deepseek_v2.py 63 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Liangsheng Yin's avatar
Liangsheng Yin committed
15
16
17
# Adapted from:
# https://github.com/vllm-project/vllm/blob/fb6af8bc086328ca6659e72d11ffd4309ce4de22/vllm/model_executor/models/deepseek_v2.py
"""Inference-only DeepseekV2 model."""
18

19
import logging
20
import os
21
22
from dataclasses import dataclass
from enum import Enum, IntEnum, auto
Liangsheng Yin's avatar
Liangsheng Yin committed
23
24
25
from typing import Any, Dict, Iterable, Optional, Tuple

import torch
Ke Bao's avatar
Ke Bao committed
26
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
27
from torch import nn
28
from tqdm import tqdm
Liangsheng Yin's avatar
Liangsheng Yin committed
29
from transformers import PretrainedConfig
30
31

from sglang.srt.distributed import (
32
    get_tensor_model_parallel_rank,
Liangsheng Yin's avatar
Liangsheng Yin committed
33
    get_tensor_model_parallel_world_size,
34
    parallel_state,
Liangsheng Yin's avatar
Liangsheng Yin committed
35
36
    tensor_model_parallel_all_reduce,
)
37
from sglang.srt.layers.activation import SiluAndMul
Lianmin Zheng's avatar
Lianmin Zheng committed
38
from sglang.srt.layers.dp_attention import (
39
    dp_gather_partial,
Lianmin Zheng's avatar
Lianmin Zheng committed
40
41
42
43
    dp_scatter,
    get_attention_dp_size,
    get_attention_tp_rank,
    get_attention_tp_size,
44
45
    tp_all_gather,
    tp_reduce_scatter,
Lianmin Zheng's avatar
Lianmin Zheng committed
46
)
47
from sglang.srt.layers.layernorm import RMSNorm
48
49
50
51
52
53
from sglang.srt.layers.linear import (
    ColumnParallelLinear,
    MergedColumnParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
54
from sglang.srt.layers.logits_processor import LogitsProcessor
55
from sglang.srt.layers.moe.ep_moe.layer import DeepEPMoE, EPMoE
Lianmin Zheng's avatar
Lianmin Zheng committed
56
from sglang.srt.layers.moe.ep_moe.token_dispatcher import DeepEPDispatcher
Ke Bao's avatar
Ke Bao committed
57
from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
58
from sglang.srt.layers.moe.topk import select_experts
59
from sglang.srt.layers.quantization.base_config import QuantizationConfig
60
from sglang.srt.layers.quantization.fp8_kernel import per_tensor_quant_mla_fp8
HandH1998's avatar
HandH1998 committed
61
62
from sglang.srt.layers.quantization.fp8_utils import (
    block_quant_to_tensor_quant,
63
    channel_quant_to_tensor_quant,
64
    normalize_e4m3fn_to_e4m3fnuz,
HandH1998's avatar
HandH1998 committed
65
)
66
67
68
from sglang.srt.layers.quantization.int8_utils import (
    block_dequant as int8_block_dequant,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
69
from sglang.srt.layers.radix_attention import RadixAttention
70
from sglang.srt.layers.rotary_embedding import get_rope, get_rope_wrapper
71
72
73
74
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
75
from sglang.srt.managers.expert_distribution import ExpertDistributionRecorder
76
from sglang.srt.managers.schedule_batch import global_server_args_dict
77
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
78
from sglang.srt.model_loader.weight_utils import default_weight_loader
79
from sglang.srt.utils import BumpAllocator, DeepEPMode, add_prefix, is_cuda, is_hip
80

81
_is_hip = is_hip()
Yineng Zhang's avatar
Yineng Zhang committed
82
_is_cuda = is_cuda()
83

Yineng Zhang's avatar
Yineng Zhang committed
84
if _is_cuda:
85
    from sgl_kernel import awq_dequantize, bmm_fp8, merge_state_v2
Yineng Zhang's avatar
Yineng Zhang committed
86
else:
Lianmin Zheng's avatar
Lianmin Zheng committed
87
    from vllm._custom_ops import awq_dequantize
Liangsheng Yin's avatar
Liangsheng Yin committed
88

89
90
91
92
93
if _is_hip:
    from sglang.srt.layers.attention.triton_ops.rocm_mla_decode_rope import (
        decode_attention_fwd_grouped_rope,
    )

94
95
expert_distribution_recorder = ExpertDistributionRecorder()

96
97
logger = logging.getLogger(__name__)

Liangsheng Yin's avatar
Liangsheng Yin committed
98

99
100
101
102
103
104
105
106
107
108
109
110
class AttnForwardMethod(IntEnum):
    # Use multi-head attention
    MHA = auto()

    # Use absorbed multi-latent attention
    MLA = auto()

    # Use multi-head attention, but with KV cache chunked.
    # This method can avoid OOM when prefix lengths are long.
    MHA_CHUNKED_KV = auto()


Liangsheng Yin's avatar
Liangsheng Yin committed
111
112
113
114
115
116
117
118
class DeepseekV2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
119
        prefix: str = "",
120
121
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
122
123
124
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
125
126
127
128
129
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("gate_up_proj", prefix),
130
131
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
132
133
134
135
136
137
138
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
139
            prefix=add_prefix("down_proj", prefix),
140
141
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
142
143
144
145
146
147
148
149
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

150
    def forward(self, x, forward_mode: Optional[ForwardMode] = None):
Liangsheng Yin's avatar
Liangsheng Yin committed
151
152
153
154
155
156
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


Ke Bao's avatar
Ke Bao committed
157
class MoEGate(nn.Module):
158
159
160
161
162
    def __init__(
        self,
        config,
        prefix: str = "",
    ):
Ke Bao's avatar
Ke Bao committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        super().__init__()
        self.weight = nn.Parameter(
            torch.empty((config.n_routed_experts, config.hidden_size))
        )
        if config.topk_method == "noaux_tc":
            self.e_score_correction_bias = nn.Parameter(
                torch.empty((config.n_routed_experts))
            )
        else:
            self.e_score_correction_bias = None

    def forward(self, hidden_states):
        logits = F.linear(hidden_states, self.weight, None)
        return logits


Liangsheng Yin's avatar
Liangsheng Yin committed
179
180
181
182
183
184
class DeepseekV2MoE(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
185
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
186
187
188
189
190
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.routed_scaling_factor = config.routed_scaling_factor
        self.n_shared_experts = config.n_shared_experts
191
        self.n_share_experts_fusion = global_server_args_dict["n_share_experts_fusion"]
192

