204
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1205
1206
1207
            k_nope = latent_cache[..., : self.kv_lora_rank]

            # overlap qk norm
1208
            if self.alt_stream is not None and get_is_capture_mode():
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
                current_stream = torch.cuda.current_stream()
                self.alt_stream.wait_stream(current_stream)
                q = self.q_a_layernorm(q)
                with torch.cuda.stream(self.alt_stream):
                    k_nope = self.kv_a_layernorm(k_nope)
                current_stream.wait_stream(self.alt_stream)
            else:
                q = self.q_a_layernorm(q)
                k_nope = self.kv_a_layernorm(k_nope)

            k_nope = k_nope.unsqueeze(1)
1220
1221
1222
1223
1224
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1225
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1226
1227
1228
            k_nope = latent_cache[..., : self.kv_lora_rank]
            k_nope = self.kv_a_layernorm(k_nope).unsqueeze(1)

1229
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
1230
        k_pe = latent_cache[..., self.kv_lora_rank :].unsqueeze(1)
1231

1232
1233
        if self.use_deep_gemm_bmm:
            q_nope_val, q_nope_scale, masked_m, expected_m, aligned_m = (
1234
                per_token_group_quant_mla_deep_gemm_masked_fp8(q_nope.transpose(0, 1))
1235
1236
1237
1238
            )
            q_nope_out = q_nope.new_empty(
                (self.num_local_heads, aligned_m, self.kv_lora_rank)
            )
1239
            deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
1240
1241
1242
1243
1244
1245
1246
                (q_nope_val, q_nope_scale),
                (self.w_kc, self.w_scale_k),
                q_nope_out,
                masked_m,
                expected_m,
            )
            q_nope_out = q_nope_out[:, :expected_m, :]
1247
1248
        elif _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1249
1250
1251
1252
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
1253
        elif self.w_kc.dtype == torch.float8_e4m3fn:
1254
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
1255
                q_nope.transpose(0, 1),
1256
                zero_allocator.allocate(1),
1257
1258
1259
1260
1261
1262
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
1263
1264

        q_nope_out = q_nope_out.transpose(0, 1)
1265
1266
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)

1267
1268
1269
1270
1271
        return q_pe, k_pe, q_nope_out, k_nope, forward_batch, zero_allocator

    def forward_absorb_core(
        self, q_pe, k_pe, q_nope_out, k_nope, forward_batch, zero_allocator
    ):
1272
1273
1274
1275
1276
        if (
            self.attention_backend == "fa3"
            or self.attention_backend == "flashinfer"
            or self.attention_backend == "cutlass_mla"
        ):
1277
            attn_output = self.attn_mqa(
Ke Bao's avatar
Ke Bao committed
1278
                q_nope_out, k_nope, k_nope, forward_batch, q_rope=q_pe, k_rope=k_pe
1279
1280
1281
            )
        else:
            q = torch.cat([q_nope_out, q_pe], dim=-1)
Ke Bao's avatar
Ke Bao committed
1282
            k = torch.cat([k_nope, k_pe], dim=-1)
1283
            attn_output = self.attn_mqa(q, k, k_nope, forward_batch)
1284
1285
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

1286
1287
        if self.use_deep_gemm_bmm:
            attn_output_val, attn_output_scale, masked_m, expected_m, aligned_m = (
1288
1289
                per_token_group_quant_mla_deep_gemm_masked_fp8(
                    attn_output.transpose(0, 1)
1290
1291
1292
1293
1294
                )
            )
            attn_bmm_output = attn_output.new_empty(
                (self.num_local_heads, aligned_m, self.v_head_dim)
            )
1295
            deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
1296
1297
1298
1299
1300
1301
                (attn_output_val, attn_output_scale),
                (self.w_vc, self.w_scale_v),
                attn_bmm_output,
                masked_m,
                expected_m,
            )
Ke Bao's avatar
Ke Bao committed
1302
1303
1304
            attn_bmm_output = (
                attn_bmm_output[:, :expected_m, :].transpose(0, 1).flatten(1, 2)
            )
1305
1306
        elif _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1307
1308
1309
1310
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
Ke Bao's avatar
Ke Bao committed
1311
            attn_bmm_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1312
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1313
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
1314
                attn_output.transpose(0, 1),
1315
                zero_allocator.allocate(1),
1316
1317
1318
1319
1320
1321
1322
1323
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
Ke Bao's avatar
Ke Bao committed
1324
            attn_bmm_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1325
        else:
Ke Bao's avatar
Ke Bao committed
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
            attn_bmm_output = torch.empty(
                (attn_output.shape[0], self.num_local_heads * self.v_head_dim),
                dtype=attn_output.dtype,
                device=attn_output.device,
            )
            torch.bmm(
                attn_output.transpose(0, 1),
                self.w_vc,
                out=attn_bmm_output.view(
                    -1, self.num_local_heads, self.v_head_dim
                ).transpose(0, 1),
            )
        output, _ = self.o_proj(attn_bmm_output)
1339
1340
1341

        return output

1342
    def forward_absorb_fused_mla_rope_prepare(
1343
1344
1345
1346
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1347
        zero_allocator: BumpAllocator,
1348
    ):
1349
1350
1351
1352
1353
1354
1355
1356
        enable_rope_fusion = (
            os.getenv("SGLANG_FUSED_MLA_ENABLE_ROPE_FUSION", "1") == "1"
        )
        q_len = hidden_states.shape[0]
        q_input = hidden_states.new_empty(
            q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
        )
        if self.q_lora_rank is not None:
1357
1358
1359
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1360
1361
1362
1363
1364
1365
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1366
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1367
1368
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)

1369
1370
        if _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1371
1372
1373
1374
1375
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_kc.dtype == torch.float8_e4m3fn:
1376
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
1377
1378
1379
                q_nope.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
        q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)
        v_input = latent_cache[..., : self.kv_lora_rank]
        v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
        k_input = latent_cache.unsqueeze(1)
        k_input[..., : self.kv_lora_rank] = v_input

        if not enable_rope_fusion:
            k_pe = k_input[..., self.kv_lora_rank :]
            q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
            q_input[..., self.kv_lora_rank :] = q_pe
            k_input[..., self.kv_lora_rank :] = k_pe
            k_pe_output = None
        else:
            k_pe_output = torch.empty_like(k_input[..., self.kv_lora_rank :])

        q_input[..., self.kv_lora_rank :] = q_pe

        # attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        # Use Fused ROPE with use_rope=OFF.
        attn_output = torch.empty(
            (q_len, self.num_local_heads, self.kv_lora_rank),
            dtype=q.dtype,
            device=q.device,
        )
        attn_logits, _, kv_indptr, kv_indices, _, _, _ = (
            forward_batch.attn_backend.forward_metadata
        )
        cos_sin_cache = self.rotary_emb.cos_sin_cache
        num_kv_split = forward_batch.attn_backend.num_kv_splits
        sm_scale = self.attn_mqa.scaling
        if attn_logits is None:
            attn_logits = torch.empty(
                (
                    forward_batch.batch_size,
                    self.num_local_heads,
                    num_kv_split,
                    self.kv_lora_rank + 1,
                ),
                dtype=torch.float32,
                device=q.device,
            )

        # save current latent cache.
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mqa, forward_batch.out_cache_loc, k_input, None
        )
        key_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
            self.attn_mqa.layer_id
        )
        val_cache_buf = key_cache_buf[..., : self.kv_lora_rank]

1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
        return (
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            enable_rope_fusion,
            k_input,
            forward_batch,
            zero_allocator,
        )

1456
1457
1458
1459
1460
1461
1462
    def forward_absorb_fused_mla_rope_cpu_prepare(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        zero_allocator: BumpAllocator,
    ):
1463
1464
        assert self.q_lora_rank is not None and use_intel_amx_backend(
            self
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
        ), "forward_absorb_fused_mla_rope_cpu_prepare requires q_lora_rank is not None and use_intel_amx_backend"

        q_input, k_input, v_input = (
            torch.ops.sgl_kernel.qkv_proj_with_rope_fused_weight(
                hidden_states,
                self.fused_qkv_a_proj_with_mqa.weight,
                self.q_b_proj.weight,
                self.w_kc,
                self.q_a_layernorm.weight,
                self.kv_a_layernorm.weight,
                positions,
                self.rotary_emb.cos_sin_cache,
                self.kv_a_layernorm.variance_epsilon,
                self.qkv_proj_with_rope_is_int8,
                self.qkv_proj_with_rope_is_fp8,
                (
                    self.fused_qkv_a_proj_with_mqa.weight_scale
                    if self.qkv_proj_with_rope_is_int8
                    else (
                        self.fused_qkv_a_proj_with_mqa.weight_scale_inv
                        if self.qkv_proj_with_rope_is_fp8
                        else None
                    )
                ),
                (
                    self.q_b_proj.weight_scale
                    if self.qkv_proj_with_rope_is_int8
                    else (
                        self.q_b_proj.weight_scale_inv
                        if self.qkv_proj_with_rope_is_fp8
                        else None
                    )
                ),
                True,  # is_vnni
                self.weight_block_size,
                self.q_lora_rank,
                self.kv_lora_rank,
                self.qk_rope_head_dim,
            )
        )
        return (q_input, k_input, v_input, forward_batch, zero_allocator)

1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
    def forward_absorb_fused_mla_rope_core(
        self,
        q_input,
        key_cache_buf,
        val_cache_buf,
        attn_output,
        kv_indptr,
        kv_indices,
        k_pe_output,
        cos_sin_cache,
        positions,
        attn_logits,
        num_kv_split,
        sm_scale,
        enable_rope_fusion,
        k_input,
        forward_batch,
        zero_allocator,
    ):
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
        decode_attention_fwd_grouped_rope(
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            self.kv_lora_rank,
            self.rotary_emb.rotary_dim,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            logit_cap=self.attn_mqa.logit_cap,
            use_rope=enable_rope_fusion,
            is_neox_style=self.rotary_emb.is_neox_style,
        )

        if enable_rope_fusion:
            k_input[..., self.kv_lora_rank :] = k_pe_output
            forward_batch.token_to_kv_pool.set_kv_buffer(
                self.attn_mqa, forward_batch.out_cache_loc, k_input, None
            )

        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

1554
1555
        if _is_hip:
            # TODO(haishaw): add bmm_fp8 to ROCm
1556
1557
1558
1559
1560
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_vc.dtype == torch.float8_e4m3fn:
1561
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
1562
1563
1564
                attn_output.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1576
1577
1578
1579
        output, _ = self.o_proj(attn_output)

        return output

1580
1581
1582
    def forward_absorb_fused_mla_rope_cpu_core(
        self, q_input, k_input, v_input, forward_batch, zero_allocator
    ):
1583
1584
        assert self.q_lora_rank is not None and use_intel_amx_backend(
            self
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
        ), "forward_absorb_fused_mla_rope_cpu_core requires q_lora_rank is not None and use_intel_amx_backend"

        attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

        # [Note] Align shapes of bmm inputs.
        # Shapes of inputs:
        #   q_nope: [M, B, K]
        #   original self.w_kc: [B, K, N]
        #   current self.w_kc (which has been converted in PackWeightMethod): [B, N, K]

        # Shapes of inputs to sgl_kernel.cpu.bmm:
        #   out: [B, M, N]
        #   mat1: [B, M, K]
        #   mat2: [B, N, K]
        B = self.w_vc.size(0)
        N = self.w_vc.size(1)
        M = attn_output.size(0)
        output = torch.empty([M, int(B * N)], dtype=attn_output.dtype)
        attn_bmm_output = output.view([M, B, N]).transpose_(0, 1)
        torch.ops.sgl_kernel.bmm_cpu(
            attn_bmm_output,
            attn_output.transpose(0, 1),
            self.w_vc,
            True,  # is_vnni
            None,  # scale
        )
        attn_output = output
        output, _ = self.o_proj(attn_output)

        return output

1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
    def _chunked_prefix_attn_mha(
        self,
        q: torch.Tensor,
        accum_output: torch.Tensor,
        accum_lse: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:

        assert forward_batch.num_prefix_chunks is not None
        for i in range(forward_batch.num_prefix_chunks):
            forward_batch.set_prefix_chunk_idx(i)