Liangsheng Yin's avatar
Liangsheng Yin committed
193
194
195
196
197
198
199
200
201
202
203
204
        if self.tp_size > config.n_routed_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.n_routed_experts}."
            )

        if config.hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {config.hidden_act}. "
                "Only silu is supported for now."
            )

205
        self.gate = MoEGate(config=config, prefix=add_prefix("gate", prefix))
Ke Bao's avatar
Ke Bao committed
206

207
208
209
210
211
        MoEImpl = (
            DeepEPMoE
            if global_server_args_dict["enable_deepep_moe"]
            else (EPMoE if global_server_args_dict["enable_ep_moe"] else FusedMoE)
        )
212

213
        self.experts = MoEImpl(
214
215
            num_experts=config.n_routed_experts + self.n_share_experts_fusion,
            top_k=config.num_experts_per_tok + min(self.n_share_experts_fusion, 1),
216
217
218
219
220
221
222
223
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
            renormalize=config.norm_topk_prob,
            quant_config=quant_config,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
            topk_group=config.topk_group,
            correction_bias=self.gate.e_score_correction_bias,
224
            routed_scaling_factor=self.routed_scaling_factor,
225
226
227
228
229
230
231
            prefix=add_prefix("experts", prefix),
            **(
                dict(deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]])
                if global_server_args_dict["enable_deepep_moe"]
                else {}
            ),
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
232

233
        if config.n_shared_experts is not None and self.n_share_experts_fusion == 0:
Liangsheng Yin's avatar
Liangsheng Yin committed
234
            intermediate_size = config.moe_intermediate_size * config.n_shared_experts
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
            # disable tp for shared experts when enable deepep moe
            if not global_server_args_dict["enable_deepep_moe"]:
                self.shared_experts = DeepseekV2MLP(
                    hidden_size=config.hidden_size,
                    intermediate_size=intermediate_size,
                    hidden_act=config.hidden_act,
                    quant_config=quant_config,
                    reduce_results=False,
                    prefix=add_prefix("shared_experts", prefix),
                )
            else:
                self.shared_experts = DeepseekV2MLP(
                    hidden_size=config.hidden_size,
                    intermediate_size=intermediate_size,
                    hidden_act=config.hidden_act,
                    quant_config=quant_config,
                    reduce_results=False,
                    prefix=add_prefix("shared_experts", prefix),
                    tp_rank=0,
                    tp_size=1,
                )

        if global_server_args_dict["enable_deepep_moe"]:
258
259
            # TODO: we will support tp < ep in the future
            self.ep_size = get_tensor_model_parallel_world_size()
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
            self.num_experts = config.n_routed_experts
            self.top_k = config.num_experts_per_tok
            self.renormalize = config.norm_topk_prob
            self.topk_group = config.topk_group
            self.num_expert_group = config.n_group
            self.correction_bias = (
                self.gate.e_score_correction_bias.data
                if self.gate.e_score_correction_bias is not None
                else None
            )

            self.deepep_dispatcher = DeepEPDispatcher(
                group=parallel_state.get_tp_group().device_group,
                router_topk=self.top_k,
                permute_fusion=True,
                num_experts=config.n_routed_experts,
                num_local_experts=config.n_routed_experts // self.tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
277
                hidden_size=config.hidden_size,
278
                params_dtype=config.torch_dtype,
279
                deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]],
fzyzcjy's avatar
fzyzcjy committed
280
                async_finish=True,  # TODO
281
                return_recv_hook=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
282
283
            )

284
285
286
287
288
289
290
291
292
    def forward(
        self, hidden_states: torch.Tensor, forward_mode: Optional[ForwardMode] = None
    ) -> torch.Tensor:
        if not global_server_args_dict["enable_deepep_moe"]:
            return self.forward_normal(hidden_states)
        else:
            return self.forward_deepep(hidden_states, forward_mode)

    def forward_normal(self, hidden_states: torch.Tensor) -> torch.Tensor:
293
        shared_output = self._forward_shared_experts(hidden_states)
Liangsheng Yin's avatar
Liangsheng Yin committed
294
        # router_logits: (num_tokens, n_experts)
Ke Bao's avatar
Ke Bao committed
295
        router_logits = self.gate(hidden_states)
Liangsheng Yin's avatar
Liangsheng Yin committed
296
297
298
299
300
301
302
303
        final_hidden_states = (
            self.experts(hidden_states=hidden_states, router_logits=router_logits)
            * self.routed_scaling_factor
        )
        if shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output
        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
fzyzcjy's avatar
fzyzcjy committed
304
        return final_hidden_states
305
306
307
308
309
310
311
312
313
314
315

    def forward_deepep(
        self, hidden_states: torch.Tensor, forward_mode: ForwardMode
    ) -> torch.Tensor:
        shared_output = None
        topk_idx = torch.full(
            (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
        )
        topk_weights = torch.empty(
            (0, self.top_k), dtype=torch.float32, device=hidden_states.device
        )
316
317
318
319
320
        if (
            forward_mode is not None
            and not forward_mode.is_idle()
            and hidden_states.shape[0] > 0
        ):
321
322
            # router_logits: (num_tokens, n_experts)
            router_logits = self.gate(hidden_states)
323
            shared_output = self._forward_shared_experts(hidden_states)
324
325
326
327
328
329
330
331
332
            topk_weights, topk_idx = select_experts(
                hidden_states=hidden_states,
                router_logits=router_logits,
                top_k=self.top_k,
                use_grouped_topk=True,
                renormalize=self.renormalize,
                topk_group=self.topk_group,
                num_expert_group=self.num_expert_group,
                correction_bias=self.correction_bias,
333
                routed_scaling_factor=self.routed_scaling_factor,
334
            )
335
        if self.ep_size > 1:
336
            # TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
337
338
339
340
341
342
343
344
345
346
347
348
349
            (
                hidden_states,
                topk_idx,
                topk_weights,
                reorder_topk_ids,
                seg_indptr,
                masked_m,
                expected_m,
            ) = self.deepep_dispatcher.dispatch(
                hidden_states,
                topk_idx,
                topk_weights,
                forward_mode=forward_mode,
350
            )
351
352
353
354
355
356
357
        final_hidden_states = self.experts(
            hidden_states=hidden_states,
            reorder_topk_ids=reorder_topk_ids,
            seg_indptr=seg_indptr,
            masked_m=masked_m,
            expected_m=expected_m,
            forward_mode=forward_mode,
358
        )
359
        if self.ep_size > 1:
360
            final_hidden_states = self.deepep_dispatcher.combine(
361
362
363
364
                final_hidden_states,
                topk_idx,
                topk_weights,
                forward_mode,
365
            )
366
367
        final_hidden_states *= self.routed_scaling_factor