            # Fetch latent cache from memory pool with precomputed chunked kv indices
            latent_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
                self.attn_mha.layer_id
            )
            latent_cache = latent_cache_buf[
                forward_batch.prefix_chunk_kv_indices[i]
            ].contiguous()

            kv_a_normed, k_pe = latent_cache.split(
                [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
            )
            kv_a_normed = kv_a_normed.squeeze(1).contiguous()
            kv = self.kv_b_proj(kv_a_normed)[0]
            kv = kv.view(
                -1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim
            )
            v = kv[..., self.qk_nope_head_dim :]
            k_nope = kv[..., : self.qk_nope_head_dim]

            k = torch.empty(
                (
                    k_nope.shape[0],
                    self.num_local_heads,
                    self.qk_nope_head_dim + self.qk_rope_head_dim,
                ),
                dtype=v.dtype,
                device=v.device,
            )
            k[..., : self.qk_nope_head_dim] = k_nope
            k[..., self.qk_nope_head_dim :] = k_pe

            output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
            lse = torch.transpose(lse, 0, 1).contiguous()
            tmp_output = torch.empty_like(accum_output)
            tmp_lse = torch.empty_like(accum_lse)
            merge_state_v2(output, lse, accum_output, accum_lse, tmp_output, tmp_lse)
            accum_output, accum_lse = tmp_output, tmp_lse

        return accum_output

1669
    def forward_normal_chunked_kv_prepare(
1670
1671
1672
1673
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
1674
1675
        zero_allocator: BumpAllocator,
    ):
1676
1677
1678
1679
1680
1681
1682
1683
        # In normal mha, the k and v tensors will become overly large when the prefix length is long.
        # To avoid this, we split the kv cache into chunks and process them one after another.
        # Since mha is compute friendly, the for loop induced here will not introduce significant overhead.
        # The top comments in https://github.com/vllm-project/vllm/blob/main/vllm/v1/attention/backends/mla/common.py
        # will be helpful for understanding the purpose of this function.

        # First do normal mha forward to get output for extended part
        if self.q_lora_rank is not None:
1684
1685
1686
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1687
1688
1689
1690
1691
1692
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1693
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1694
1695
1696
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
1697
        kv_a = self.kv_a_layernorm(kv_a)
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]

        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )

1718
1719
1720
        return q, k, v, forward_batch

    def forward_normal_chunked_kv_core(self, q, k, v, forward_batch):
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
        # Do mha for extended part without prefix
        forward_batch.set_attn_attend_prefix_cache(False)
        attn_output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        lse = torch.transpose(lse, 0, 1).contiguous()

        # Do mha attention with chunked prefix cache if there are any sequence with prefix
        if any(forward_batch.extend_prefix_lens_cpu):
            # Only initialize the info once
            if forward_batch.num_prefix_chunks is None:
                forward_batch.prepare_chunked_prefix_cache_info(q.device)

            forward_batch.set_attn_attend_prefix_cache(True)
            attn_output = self._chunked_prefix_attn_mha(
                q=q,
                accum_output=attn_output,
                accum_lse=lse,
                forward_batch=forward_batch,
            )

        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

1744

Liangsheng Yin's avatar
Liangsheng Yin committed
1745
1746
1747
1748
1749
1750
1751
class DeepseekV2DecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        layer_id: int,
        quant_config: Optional[QuantizationConfig] = None,
1752
        is_nextn: bool = False,
1753
        prefix: str = "",
1754
        alt_stream: Optional[torch.cuda.Stream] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1755
1756
1757
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
1758
        self.config = config
Liangsheng Yin's avatar
Liangsheng Yin committed
1759
1760
1761
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
Lianmin Zheng's avatar
Lianmin Zheng committed
1762
        self.enable_dp_attention = global_server_args_dict["enable_dp_attention"]
1763
        self.speculative_algorithm = global_server_args_dict["speculative_algorithm"]
Lianmin Zheng's avatar
Lianmin Zheng committed
1764
        self.layer_id = layer_id
1765
        self.is_nextn = is_nextn
Baizhou Zhang's avatar
Baizhou Zhang committed
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
        self.self_attn = DeepseekV2AttentionMLA(
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            qk_nope_head_dim=config.qk_nope_head_dim,
            qk_rope_head_dim=config.qk_rope_head_dim,
            v_head_dim=config.v_head_dim,
            q_lora_rank=(
                config.q_lora_rank if hasattr(config, "q_lora_rank") else None
            ),
            kv_lora_rank=config.kv_lora_rank,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            quant_config=quant_config,
            layer_id=layer_id,
            reduce_results=False,
            prefix=add_prefix("self_attn", prefix),
1784
            alt_stream=alt_stream,
Baizhou Zhang's avatar
Baizhou Zhang committed
1785
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1786

1787
1788
1789
1790
1791
        self.is_layer_sparse = self._is_layer_sparse(layer_id, is_nextn=is_nextn)
        is_previous_layer_sparse = self._is_layer_sparse(layer_id - 1, is_nextn=False)

        self.layer_scatter_modes = LayerScatterModes.init_new(
            layer_id=layer_id,
1792
            num_layers=1 if is_nextn else config.num_hidden_layers,
1793
1794
            is_layer_sparse=self.is_layer_sparse,
            is_previous_layer_sparse=is_previous_layer_sparse,
1795
1796
        )

1797
        if self.is_layer_sparse:
1798
1799
1800
1801
            self.mlp = DeepseekV2MoE(
                config=config,
                quant_config=quant_config,
                prefix=add_prefix("mlp", prefix),
fzyzcjy's avatar
fzyzcjy committed
1802
                layer_id=self.layer_id,
1803
                alt_stream=alt_stream,
1804
                is_nextn=is_nextn,
1805
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
1806
        else:
1807
            if enable_moe_dense_fully_dp():
1808
1809
1810
                mlp_tp_rank, mlp_tp_size = 0, 1
            else:
                mlp_tp_rank, mlp_tp_size = None, None
Liangsheng Yin's avatar
Liangsheng Yin committed
1811
1812
1813
1814
1815
            self.mlp = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
1816
                prefix=add_prefix("mlp", prefix),
1817
1818
                tp_rank=mlp_tp_rank,
                tp_size=mlp_tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
1819
            )
1820

Liangsheng Yin's avatar
Liangsheng Yin committed
1821
1822
1823
1824
1825
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

1826
1827
1828
1829
        self.layer_communicator = LayerCommunicator(
            layer_scatter_modes=self.layer_scatter_modes,
            input_layernorm=self.input_layernorm,
            post_attention_layernorm=self.post_attention_layernorm,
1830
        )
1831
1832
1833
1834
1835
1836

    def _is_layer_sparse(self, layer_id: int, is_nextn: bool) -> bool:
        return is_nextn or (
            self.config.n_routed_experts is not None
            and layer_id >= self.config.first_k_dense_replace
            and layer_id % self.config.moe_layer_freq == 0
1837
1838
        )

1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
    def _should_fuse_mlp_allreduce_with_next_layer(self, forward_batch) -> bool:
        """Check if MLP allreduce can be fused with next layer's add_rmsnorm"""

        if (
            self.layer_id == self.config.num_hidden_layers - 1
            or get_tensor_model_parallel_world_size() <= 1
        ):
            return False

        if not global_server_args_dict.get("enable_flashinfer_allreduce_fusion", False):
            return False

        if not _is_sm100_supported or not _is_flashinfer_available:
            return False

        if hasattr(forward_batch, "input_ids") and (
            forward_batch.input_ids.shape[0] == 0
            or forward_batch.input_ids.shape[0] > 128
        ):
            return False

        return True

Liangsheng Yin's avatar
Liangsheng Yin committed
1862
1863
1864
1865
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
1866
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
1867
        residual: Optional[torch.Tensor],
1868
        zero_allocator: BumpAllocator,
Liangsheng Yin's avatar
Liangsheng Yin committed
1869
    ) -> torch.Tensor:
1870

1871
1872
        hidden_states, residual = self.layer_communicator.prepare_attn(
            hidden_states, residual, forward_batch
1873
1874
        )

1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
            zero_allocator=zero_allocator,
        )

        hidden_states, residual = self.layer_communicator.prepare_mlp(
            hidden_states, residual, forward_batch
        )

1886
1887
1888
1889
        can_fuse_mlp_allreduce = (
            self._should_fuse_mlp_allreduce_with_next_layer(forward_batch)
            and not (self.enable_dp_attention and self.speculative_algorithm.is_eagle())
            and not self.is_nextn
1890
1891
        )

1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
        hidden_states = self.mlp(hidden_states, forward_batch, can_fuse_mlp_allreduce)

        if can_fuse_mlp_allreduce:
            hidden_states._sglang_needs_allreduce_fusion = True

        if not can_fuse_mlp_allreduce:
            hidden_states, residual = self.layer_communicator.postprocess_layer(
                hidden_states, residual, forward_batch
            )

1902
1903
        return hidden_states, residual

1904
1905
1906
1907
1908
1909
1910
1911
    def op_comm_prepare_attn(
        self,
        state,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        residual: Optional[torch.Tensor],
        zero_allocator: BumpAllocator,
1912
        tbo_subbatch_index: Optional[int] = None,
1913
1914
    ):
        state.hidden_states_after_comm_pre_attn, state.residual_after_input_ln = (
fzyzcjy's avatar
fzyzcjy committed
1915
            self.layer_communicator.prepare_attn(hidden_states, residual, forward_batch)
1916
1917
1918
1919
1920
1921
        )
        state.update(
            dict(
                forward_batch=forward_batch,
                positions=positions,
                zero_allocator=zero_allocator,
1922
                tbo_subbatch_index=tbo_subbatch_index,
1923
            )
1924
        )
1925

1926
1927
1928
1929
1930
1931
1932
    def op_comm_prepare_mlp(self, state):
        state.hidden_states_mlp_input, state.residual_after_comm_pre_mlp = (
            self.layer_communicator.prepare_mlp(
                state.pop("hidden_states_after_attn"),
                state.pop("residual_after_input_ln"),
                state.forward_batch,
            )
1933
        )
1934

1935
1936
1937
1938
1939
1940
1941
1942
    def op_mlp(self, state):
        hidden_states = state.pop("hidden_states_mlp_input")
        if not (
            enable_moe_dense_fully_dp()
            and (not self.is_layer_sparse)
            and hidden_states.shape[0] == 0
        ):
            state.hidden_states_mlp_output = self.mlp(
1943
                hidden_states, state.forward_batch
1944
1945
1946
            )
        else:
            state.hidden_states_mlp_output = hidden_states
1947

1948
    def op_comm_postprocess_layer(self, state):
1949
        hidden_states, residual = self.layer_communicator.postprocess_layer(
1950
1951
1952
            state.pop("hidden_states_mlp_output"),
            state.pop("residual_after_comm_pre_mlp"),
            state.forward_batch,
1953
        )
1954

1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
        output = dict(
            positions=state.positions,
            hidden_states=hidden_states,
            residual=residual,
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
            tbo_subbatch_index=state.tbo_subbatch_index,
        )

        state.clear(
            expect_keys={
                "positions",
                "forward_batch",
                "zero_allocator",
                "tbo_subbatch_index",
            }
        )
        return output
1973

Liangsheng Yin's avatar
Liangsheng Yin committed
1974
1975
1976
1977
1978
1979
1980
1981

class DeepseekV2Model(nn.Module):
    fall_back_to_pt_during_load = False

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1982
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1983
1984
1985
1986
    ) -> None:
        super().__init__()
        self.padding_id = config.pad_token_id
        self.vocab_size = config.vocab_size
1987
        self.first_k_dense_replace = config.first_k_dense_replace
Liangsheng Yin's avatar
Liangsheng Yin committed
1988
1989
1990
1991