368
369
        if shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output
Liangsheng Yin's avatar
Liangsheng Yin committed
370

fzyzcjy's avatar
fzyzcjy committed
371
        return final_hidden_states
Liangsheng Yin's avatar
Liangsheng Yin committed
372

373
    def _forward_shared_experts(self, hidden_states):
374
        if self.n_share_experts_fusion == 0:
375
376
377
378
            return self.shared_experts(hidden_states)
        else:
            return None

Liangsheng Yin's avatar
Liangsheng Yin committed
379
380
381
382
383
384
385
386
387

def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
    import math

    if scale <= 1:
        return 1.0
    return 0.1 * mscale * math.log(scale) + 1.0


388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
class DeepseekV2AttentionMLA(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
404
405
        reduce_results: bool = True,
        layer_id: int = None,
406
        prefix: str = "",
407
408
409
410
411
412
413
414
415
416
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
Lianmin Zheng's avatar
Lianmin Zheng committed
417
418
419
420
        self.dp_size = get_attention_dp_size()
        attn_tp_rank = get_attention_tp_rank()
        attn_tp_size = get_attention_tp_size()

421
        self.num_heads = num_heads
Lianmin Zheng's avatar
Lianmin Zheng committed
422
423
        assert num_heads % attn_tp_size == 0
        self.num_local_heads = num_heads // attn_tp_size
424
425
426
427
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

Lianmin Zheng's avatar
Lianmin Zheng committed
428
429
430
        # For tensor parallel attention
        if self.q_lora_rank is not None:
            self.q_a_proj = ReplicatedLinear(
Ke Bao's avatar
Ke Bao committed
431
                self.hidden_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
432
                self.q_lora_rank,
433
434
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
435
                prefix=add_prefix("q_a_proj", prefix),
436
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
437
438
439
440
            self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(
                q_lora_rank,
                self.num_heads * self.qk_head_dim,
Ke Bao's avatar
Ke Bao committed
441
442
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
443
444
445
                prefix=add_prefix("q_b_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
Ke Bao's avatar
Ke Bao committed
446
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
447
448
        else:
            self.q_proj = ColumnParallelLinear(
449
                self.hidden_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
450
                self.num_heads * self.qk_head_dim,
451
452
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
453
454
455
                prefix=add_prefix("q_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
456
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("kv_b_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
        # O projection.
        self.o_proj = RowParallelLinear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
            prefix=add_prefix("o_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
477
478
479
480
481
482

        self.kv_a_proj_with_mqa = ReplicatedLinear(
            self.hidden_size,
            self.kv_lora_rank + self.qk_rope_head_dim,
            bias=False,
            quant_config=quant_config,
483
            prefix=add_prefix("kv_a_proj_with_mqa", prefix),
484
485
        )
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
Ke Bao's avatar
Ke Bao committed
486
487
488
489

        if rope_scaling:
            rope_scaling["rope_type"] = "deepseek_yarn"

490
        self.rotary_emb = get_rope(
491
492
493
494
495
496
497
498
499
500
501
502
503
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale
Ke Bao's avatar
Ke Bao committed
504
505
        else:
            self.rotary_emb.forward = self.rotary_emb.forward_native
506

507
        self.attn_mqa = RadixAttention(
508
509
510
511
512
513
            self.num_local_heads,
            self.kv_lora_rank + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=1,
            layer_id=layer_id,
            v_head_dim=self.kv_lora_rank,
514
            quant_config=quant_config,
515
            prefix=add_prefix("attn_mqa", prefix),
516
517
        )

518
519
520
521
522
523
524
        self.attn_mha = RadixAttention(
            self.num_local_heads,
            self.qk_nope_head_dim + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=self.num_local_heads,
            layer_id=layer_id,
            v_head_dim=self.v_head_dim,
525
            quant_config=quant_config,
526
            prefix=add_prefix("attn_mha", prefix),
527
528
        )

Ke Bao's avatar
Ke Bao committed
529
530
        self.w_kc = None
        self.w_vc = None
531
        self.w_scale = None
532

Lianmin Zheng's avatar
Lianmin Zheng committed
533
534
535
        self.flashinfer_mla_disable_ragged = global_server_args_dict[
            "flashinfer_mla_disable_ragged"
        ]
536
537
538
        self.disable_chunked_prefix_cache = global_server_args_dict[
            "disable_chunked_prefix_cache"
        ]
539
        self.attention_backend = global_server_args_dict["attention_backend"]
Lianmin Zheng's avatar
Lianmin Zheng committed
540
541
        self.rocm_fused_decode_mla = os.getenv("SGLANG_ROCM_FUSED_DECODE_MLA") == "1"

542
543
544
545
546
547
        # TODO: Design a finer way to determine the threshold
        self.chunked_prefix_cache_threshold = 8192

    def dispatch_attn_forward_method(
        self, forward_batch: ForwardBatch
    ) -> AttnForwardMethod:
548
        if self.attention_backend == "flashinfer":
Lianmin Zheng's avatar
Lianmin Zheng committed
549
            # Flashinfer MLA: Do not absorb when enabling ragged prefill
550
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
551
552
553
554
                not self.flashinfer_mla_disable_ragged
                and forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
555
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
556
557
558
559
            ):
                return AttnForwardMethod.MHA
            else:
                return AttnForwardMethod.MLA
560
        elif self.attention_backend == "fa3":
561
562
563
564
565
566
567
568
569
570
571
572
            # Flash Attention: Use MHA with chunked KV cache when prefilling on long sequences.
            if (
                forward_batch.forward_mode.is_extend()
                and not self.disable_chunked_prefix_cache
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
                and sum(forward_batch.extend_prefix_lens_cpu)
                >= self.chunked_prefix_cache_threshold
            ):
                return AttnForwardMethod.MHA_CHUNKED_KV
            else:
                return AttnForwardMethod.MLA
Lianmin Zheng's avatar
Lianmin Zheng committed
573
574
        else:
            # Triton: Use normal computation for prefill and use weight absorption for extend/decode
575
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
576
577
578
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
579
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
580
581
582
583
            ):
                return AttnForwardMethod.MHA
            else:
                return AttnForwardMethod.MLA
Lianmin Zheng's avatar
Lianmin Zheng committed
584

585
586
587
588
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
589
        forward_batch: ForwardBatch,
590
        zero_allocator: BumpAllocator,
591
    ) -> torch.Tensor:
Lianmin Zheng's avatar
Lianmin Zheng committed
592
593
594
595
596
        if hidden_states.shape[0] == 0:
            assert (
                not self.o_proj.reduce_results
            ), "short-circuiting allreduce will lead to hangs"
            return hidden_states
597

598
599
600
        attn_forward_method = self.dispatch_attn_forward_method(forward_batch)

        if attn_forward_method == AttnForwardMethod.MHA:
601
            return self.forward_normal(positions, hidden_states, forward_batch)
602
603
604
605
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
            return self.forward_normal_chunked_kv(
                positions, hidden_states, forward_batch
            )
606
        else:
607
            if _is_hip:
608
                if (
Lianmin Zheng's avatar
Lianmin Zheng committed
609
                    self.rocm_fused_decode_mla
610
611
612
613
614
615
                    and forward_batch.forward_mode.is_decode()
                ):
                    return self.forward_absorb_fused_mla_rope(
                        positions, hidden_states, forward_batch
                    )
                else:
616
617
618
                    return self.forward_absorb(
                        positions, hidden_states, forward_batch, zero_allocator
                    )
619
            else:
620
621
622
                return self.forward_absorb(
                    positions, hidden_states, forward_batch, zero_allocator
                )
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670

    def forward_normal(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:
        if self.q_lora_rank is not None:
            q = self.q_a_proj(hidden_states)[0]
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )
        attn_output = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

    def forward_absorb(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
671
        zero_allocator: BumpAllocator,
672
673
674
675
676
677
678
679
680
681
682
683
684
685
    ) -> torch.Tensor:
        q_len = hidden_states.shape[0]
        q_input = hidden_states.new_empty(
            q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
        )
        if self.q_lora_rank is not None:
            q = self.q_a_proj(hidden_states)[0]
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
686

687
        if self.w_kc.dtype == torch.float8_e4m3fnuz:
688
689
690
691
692
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
693
        elif self.w_kc.dtype == torch.float8_e4m3fn:
694
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
695
                q_nope.transpose(0, 1),
696
                zero_allocator.allocate(1),
697
698
699
700
701
702
703
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
        q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)
704

Ke Bao's avatar
Ke Bao committed
705
706
707
708
        latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
        v_input = latent_cache[..., : self.kv_lora_rank]
        v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
        k_input = latent_cache.unsqueeze(1)
709
        k_input[..., : self.kv_lora_rank] = v_input
Ke Bao's avatar
Ke Bao committed
710
        k_pe = k_input[..., self.kv_lora_rank :]
711
712
713
714
715

        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q_input[..., self.kv_lora_rank :] = q_pe
        k_input[..., self.kv_lora_rank :] = k_pe

716
        attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
717
718
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

719
        if self.w_vc.dtype == torch.float8_e4m3fnuz:
720
721
722
723
724
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
725
        elif self.w_vc.dtype == torch.float8_e4m3fn:
726
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
727
                attn_output.transpose(0, 1),
728
                zero_allocator.allocate(1),
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
        output, _ = self.o_proj(attn_output)

        return output

    def forward_absorb_fused_mla_rope(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
749
        zero_allocator: BumpAllocator,
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
    ) -> torch.Tensor:
        enable_rope_fusion = (
            os.getenv("SGLANG_FUSED_MLA_ENABLE_ROPE_FUSION", "1") == "1"
        )
        q_len = hidden_states.shape[0]
        q_input = hidden_states.new_empty(
            q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
        )
        if self.q_lora_rank is not None:
            q = self.q_a_proj(hidden_states)[0]
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)

        if self.w_kc.dtype == torch.float8_e4m3fnuz:
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_kc.dtype == torch.float8_e4m3fn:
775
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
776
777
778
                q_nope.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
        q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)

        latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
        v_input = latent_cache[..., : self.kv_lora_rank]
        v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
        k_input = latent_cache.unsqueeze(1)
        k_input[..., : self.kv_lora_rank] = v_input

        if not enable_rope_fusion:
            k_pe = k_input[..., self.kv_lora_rank :]
            q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
            q_input[..., self.kv_lora_rank :] = q_pe
            k_input[..., self.kv_lora_rank :] = k_pe
            k_pe_output = None
        else:
            k_pe_output = torch.empty_like(k_input[..., self.kv_lora_rank :])

        q_input[..., self.kv_lora_rank :] = q_pe

        # attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        # Use Fused ROPE with use_rope=OFF.
        attn_output = torch.empty(
            (q_len, self.num_local_heads, self.kv_lora_rank),
            dtype=q.dtype,
            device=q.device,
        )
        attn_logits, _, kv_indptr, kv_indices, _, _, _ = (
            forward_batch.attn_backend.forward_metadata
        )
        cos_sin_cache = self.rotary_emb.cos_sin_cache
        num_kv_split = forward_batch.attn_backend.num_kv_splits
        sm_scale = self.attn_mqa.scaling
        if attn_logits is None:
            attn_logits = torch.empty(
                (
                    forward_batch.batch_size,
                    self.num_local_heads,
                    num_kv_split,
                    self.kv_lora_rank + 1,
                ),
                dtype=torch.float32,
                device=q.device,
            )

        # save current latent cache.
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mqa, forward_batch.out_cache_loc, k_input, None
        )
        key_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
            self.attn_mqa.layer_id
        )
        val_cache_buf = key_cache_buf[..., : self.kv_lora_rank]

        decode_attention_fwd_grouped_rope(
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            self.kv_lora_rank,
            self.rotary_emb.rotary_dim,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            logit_cap=self.attn_mqa.logit_cap,
            use_rope=enable_rope_fusion,
            is_neox_style=self.rotary_emb.is_neox_style,
        )

        if enable_rope_fusion:
            k_input[..., self.kv_lora_rank :] = k_pe_output
            forward_batch.token_to_kv_pool.set_kv_buffer(
                self.attn_mqa, forward_batch.out_cache_loc, k_input, None
            )