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
1992
            enable_tp=not global_server_args_dict["enable_dp_attention"],
Liangsheng Yin's avatar
Liangsheng Yin committed
1993
        )
1994
        self.alt_stream = torch.cuda.Stream() if _is_cuda else None
Liangsheng Yin's avatar
Liangsheng Yin committed
1995
1996
1997
1998
1999
2000
        self.layers = nn.ModuleList(
            [
                DeepseekV2DecoderLayer(
                    config,
                    layer_id,
                    quant_config=quant_config,
2001
                    prefix=add_prefix(f"layers.{layer_id}", prefix),
2002
                    alt_stream=self.alt_stream,
Liangsheng Yin's avatar
Liangsheng Yin committed
2003
2004
2005
2006
2007
2008
                )
                for layer_id in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

2009
2010
2011
    def get_input_embeddings(self) -> torch.Tensor:
        return self.embed_tokens

Liangsheng Yin's avatar
Liangsheng Yin committed
2012
2013
2014
2015
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
2016
        forward_batch: ForwardBatch,
2017
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
2018
    ) -> torch.Tensor:
2019
2020
        total_num_layers = len(self.layers)
        device = input_embeds.device if input_embeds is not None else input_ids.device
2021
        zero_allocator = BumpAllocator(
2022
            buffer_size=total_num_layers * 2 * (2 if forward_batch.can_run_tbo else 1),
2023
            dtype=torch.float32,
2024
            device=device,
2025
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2026

2027
2028
2029
2030
2031
        if input_embeds is None:
            hidden_states = self.embed_tokens(input_ids)
        else:
            hidden_states = input_embeds

Liangsheng Yin's avatar
Liangsheng Yin committed
2032
        residual = None
2033
2034
2035
2036
2037
2038
2039

        normal_num_layers = (
            self.first_k_dense_replace
            if forward_batch.can_run_tbo
            else total_num_layers
        )
        for i in range(normal_num_layers):
2040
2041
2042
2043
2044
            with get_global_expert_distribution_recorder().with_current_layer(i):
                layer = self.layers[i]
                hidden_states, residual = layer(
                    positions, hidden_states, forward_batch, residual, zero_allocator
                )
2045
2046
2047
2048
2049
2050
2051
2052
2053

        if normal_num_layers != total_num_layers:
            hidden_states, residual = model_forward_maybe_tbo(
                layers=self.layers[normal_num_layers:],
                enable_tbo=True,
                positions=positions,
                forward_batch=forward_batch,
                hidden_states=hidden_states,
                residual=residual,
2054
2055
2056
                input_data_scatter_mode=self.layers[
                    normal_num_layers - 1
                ].layer_scatter_modes.layer_output_mode,
2057
2058
2059
                zero_allocator=zero_allocator,
            )

Ke Bao's avatar
Ke Bao committed
2060
        if not forward_batch.forward_mode.is_idle():
2061
2062
2063
2064
            if residual is None:
                hidden_states = self.norm(hidden_states)
            else:
                hidden_states, _ = self.norm(hidden_states, residual)
Liangsheng Yin's avatar
Liangsheng Yin committed
2065
2066
2067
2068
2069
2070
2071
2072
2073
        return hidden_states


class DeepseekV2ForCausalLM(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
2074
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
2075
2076
2077
    ) -> None:
        super().__init__()
        self.config = config
2078
        self.tp_size = get_tensor_model_parallel_world_size()
Liangsheng Yin's avatar
Liangsheng Yin committed
2079
        self.quant_config = quant_config
2080
        self.determine_num_fused_shared_experts()
2081
2082
2083
2084
2085
2086
2087
2088
        self.model = DeepseekV2Model(
            config, quant_config, prefix=add_prefix("model", prefix)
        )
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=add_prefix("lm_head", prefix),
2089
            use_attn_tp_group=global_server_args_dict["enable_dp_lm_head"],
2090
2091
2092
        )
        self.logits_processor = LogitsProcessor(config)

2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
        self._routed_experts_weights_of_layer = LazyValue(
            lambda: {
                layer_id: layer.mlp.get_moe_weights()
                for layer_id, layer in enumerate(self.model.layers)
                if isinstance(layer.mlp, DeepseekV2MoE)
            }
        )

    @property
    def routed_experts_weights_of_layer(self):
        return self._routed_experts_weights_of_layer.value

2105
    def determine_num_fused_shared_experts(
2106
2107
        self, architecture: str = "DeepseekV3ForCausalLM"
    ):
2108
2109
2110
2111
2112
2113
2114
2115
        self.num_fused_shared_experts = 0
        if global_server_args_dict["disable_shared_experts_fusion"]:
            return

        # Only Deepseek V3/R1 can use shared experts fusion optimization now.
        disable_reason = None
        if (
            not _is_cuda
2116
            or torch.cuda.get_device_capability("cuda") < (8, 0)
2117
2118
2119
2120
            or self.config.architectures[0] != architecture
            or self.config.n_routed_experts != 256
            or self.config.n_shared_experts != 1
        ):
2121
            disable_reason = "Only Deepseek V3/R1 on NV-platform with capability >= 80 can use shared experts fusion optimization."
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
        elif (
            global_server_args_dict["enable_deepep_moe"]
            or global_server_args_dict["enable_ep_moe"]
        ):
            disable_reason = "Deepseek V3/R1 can not use shared experts fusion optimization when in deepep_moe or ep_moe mode."

        if disable_reason is not None:
            global_server_args_dict["disable_shared_experts_fusion"] = True
            log_info_on_rank0(
                logger,
                f"{disable_reason} Shared experts fusion optimization is disabled.",
            )
            return

        self.num_fused_shared_experts = self.config.n_shared_experts
2137

Mick's avatar
Mick committed
2138
2139
2140
    def get_input_embeddings(self) -> nn.Embedding:
        return self.model.embed_tokens

2141
    @torch.no_grad()
Liangsheng Yin's avatar
Liangsheng Yin committed
2142
2143
2144
2145
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
2146
        forward_batch: ForwardBatch,
2147
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
2148
    ) -> torch.Tensor:
2149
        hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
Lianmin Zheng's avatar
Lianmin Zheng committed
2150

2151
2152
2153
        return self.logits_processor(
            input_ids, hidden_states, self.lm_head, forward_batch
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
2154

2155
    def post_load_weights(self, is_nextn=False, weight_names=None):
inkcherry's avatar
inkcherry committed
2156
2157