        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

866
867
868
869
870
871
872
        if self.w_vc.dtype == torch.float8_e4m3fnuz:
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_vc.dtype == torch.float8_e4m3fn:
873
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
874
875
876
                attn_output.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
877
878
879
880
881
882
883
884
885
886
887
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
888
889
890
891
        output, _ = self.o_proj(attn_output)

        return output

892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
    def _chunked_prefix_attn_mha(
        self,
        q: torch.Tensor,
        accum_output: torch.Tensor,
        accum_lse: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:

        assert forward_batch.num_prefix_chunks is not None
        for i in range(forward_batch.num_prefix_chunks):
            forward_batch.set_prefix_chunk_idx(i)

            # Fetch latent cache from memory pool with precomputed chunked kv indices
            latent_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
                self.attn_mha.layer_id
            )
            latent_cache = latent_cache_buf[
                forward_batch.prefix_chunk_kv_indices[i]
            ].contiguous()

            kv_a_normed, k_pe = latent_cache.split(
                [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
            )
            kv_a_normed = kv_a_normed.squeeze(1).contiguous()
            kv = self.kv_b_proj(kv_a_normed)[0]
            kv = kv.view(
                -1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim
            )
            v = kv[..., self.qk_nope_head_dim :]
            k_nope = kv[..., : self.qk_nope_head_dim]

            k = torch.empty(
                (
                    k_nope.shape[0],
                    self.num_local_heads,
                    self.qk_nope_head_dim + self.qk_rope_head_dim,
                ),
                dtype=v.dtype,
                device=v.device,
            )
            k[..., : self.qk_nope_head_dim] = k_nope
            k[..., self.qk_nope_head_dim :] = k_pe

            output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
            lse = torch.transpose(lse, 0, 1).contiguous()
            tmp_output = torch.empty_like(accum_output)
            tmp_lse = torch.empty_like(accum_lse)
            merge_state_v2(output, lse, accum_output, accum_lse, tmp_output, tmp_lse)
            accum_output, accum_lse = tmp_output, tmp_lse

        return accum_output

    def forward_normal_chunked_kv(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:
        # In normal mha, the k and v tensors will become overly large when the prefix length is long.
        # To avoid this, we split the kv cache into chunks and process them one after another.
        # Since mha is compute friendly, the for loop induced here will not introduce significant overhead.
        # The top comments in https://github.com/vllm-project/vllm/blob/main/vllm/v1/attention/backends/mla/common.py
        # will be helpful for understanding the purpose of this function.

        # First do normal mha forward to get output for extended part
        if self.q_lora_rank is not None:
            q = self.q_a_proj(hidden_states)[0]
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]

        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )

        # Do mha for extended part without prefix
        forward_batch.set_attn_attend_prefix_cache(False)
        attn_output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        lse = torch.transpose(lse, 0, 1).contiguous()

        # Do mha attention with chunked prefix cache if there are any sequence with prefix
        if any(forward_batch.extend_prefix_lens_cpu):
            # Only initialize the info once
            if forward_batch.num_prefix_chunks is None:
                forward_batch.prepare_chunked_prefix_cache_info(q.device)

            forward_batch.set_attn_attend_prefix_cache(True)
            attn_output = self._chunked_prefix_attn_mha(
                q=q,
                accum_output=attn_output,
                accum_lse=lse,
                forward_batch=forward_batch,
            )

        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

1013

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
class _FFNInputMode(Enum):
    # The MLP sublayer requires 1/tp_size tokens as input
    SCATTERED = auto()
    # The MLP sublayer requires all tokens as input
    FULL = auto()


@dataclass
class _DecoderLayerInfo:
    is_sparse: bool
    ffn_input_mode: _FFNInputMode


Liangsheng Yin's avatar
Liangsheng Yin committed
1027
1028
1029
1030
1031
1032
1033
class DeepseekV2DecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        layer_id: int,
        quant_config: Optional[QuantizationConfig] = None,
1034
        is_nextn: bool = False,
1035
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1036
1037
1038
1039
1040
1041
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
Lianmin Zheng's avatar
Lianmin Zheng committed
1042
1043
1044
        self.enable_dp_attention = global_server_args_dict["enable_dp_attention"]
        self.layer_id = layer_id
        self.dp_size = get_attention_dp_size()
1045
1046
        self.attn_tp_size = get_attention_tp_size()
        self.attn_tp_rank = get_attention_tp_rank()
Baizhou Zhang's avatar
Baizhou Zhang committed
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
        self.self_attn = DeepseekV2AttentionMLA(
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            qk_nope_head_dim=config.qk_nope_head_dim,
            qk_rope_head_dim=config.qk_rope_head_dim,
            v_head_dim=config.v_head_dim,
            q_lora_rank=(
                config.q_lora_rank if hasattr(config, "q_lora_rank") else None
            ),
            kv_lora_rank=config.kv_lora_rank,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            quant_config=quant_config,
            layer_id=layer_id,
            reduce_results=False,
            prefix=add_prefix("self_attn", prefix),
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1066

1067
1068
1069
1070
1071
1072
        self.info = self._compute_info(config, layer_id=layer_id, is_nextn=is_nextn)
        previous_layer_info = self._compute_info(
            config, layer_id=layer_id - 1, is_nextn=False
        )

        if self.info.is_sparse:
1073
1074
1075
1076
1077
            self.mlp = DeepseekV2MoE(
                config=config,
                quant_config=quant_config,
                prefix=add_prefix("mlp", prefix),
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
1078
        else:
1079
1080
1081
1082
            if self._enable_moe_dense_fully_dp():
                mlp_tp_rank, mlp_tp_size = 0, 1
            else:
                mlp_tp_rank, mlp_tp_size = None, None
Liangsheng Yin's avatar
Liangsheng Yin committed
1083
1084
1085
1086
1087
            self.mlp = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
1088
                prefix=add_prefix("mlp", prefix),
1089
1090
                tp_rank=mlp_tp_rank,
                tp_size=mlp_tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
1091
            )
1092
1093

        self.input_is_scattered = (
1094
            previous_layer_info.ffn_input_mode == _FFNInputMode.SCATTERED
1095
1096
1097
        )
        self.is_last_layer = self.layer_id == config.num_hidden_layers - 1

Liangsheng Yin's avatar
Liangsheng Yin committed
1098
1099
1100
1101
1102
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

1103
1104
1105
1106
    @staticmethod
    def _enable_moe_dense_fully_dp():
        return global_server_args_dict["moe_dense_tp_size"] == 1

1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
    @staticmethod
    def _compute_info(config: PretrainedConfig, layer_id: int, is_nextn: bool):
        is_sparse = is_nextn or (
            config.n_routed_experts is not None
            and layer_id >= config.first_k_dense_replace
            and layer_id % config.moe_layer_freq == 0
        )
        ffn_input_mode = (
            _FFNInputMode.SCATTERED
            if (global_server_args_dict["enable_deepep_moe"] and is_sparse)
1117
            or (DeepseekV2DecoderLayer._enable_moe_dense_fully_dp() and not is_sparse)
1118
1119
1120
1121
            else _FFNInputMode.FULL
        )
        return _DecoderLayerInfo(is_sparse=is_sparse, ffn_input_mode=ffn_input_mode)

Liangsheng Yin's avatar
Liangsheng Yin committed
1122
1123
1124
1125
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
1126
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
1127
        residual: Optional[torch.Tensor],
1128
        zero_allocator: BumpAllocator,
Liangsheng Yin's avatar
Liangsheng Yin committed
1129
    ) -> torch.Tensor:
1130
1131
        if self.info.ffn_input_mode == _FFNInputMode.SCATTERED:
            return self.forward_ffn_with_scattered_input(
1132
                positions, hidden_states, forward_batch, residual, zero_allocator
1133
            )
1134
1135
        elif self.info.ffn_input_mode == _FFNInputMode.FULL:
            return self.forward_ffn_with_full_input(
1136
                positions, hidden_states, forward_batch, residual, zero_allocator
1137
            )
1138
1139
        else:
            raise NotImplementedError
1140

1141
    def forward_ffn_with_full_input(
1142
1143
1144
1145
1146
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        residual: Optional[torch.Tensor],
1147
        zero_allocator: BumpAllocator,
1148
1149
    ) -> torch.Tensor:

1150
        if hidden_states.shape[0] == 0:
Lianmin Zheng's avatar
Lianmin Zheng committed
1151
1152
            residual = hidden_states
        else:
1153
1154
1155
1156
1157
            if residual is None:
                residual = hidden_states
                hidden_states = self.input_layernorm(hidden_states)
            else:
                hidden_states, residual = self.input_layernorm(hidden_states, residual)
Lianmin Zheng's avatar
Lianmin Zheng committed
1158

1159
1160
1161
1162
            assert not (
                self.attn_tp_size != 1 and self.input_is_scattered
            ), "moe_layer_freq > 1 is not supported when attn_tp_size > 1"

1163
1164
1165
1166
1167
            # Self Attention
            hidden_states = self.self_attn(
                positions=positions,
                hidden_states=hidden_states,
                forward_batch=forward_batch,
1168
                zero_allocator=zero_allocator,
Lianmin Zheng's avatar
Lianmin Zheng committed
1169
1170
1171
1172
1173
1174
            )

        # Gather
        if get_tensor_model_parallel_world_size() > 1:
            # all gather and all reduce
            if self.dp_size != 1:
1175
1176
1177
1178
1179
1180
1181
1182
1183
                if self.attn_tp_rank == 0:
                    hidden_states += residual
                hidden_states, local_hidden_states = (
                    forward_batch.gathered_buffer,
                    hidden_states,
                )
                dp_gather_partial(hidden_states, local_hidden_states, forward_batch)
                dp_scatter(residual, hidden_states, forward_batch)
                hidden_states = self.post_attention_layernorm(hidden_states)
Ke Bao's avatar
Ke Bao committed
1184
            else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1185
                hidden_states = tensor_model_parallel_all_reduce(hidden_states)
1186
1187
1188
1189
1190
1191
1192
                hidden_states, residual = self.post_attention_layernorm(
                    hidden_states, residual
                )
        else:
            hidden_states, residual = self.post_attention_layernorm(
                hidden_states, residual
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
1193
1194

        # Fully Connected
Lianmin Zheng's avatar
Lianmin Zheng committed
1195
        hidden_states = self.mlp(hidden_states)
1196

1197
        # TODO(ch-wan): ues reduce-scatter in MLP to avoid this scatter
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
        # Scatter
        if self.dp_size != 1:
            # important: forward batch.gathered_buffer is used both after scatter and after gather.
            # be careful about this!
            hidden_states, global_hidden_states = (
                forward_batch.gathered_buffer[: forward_batch.input_ids.shape[0]],
                hidden_states,
            )
            dp_scatter(hidden_states, global_hidden_states, forward_batch)

Liangsheng Yin's avatar
Liangsheng Yin committed
1208
1209
        return hidden_states, residual

1210
    def forward_ffn_with_scattered_input(
1211
1212
1213
1214
1215
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        residual: Optional[torch.Tensor],
1216
        zero_allocator: BumpAllocator,
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
    ) -> torch.Tensor:

        if hidden_states.shape[0] == 0:
            residual = hidden_states
        else:
            if residual is None:
                residual = hidden_states
                hidden_states = self.input_layernorm(hidden_states)
            else:
                hidden_states, residual = self.input_layernorm(hidden_states, residual)

        if self.attn_tp_size != 1 and self.input_is_scattered:
            hidden_states, local_hidden_states = (
                forward_batch.gathered_buffer[: forward_batch.input_ids.shape[0]],
                hidden_states,
            )
            tp_all_gather(
                list(hidden_states.tensor_split(self.attn_tp_size)), local_hidden_states
            )

        # Self Attention
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            forward_batch=forward_batch,
1242
            zero_allocator=zero_allocator,
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
        )

        if self.attn_tp_size != 1:
            if self.input_is_scattered:
                tensor_list = list(hidden_states.tensor_split(self.attn_tp_size))
                hidden_states = tensor_list[self.attn_tp_rank]
                tp_reduce_scatter(hidden_states, tensor_list)
                if hidden_states.shape[0] != 0:
                    hidden_states, residual = self.post_attention_layernorm(
                        hidden_states, residual
                    )
            else:
                if self.attn_tp_rank == 0:
                    hidden_states += residual
                tensor_list = list(hidden_states.tensor_split(self.attn_tp_size))
                hidden_states = tensor_list[self.attn_tp_rank]
                tp_reduce_scatter(hidden_states, tensor_list)
                residual = hidden_states
                if hidden_states.shape[0] != 0:
                    hidden_states = self.post_attention_layernorm(hidden_states)
        else:
            if hidden_states.shape[0] != 0:
                hidden_states, residual = self.post_attention_layernorm(
                    hidden_states, residual
                )
1268