        # Perform post-processing after loading weights
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
        if is_nextn:
            layer_ids = [self.config.num_hidden_layers]
        else:
            if weight_names is None:
                layer_ids = range(self.config.num_hidden_layers)
            else:
                layer_ids = set()
                for name in weight_names:
                    if "kv_b_proj" in name:
                        layer_id = int(name.split(".")[2])
2168
                        if layer_id < self.config.num_hidden_layers:
2169
2170
                            layer_ids.add(layer_id)

2171
2172
2173
2174
2175
2176
        for layer_id in layer_ids:
            self_attn = (
                self.model.layers[layer_id].self_attn
                if not is_nextn
                else self.model.decoder.self_attn
            )
Baizhou Zhang's avatar
Baizhou Zhang committed
2177
2178
2179
2180
2181
2182
2183
2184
            if hasattr(self_attn.kv_b_proj, "qweight"):
                # AWQ compatible
                if _is_cuda:
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                    ).T
inkcherry's avatar
inkcherry committed
2185
                else:
Baizhou Zhang's avatar
Baizhou Zhang committed
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                        0,
                        0,
                        0,
                    ).T
            else:
                w = self_attn.kv_b_proj.weight
            # NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
            # This may affect the accuracy of fp8 model.
2198
2199
2200
            # Fix deepseek v3 blockwise bmm by using deep_gemm
            use_deep_gemm_bmm = False

Baizhou Zhang's avatar
Baizhou Zhang committed
2201
2202
2203
2204
            if w.dtype in (
                torch.float8_e4m3fn,
                torch.float8_e4m3fnuz,
            ):
2205
2206
2207
2208
                if (
                    hasattr(self.quant_config, "weight_block_size")
                    and self.quant_config.weight_block_size is not None
                ):
Baizhou Zhang's avatar
Baizhou Zhang committed
2209
                    weight_block_size = self.quant_config.weight_block_size
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
                    assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                    if _is_fp8_fnuz:
                        weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                            weight=w,
                            weight_scale=self_attn.kv_b_proj.weight_scale_inv,
                            input_scale=None,
                        )
                    else:
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv

                    if (
                        _is_cuda
                        and weight_block_size[0] == 128
                        and weight_block_size[1] == 128
                    ):
2226
2227
2228
2229
                        if (
                            deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM
                            and not deep_gemm_wrapper.DEEPGEMM_BLACKWELL
                            and get_bool_env_var("SGL_USE_DEEPGEMM_BMM", "false")
2230
                        ):
2231
2232
                            block_scale = weight_scale
                            use_deep_gemm_bmm = True
2233
                        else:
2234
2235
2236
2237
                            w = block_quant_dequant(
                                weight,
                                weight_scale,
                                weight_block_size,
2238
                                torch.bfloat16,
2239
                            )
2240
2241
2242
2243
2244
                    else:
                        w, scale = block_quant_to_tensor_quant(
                            weight, weight_scale, weight_block_size
                        )
                        self_attn.w_scale = scale
Baizhou Zhang's avatar
Baizhou Zhang committed
2245
                else:
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
                    if _is_fp8_fnuz:
                        weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                            weight=w,
                            weight_scale=self_attn.kv_b_proj.weight_scale,
                            input_scale=None,
                        )
                    else:
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale

Baizhou Zhang's avatar
Baizhou Zhang committed
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
                    w, scale = channel_quant_to_tensor_quant(weight, weight_scale)
                    self_attn.w_scale = scale

            if w.dtype == torch.int8:
                if hasattr(self.quant_config, "weight_block_size"):
                    # block-wise int8 need it
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv
                        w = int8_block_dequant(
                            weight, weight_scale, weight_block_size
                        ).to(torch.bfloat16)
                else:
                    # channel-wise int8 need it
                    w = w.to(torch.bfloat16) * self_attn.kv_b_proj.weight_scale.to(
                        torch.bfloat16
                    )
2275

Baizhou Zhang's avatar
Baizhou Zhang committed
2276
2277
2278
            w_kc, w_vc = w.unflatten(
                0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
            ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
2279
            if not use_deep_gemm_bmm:
2280
2281
2282
2283
2284
2285
                self_attn.w_kc = bind_or_assign(
                    self_attn.w_kc, w_kc.transpose(1, 2).contiguous().transpose(1, 2)
                )
                self_attn.w_vc = bind_or_assign(
                    self_attn.w_vc, w_vc.contiguous().transpose(1, 2)
                )
2286
2287
2288
2289
                if (
                    hasattr(self_attn.kv_b_proj, "weight_scale")
                    and self_attn.w_scale is None
                ):
2290
2291
2292
                    self_attn.w_scale = bind_or_assign(
                        self_attn.w_scale, self_attn.kv_b_proj.weight_scale
                    )
2293
2294
                    if _is_hip:
                        self_attn.w_scale *= 2.0
2295
2296
2297
2298
2299
2300
2301
2302
                # TODO: remove this after adding FP8 support in bmm cpu kernel
                if _is_cpu and _is_cpu_amx_available and w.dtype == torch.float8_e4m3fn:
                    self_attn.w_kc = (
                        self_attn.w_kc.to(torch.bfloat16) * self_attn.w_scale
                    )
                    self_attn.w_vc = (
                        self_attn.w_vc.to(torch.bfloat16) * self_attn.w_scale
                    )
2303
2304
2305
2306
2307
2308
            else:
                num_tiles_k = self_attn.qk_nope_head_dim // weight_block_size[1]
                num_tiles_n = self_attn.v_head_dim // weight_block_size[0]
                ws_kc, ws_vc = block_scale.unflatten(
                    0, (-1, (num_tiles_k + num_tiles_n))
                ).split([num_tiles_k, num_tiles_n], dim=1)
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
                self_attn.w_scale_k = bind_or_assign(
                    self_attn.w_scale_k, ws_kc.transpose(1, 2).contiguous()
                )
                self_attn.w_scale_v = bind_or_assign(
                    self_attn.w_scale_v, ws_vc.contiguous()
                )
                self_attn.w_kc = bind_or_assign(
                    self_attn.w_kc, w_kc.transpose(1, 2).contiguous()
                )
                self_attn.w_vc = bind_or_assign(self_attn.w_vc, w_vc.contiguous())
2319
                self_attn.use_deep_gemm_bmm = True
inkcherry's avatar
inkcherry committed
2320