1269
1270
1271
1272
1273
1274
        if not (
            self._enable_moe_dense_fully_dp()
            and (not self.info.is_sparse)
            and hidden_states.shape[0] == 0
        ):
            hidden_states = self.mlp(hidden_states, forward_batch.forward_mode)
1275
1276

        if self.is_last_layer and self.attn_tp_size != 1:
1277
1278
            hidden_states += residual
            residual = None
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
            hidden_states, local_hidden_states = (
                forward_batch.gathered_buffer[: forward_batch.input_ids.shape[0]],
                hidden_states,
            )
            tp_all_gather(
                list(hidden_states.tensor_split(self.attn_tp_size)), local_hidden_states
            )

        return hidden_states, residual

Liangsheng Yin's avatar
Liangsheng Yin committed
1289
1290
1291
1292
1293
1294
1295
1296

class DeepseekV2Model(nn.Module):
    fall_back_to_pt_during_load = False

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1297
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1298
1299
1300
1301
1302
1303
1304
1305
    ) -> None:
        super().__init__()
        self.padding_id = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
Ke Bao's avatar
Ke Bao committed
1306
            enable_tp=not global_server_args_dict["enable_dp_attention"],
Liangsheng Yin's avatar
Liangsheng Yin committed
1307
1308
1309
1310
1311
1312
1313
        )
        self.layers = nn.ModuleList(
            [
                DeepseekV2DecoderLayer(
                    config,
                    layer_id,
                    quant_config=quant_config,
1314
                    prefix=add_prefix(f"layers.{layer_id}", prefix),
Liangsheng Yin's avatar
Liangsheng Yin committed
1315
1316
1317
1318
1319
1320
                )
                for layer_id in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

Lianmin Zheng's avatar
Lianmin Zheng committed
1321
1322
        self.dp_size = get_attention_dp_size()

Liangsheng Yin's avatar
Liangsheng Yin committed
1323
1324
1325
1326
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
1327
        forward_batch: ForwardBatch,
1328
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1329
    ) -> torch.Tensor:
1330
1331
1332
1333
1334
1335
        zero_allocator = BumpAllocator(
            # TODO for two-batch-overlap, we need a larger buffer size
            buffer_size=len(self.layers) * 2,
            dtype=torch.float32,
            device=input_ids.device,
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1336

1337
1338
1339
1340
1341
        if input_embeds is None:
            hidden_states = self.embed_tokens(input_ids)
        else:
            hidden_states = input_embeds

Liangsheng Yin's avatar
Liangsheng Yin committed
1342
1343
        residual = None
        for i in range(len(self.layers)):
1344
            expert_distribution_recorder.set_current_layer(i)
Liangsheng Yin's avatar
Liangsheng Yin committed
1345
1346
            layer = self.layers[i]
            hidden_states, residual = layer(
1347
                positions, hidden_states, forward_batch, residual, zero_allocator
Liangsheng Yin's avatar
Liangsheng Yin committed
1348
            )
Ke Bao's avatar
Ke Bao committed
1349
        if not forward_batch.forward_mode.is_idle():
1350
1351
1352
1353
            if residual is None:
                hidden_states = self.norm(hidden_states)
            else:
                hidden_states, _ = self.norm(hidden_states, residual)
Liangsheng Yin's avatar
Liangsheng Yin committed
1354
1355
1356
1357
1358
1359
1360
1361
1362
        return hidden_states


class DeepseekV2ForCausalLM(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1363
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1364
1365
1366
    ) -> None:
        super().__init__()
        self.config = config
1367
        self.tp_size = get_tensor_model_parallel_world_size()
Liangsheng Yin's avatar
Liangsheng Yin committed
1368
        self.quant_config = quant_config
1369
        self.n_share_experts_fusion = global_server_args_dict["n_share_experts_fusion"]
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
        if self.n_share_experts_fusion > 0:
            # Only Deepseek V3/R1 can use shared experts fusion optimization now.
            if (
                self.config.architectures[0] != "DeepseekV3ForCausalLM"
                or self.config.n_routed_experts != 256
            ):
                self.n_share_experts_fusion = 0
                global_server_args_dict["n_share_experts_fusion"] = 0
                logger.info(
                    "Only Deepseek V3/R1 can use shared experts fusion optimization. Shared experts fusion optimization is disabled."
                )
            else:
                assert (
                    self.n_share_experts_fusion == self.tp_size
                ), f"Shared experts fusion optimization is enabled in DeepSeek V3/R1, set it to {self.tp_size} can get best optimized performace."
1385

1386
1387
1388
        self.model = DeepseekV2Model(
            config, quant_config, prefix=add_prefix("model", prefix)
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1389
1390
1391
1392
1393
1394
1395
1396
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=add_prefix("lm_head", prefix),
        )
        self.logits_processor = LogitsProcessor(config)
        self.dp_size = get_attention_dp_size()
Liangsheng Yin's avatar
Liangsheng Yin committed
1397

Mick's avatar
Mick committed
1398
1399
1400
    def get_input_embeddings(self) -> nn.Embedding:
        return self.model.embed_tokens

1401
    @torch.no_grad()
Liangsheng Yin's avatar
Liangsheng Yin committed
1402
1403
1404
1405
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
1406
        forward_batch: ForwardBatch,
1407
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1408
    ) -> torch.Tensor:
1409
1410

        hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
Lianmin Zheng's avatar
Lianmin Zheng committed
1411

1412
1413
1414
        return self.logits_processor(
            input_ids, hidden_states, self.lm_head, forward_batch
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
1415

inkcherry's avatar
inkcherry committed
1416
1417
1418
    def post_load_weights(self):

        # Perform post-processing after loading weights
Baizhou Zhang's avatar
Baizhou Zhang committed
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
        for layer_id in range(self.config.num_hidden_layers):
            self_attn = self.model.layers[layer_id].self_attn
            if hasattr(self_attn.kv_b_proj, "qweight"):
                # AWQ compatible
                if _is_cuda:
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                    ).T
inkcherry's avatar
inkcherry committed
1429
                else:
Baizhou Zhang's avatar
Baizhou Zhang committed
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                        0,
                        0,
                        0,
                    ).T
            else:
                w = self_attn.kv_b_proj.weight
            # NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
            # This may affect the accuracy of fp8 model.
            if w.dtype in (
                torch.float8_e4m3fn,
                torch.float8_e4m3fnuz,
            ):
                if hasattr(self.quant_config, "weight_block_size"):
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                        if _is_hip:
                            weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                                weight=w,
                                weight_scale=self_attn.kv_b_proj.weight_scale_inv,
                                input_scale=None,
inkcherry's avatar
inkcherry committed
1455
                            )
Baizhou Zhang's avatar
Baizhou Zhang committed
1456
                        else:
inkcherry's avatar
inkcherry committed
1457
1458
                            weight = w
                            weight_scale = self_attn.kv_b_proj.weight_scale_inv
Baizhou Zhang's avatar
Baizhou Zhang committed
1459
1460
1461

                        w, scale = block_quant_to_tensor_quant(
                            weight, weight_scale, weight_block_size
inkcherry's avatar
inkcherry committed
1462
                        )
Baizhou Zhang's avatar
Baizhou Zhang committed
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
                        self_attn.w_scale = scale
                else:
                    weight = w
                    weight_scale = self_attn.kv_b_proj.weight_scale
                    w, scale = channel_quant_to_tensor_quant(weight, weight_scale)
                    self_attn.w_scale = scale

            if w.dtype == torch.int8:
                if hasattr(self.quant_config, "weight_block_size"):
                    # block-wise int8 need it
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv
                        w = int8_block_dequant(
                            weight, weight_scale, weight_block_size
                        ).to(torch.bfloat16)
                else:
                    # channel-wise int8 need it
                    w = w.to(torch.bfloat16) * self_attn.kv_b_proj.weight_scale.to(
                        torch.bfloat16
                    )
            w_kc, w_vc = w.unflatten(
                0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
            ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
            self_attn.w_kc = w_kc.transpose(1, 2).contiguous().transpose(1, 2)
            self_attn.w_vc = w_vc.contiguous().transpose(1, 2)
            if (
                hasattr(self_attn.kv_b_proj, "weight_scale")
                and self_attn.w_scale is None
            ):
                self_attn.w_scale = self_attn.kv_b_proj.weight_scale
                if _is_hip:
                    self_attn.w_scale *= 2.0
inkcherry's avatar
inkcherry committed
1498

Liangsheng Yin's avatar
Liangsheng Yin committed
1499
1500
1501
1502
1503
1504
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
1505
        if self.n_share_experts_fusion > 0:
1506
1507
            weights_list = list(weights)
            weights_dict = dict(weights_list)
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
            if self.quant_config.get_name() == "w8a8_int8":
                suffix_list = [
                    "down_proj.weight",
                    "down_proj.weight_scale",
                    "gate_proj.weight",
                    "gate_proj.weight_scale",
                    "up_proj.weight",
                    "up_proj.weight_scale",
                ]
            else:
                suffix_list = [
                    "down_proj.weight",
                    "down_proj.weight_scale_inv",
                    "gate_proj.weight",
                    "gate_proj.weight_scale_inv",
                    "up_proj.weight",
                    "up_proj.weight_scale_inv",
                ]
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
            names_to_remove = []
            for moe_layer in tqdm(
                range(
                    self.config.first_k_dense_replace,
                    self.config.num_hidden_layers,
                    self.config.moe_layer_freq,
                ),
                desc=f"Cloning {self.n_share_experts_fusion} "
                "replicas of the shared expert into MoE",
            ):
                for num_repeat in range(self.n_share_experts_fusion):
                    for suffix in suffix_list:
                        shared_expert_weight_name = (
                            f"model.layers.{moe_layer}.mlp.shared_experts.{suffix}"
                        )
                        weights_list.append(
                            (
                                f"model.layers.{moe_layer}."
                                f"mlp.experts."
                                f"{self.config.n_routed_experts + num_repeat}"
                                f".{suffix}",
                                weights_dict[shared_expert_weight_name].clone(),
                            )
                        )
                        names_to_remove += [shared_expert_weight_name]
            weights = [w for w in weights_list if w[0] not in names_to_remove]
Liangsheng Yin's avatar
Liangsheng Yin committed
1552
1553
1554

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
1555
1556
1557
1558
1559
        MoEImpl = (
            DeepEPMoE
            if global_server_args_dict["enable_deepep_moe"]
            else (EPMoE if global_server_args_dict["enable_ep_moe"] else FusedMoE)
        )
xiaobochen's avatar
xiaobochen committed
1560
        expert_params_mapping = MoEImpl.make_expert_params_mapping(
Liangsheng Yin's avatar
Liangsheng Yin committed
1561
1562
1563
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
1564
            num_experts=self.config.n_routed_experts + self.n_share_experts_fusion,
Liangsheng Yin's avatar
Liangsheng Yin committed
1565
1566
1567
1568
        )

        params_dict = dict(self.named_parameters())
        for name, loaded_weight in weights:
HandH1998's avatar
HandH1998 committed
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
            # TODO(HandH1998): Modify it when nextn is supported.
            if hasattr(self.config, "num_nextn_predict_layers"):
                num_nextn_layers = self.config.num_nextn_predict_layers
                if num_nextn_layers > 0 and name.startswith("model.layers"):
                    name_list = name.split(".")
                    if (
                        len(name_list) >= 3
                        and int(name_list[2]) >= self.config.num_hidden_layers
                    ):
                        continue
Liangsheng Yin's avatar
Liangsheng Yin committed
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
            if "rotary_emb.inv_freq" in name:
                continue
            for param_name, weight_name, shard_id in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if ("mlp.experts." in name) and name not in params_dict:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(
                        param,
                        loaded_weight,
1612
                        name,
Liangsheng Yin's avatar
Liangsheng Yin committed
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
                        shard_id=shard_id,
                        expert_id=expert_id,
                    )
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue

                    param = params_dict[name]
                    weight_loader = getattr(
                        param, "weight_loader", default_weight_loader
                    )
                    weight_loader(param, loaded_weight)

inkcherry's avatar
inkcherry committed
1628
        self.post_load_weights()
Ke Bao's avatar
Ke Bao committed
1629

1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
    def get_embed_and_head(self):
        return self.model.embed_tokens.weight, self.lm_head.weight

    def set_embed_and_head(self, embed, head):
        del self.model.embed_tokens.weight
        del self.lm_head.weight
        self.model.embed_tokens.weight = embed
        self.lm_head.weight = head
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

Liangsheng Yin's avatar
Liangsheng Yin committed
1641

HandH1998's avatar
HandH1998 committed
1642
1643
1644
1645
1646
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
    pass


EntryClass = [DeepseekV2ForCausalLM, DeepseekV3ForCausalLM]