2321
2322
2323
        if (
            deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM
            and deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0
2324
2325
            and hasattr(self.quant_config, "weight_block_size")
            and self.quant_config.weight_block_size is not None
2326
        ):
2327
            self._weight_requant_ue8m0(is_nextn)
2328

2329
    def _weight_requant_ue8m0(self, is_nextn=False):
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
        weight_block_size = self.quant_config.weight_block_size

        moe_layers = list(
            range(
                self.config.first_k_dense_replace,
                self.config.num_hidden_layers,
                self.config.moe_layer_freq,
            )
        )

2340
2341
2342
2343
2344
2345
        num_hidden_layers = 1 if is_nextn else self.config.num_hidden_layers
        for layer_id in range(num_hidden_layers):
            if is_nextn:
                layer = self.model.decoder
            else:
                layer = self.model.layers[layer_id]
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356

            for module in [
                layer.self_attn.fused_qkv_a_proj_with_mqa,
                layer.self_attn.q_b_proj,
                layer.self_attn.kv_b_proj,
                layer.self_attn.o_proj,
            ]:
                requant_weight_ue8m0_inplace(
                    module.weight, module.weight_scale_inv, weight_block_size
                )

2357
            if layer_id in moe_layers or is_nextn:
2358
2359
2360
2361
2362
2363
2364
2365
2366
                shared_experts = getattr(layer.mlp, "shared_experts", None)
                if shared_experts is not None:
                    for module in [
                        shared_experts.gate_up_proj,
                        shared_experts.down_proj,
                    ]:
                        requant_weight_ue8m0_inplace(
                            module.weight, module.weight_scale_inv, weight_block_size
                        )
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385

                experts = layer.mlp.experts
                if isinstance(experts, DeepEPMoE):
                    for w in [
                        experts.w13_weight_fp8,
                        experts.w2_weight_fp8,
                    ]:
                        requant_weight_ue8m0_inplace(w[0], w[1], weight_block_size)
            else:
                mlp = layer.mlp
                assert isinstance(mlp, DeepseekV2MLP)
                for module in [
                    mlp.gate_up_proj,
                    mlp.down_proj,
                ]:
                    requant_weight_ue8m0_inplace(
                        module.weight, module.weight_scale_inv, weight_block_size
                    )

2386
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]], is_nextn=False):
2387

2388
2389
2390
        if is_nextn:
            if hasattr(self.config, "num_nextn_predict_layers"):
                num_nextn_layers = self.config.num_nextn_predict_layers
2391
                assert num_nextn_layers == 1, "Only 1 nextn layer is supported"
2392
2393
2394
2395
2396
2397
2398
2399
2400
                # compatible with old design
                nextn_layer_id = (
                    0
                    if self.config.num_hidden_layers == 1
                    else self.config.num_hidden_layers
                )
            else:
                raise ValueError("num_nextn_predict_layers is not in the config")

Liangsheng Yin's avatar
Liangsheng Yin committed
2401
2402
2403
2404
2405
2406
2407
2408
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
2409
        expert_params_mapping = get_moe_impl_class().make_expert_params_mapping(
Liangsheng Yin's avatar
Liangsheng Yin committed
2410
2411
2412
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
2413
            num_experts=self.config.n_routed_experts + self.num_fused_shared_experts,
Liangsheng Yin's avatar
Liangsheng Yin committed
2414
        )
2415
2416
2417
2418
2419
2420
        if self.quant_config and self.quant_config.get_name() == "w4afp8":
            expert_params_mapping += (
                get_moe_impl_class().make_expert_input_scale_params_mapping(
                    num_experts=self.config.n_routed_experts
                )
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
2421

2422
2423
2424
2425
2426
2427
        # Fuse q_a_proj and kv_a_proj_with_mqa along output dimension when q_lora_rank is not None
        fuse_qkv_a_proj = hasattr(self.config, "q_lora_rank") and (
            self.config.q_lora_rank is not None
        )
        cached_a_proj = {} if fuse_qkv_a_proj else None

2428
2429
2430
2431
2432
2433
2434
2435
2436
        if is_nextn:
            nextn_layer_prefix = f"model.layers.{nextn_layer_id}"
            nextn_spec_weight_names = [
                "shared_head.norm",
                "eh_proj",
                "enorm",
                "hnorm",
            ]

2437
2438
        if self.num_fused_shared_experts > 0:
            assert self.num_fused_shared_experts == 1
2439
            log_info_on_rank0(logger, "Shared experts fusion optimization enabled.")
2440

2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = []
            params_dict = dict(self.named_parameters())
            weight_names = []
            for name, loaded_weight in weights:
                if self.num_fused_shared_experts > 0 and "mlp.shared_experts" in name:
                    name = name.replace(
                        "mlp.shared_experts",
                        f"mlp.experts.{self.config.n_routed_experts}",
                    )
2451

2452
                weight_names.append(name)
2453

2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
                if not is_nextn:
                    if hasattr(self.config, "num_nextn_predict_layers"):
                        num_nextn_layers = self.config.num_nextn_predict_layers
                        if num_nextn_layers > 0 and name.startswith("model.layers"):
                            name_list = name.split(".")
                            if (
                                len(name_list) >= 3
                                and int(name_list[2]) >= self.config.num_hidden_layers
                            ):
                                continue
                else:
                    if not name.startswith(nextn_layer_prefix):
                        continue
2467

2468
2469
2470
                    # Use shared head and embed weights from target model
                    if "shared_head.head" in name or "embed_tokens" in name:
                        continue
2471

2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
                    is_decoder = True
                    # For nextn specific weights
                    for weight_name in nextn_spec_weight_names:
                        if weight_name in name:
                            name = name.replace(nextn_layer_prefix, "model")
                            is_decoder = False
                            break
                    # For decoder layer weights
                    if is_decoder:
                        name = name.replace(nextn_layer_prefix, "model.decoder")

                if "rotary_emb.inv_freq" in name:
Liangsheng Yin's avatar
Liangsheng Yin committed
2484
                    continue
2485
2486
                for param_name, weight_name, shard_id in stacked_params_mapping:
                    # Skip non-stacked layers and experts (experts handled below).
Liangsheng Yin's avatar
Liangsheng Yin committed
2487
2488
                    if weight_name not in name:
                        continue
2489
2490
2491
2492
2493
2494
2495
2496
                    # We have mlp.experts[0].gate_proj in the checkpoint.
                    # Since we handle the experts below in expert_params_mapping,
                    # we need to skip here BEFORE we update the name, otherwise
                    # name will be updated to mlp.experts[0].gate_up_proj, which
                    # will then be updated below in expert_params_mapping
                    # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                    if ("mlp.experts." in name) and name not in params_dict:
                        continue
Liangsheng Yin's avatar
Liangsheng Yin committed
2497
                    name = name.replace(weight_name, param_name)
2498
2499
2500
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue
Liangsheng Yin's avatar
Liangsheng Yin committed
2501
2502
                    param = params_dict[name]
                    weight_loader = param.weight_loader
2503
2504
                    futures.append(
                        executor.submit(weight_loader, param, loaded_weight, shard_id)
Liangsheng Yin's avatar
Liangsheng Yin committed
2505
2506
2507
                    )
                    break
                else:
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
                    for mapping in expert_params_mapping:
                        param_name, weight_name, expert_id, shard_id = mapping
                        if weight_name not in name:
                            continue
                        name = name.replace(weight_name, param_name)
                        param = params_dict[name]
                        weight_loader = param.weight_loader
                        futures.append(
                            executor.submit(
                                weight_loader,
                                param,
                                loaded_weight,
                                name,
                                shard_id=shard_id,
                                expert_id=expert_id,
                            )
2524
                        )
2525
2526
2527
2528
2529
2530
2531
                        break
                    else:
                        # Skip loading extra bias for GPTQ models.
                        if name.endswith(".bias") and name not in params_dict:
                            continue
                        if fuse_qkv_a_proj and (
                            "q_a_proj" in name or "kv_a_proj_with_mqa" in name
2532
                        ):
2533
2534
2535
                            cached_a_proj[name] = loaded_weight
                            q_a_proj_name = (
                                name
2536
                                if "q_a_proj" in name
2537
2538
2539
2540
2541
2542
                                else name.replace("kv_a_proj_with_mqa", "q_a_proj")
                            )
                            kv_a_proj_name = (
                                name
                                if "kv_a_proj_with_mqa" in name
                                else name.replace("q_a_proj", "kv_a_proj_with_mqa")
2543
2544
                            )

2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
                            # When both q_a_proj and kv_a_proj_with_mqa has been cached, load the fused weight to parameter
                            if (
                                q_a_proj_name in cached_a_proj
                                and kv_a_proj_name in cached_a_proj
                            ):
                                q_a_proj_weight = cached_a_proj[q_a_proj_name]
                                kv_a_proj_weight = cached_a_proj[kv_a_proj_name]
                                cat_dim = 0
                                if self.quant_config is not None and (
                                    self.quant_config.get_name() == "awq"
2555
                                    or self.quant_config.get_name() == "awq_marlin"
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
                                    or self.quant_config.get_name() == "moe_wna16"
                                ):
                                    cat_dim = 1
                                fused_weight = torch.cat(
                                    [q_a_proj_weight, kv_a_proj_weight], dim=cat_dim
                                )
                                param_name = (
                                    name.replace(
                                        "q_a_proj", "fused_qkv_a_proj_with_mqa"
                                    )
                                    if "q_a_proj" in name
                                    else name.replace(
                                        "kv_a_proj_with_mqa",
                                        "fused_qkv_a_proj_with_mqa",
                                    )
                                )
                                param = params_dict[param_name]

                                weight_loader = getattr(
                                    param, "weight_loader", default_weight_loader
                                )
                                futures.append(
                                    executor.submit(weight_loader, param, fused_weight)
                                )
                                cached_a_proj.pop(q_a_proj_name)
                                cached_a_proj.pop(kv_a_proj_name)
                        else:
                            if (
                                "k_scale" in name or "v_scale" in name
                            ) and name not in params_dict:
                                # modelopt attn kv scale is named differently
                                for scale in ["k_scale", "v_scale"]:
                                    if scale in name:
                                        name = name.replace(
                                            f"{scale[0]}_proj", "attn_mqa"
                                        )
                                        break
                            if name not in params_dict:
                                # modelopt ckpt contains not needed weights for MTP module:
                                # model.decoder.self_attn.attn_mqa.v_scale and
                                # model.decoder.self_attn.attn_mqa.k_scale
                                logger.warning(f"{name} not found in params_dict.")
                                continue
                            param = params_dict[name]
2600
2601
2602
                            weight_loader = getattr(
                                param, "weight_loader", default_weight_loader
                            )
2603
2604
2605
2606
2607
2608
2609
                            futures.append(
                                executor.submit(weight_loader, param, loaded_weight)
                            )

            # Wait for all tasks to complete and raise any exceptions.
            for future in concurrent.futures.as_completed(futures):
                future.result()
Liangsheng Yin's avatar
Liangsheng Yin committed
2610

2611
        self.post_load_weights(is_nextn=is_nextn, weight_names=weight_names)
Ke Bao's avatar
Ke Bao committed
2612

2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
    def get_embed_and_head(self):
        return self.model.embed_tokens.weight, self.lm_head.weight

    def set_embed_and_head(self, embed, head):
        del self.model.embed_tokens.weight
        del self.lm_head.weight
        self.model.embed_tokens.weight = embed
        self.lm_head.weight = head
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

2624
2625
2626
2627
2628
2629
2630
2631
    @classmethod
    def get_model_config_for_expert_location(cls, config):
        return ModelConfigForExpertLocation(
            num_layers=config.num_hidden_layers,
            num_logical_experts=config.n_routed_experts,
            num_groups=config.n_group,
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
2632

HandH1998's avatar
HandH1998 committed
2633
2634
2635
2636
2637
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
    pass


EntryClass = [DeepseekV2ForCausalLM, DeepseekV3ForCausalLM]