deepseek_v2.py 71.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

Liangsheng Yin's avatar
Liangsheng Yin committed
15
16
17
# Adapted from:
# https://github.com/vllm-project/vllm/blob/fb6af8bc086328ca6659e72d11ffd4309ce4de22/vllm/model_executor/models/deepseek_v2.py
"""Inference-only DeepseekV2 model."""
18

19
import logging
20
import os
21
from enum import IntEnum, auto
Liangsheng Yin's avatar
Liangsheng Yin committed
22
23
24
from typing import Any, Dict, Iterable, Optional, Tuple

import torch
Ke Bao's avatar
Ke Bao committed
25
import torch.nn.functional as F
Liangsheng Yin's avatar
Liangsheng Yin committed
26
from torch import nn
27
from tqdm import tqdm
Liangsheng Yin's avatar
Liangsheng Yin committed
28
from transformers import PretrainedConfig
29
30

from sglang.srt.distributed import (
Liangsheng Yin's avatar
Liangsheng Yin committed
31
    get_tensor_model_parallel_world_size,
32
    parallel_state,
Liangsheng Yin's avatar
Liangsheng Yin committed
33
34
    tensor_model_parallel_all_reduce,
)
35
from sglang.srt.layers.activation import SiluAndMul
36
37
38
39
40
from sglang.srt.layers.communicator import (
    LayerCommunicator,
    LayerScatterModes,
    enable_moe_dense_fully_dp,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
41
42
43
from sglang.srt.layers.dp_attention import (
    get_attention_tp_rank,
    get_attention_tp_size,
44
    get_local_attention_dp_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
45
)
46
from sglang.srt.layers.layernorm import RMSNorm
47
48
49
50
51
52
from sglang.srt.layers.linear import (
    ColumnParallelLinear,
    MergedColumnParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
53
from sglang.srt.layers.logits_processor import LogitsProcessor
fzyzcjy's avatar
fzyzcjy committed
54
from sglang.srt.layers.moe.ep_moe.layer import get_moe_impl_class
Lianmin Zheng's avatar
Lianmin Zheng committed
55
from sglang.srt.layers.moe.ep_moe.token_dispatcher import DeepEPDispatcher
56
from sglang.srt.layers.moe.topk import select_experts
57
from sglang.srt.layers.quantization.base_config import QuantizationConfig
58
from sglang.srt.layers.quantization.deep_gemm import _ENABLE_JIT_DEEPGEMM
59
60
from sglang.srt.layers.quantization.fp8_kernel import (
    per_tensor_quant_mla_fp8,
61
    per_token_group_quant_mla_deep_gemm_masked_fp8,
62
)
HandH1998's avatar
HandH1998 committed
63
from sglang.srt.layers.quantization.fp8_utils import (
64
    block_quant_dequant,
HandH1998's avatar
HandH1998 committed
65
    block_quant_to_tensor_quant,
66
    channel_quant_to_tensor_quant,
67
    normalize_e4m3fn_to_e4m3fnuz,
HandH1998's avatar
HandH1998 committed
68
)
69
70
71
from sglang.srt.layers.quantization.int8_utils import (
    block_dequant as int8_block_dequant,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
72
from sglang.srt.layers.radix_attention import RadixAttention
73
from sglang.srt.layers.rotary_embedding import get_rope
74
75
76
77
from sglang.srt.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
78
79
80
81
82
from sglang.srt.managers.expert_distribution import (
    ExpertDistributionRecorder,
    get_global_expert_distribution_recorder,
)
from sglang.srt.managers.expert_location import ModelConfigForExpertLocation
83
from sglang.srt.managers.expert_location_dispatch import ExpertLocationDispatchInfo
84
from sglang.srt.managers.schedule_batch import global_server_args_dict
85
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, ForwardMode
86
from sglang.srt.model_loader.weight_utils import default_weight_loader
87
88
from sglang.srt.operations import execute_operations
from sglang.srt.operations_strategy import compute_layer_operations
89
90
91
92
93
94
95
96
from sglang.srt.utils import (
    BumpAllocator,
    DeepEPMode,
    add_prefix,
    get_bool_env_var,
    get_int_env_var,
    is_cuda,
    is_hip,
97
    log_info_on_rank0,
98
)
99

100
_is_hip = is_hip()
Yineng Zhang's avatar
Yineng Zhang committed
101
_is_cuda = is_cuda()
102

Yineng Zhang's avatar
Yineng Zhang committed
103
if _is_cuda:
104
    from sgl_kernel import awq_dequantize, bmm_fp8, merge_state_v2
105
106
107
108

    from sglang.srt.layers.quantization.deep_gemm import (
        grouped_gemm_nt_f8f8bf16_masked as deep_gemm_grouped_gemm_nt_f8f8bf16_masked,
    )
Yineng Zhang's avatar
Yineng Zhang committed
109
else:
Lianmin Zheng's avatar
Lianmin Zheng committed
110
    from vllm._custom_ops import awq_dequantize
Liangsheng Yin's avatar
Liangsheng Yin committed
111

112
113
114
115
116
if _is_hip:
    from sglang.srt.layers.attention.triton_ops.rocm_mla_decode_rope import (
        decode_attention_fwd_grouped_rope,
    )

117
118
logger = logging.getLogger(__name__)

Liangsheng Yin's avatar
Liangsheng Yin committed
119

120
121
122
123
124
125
126
127
128
129
130
131
class AttnForwardMethod(IntEnum):
    # Use multi-head attention
    MHA = auto()

    # Use absorbed multi-latent attention
    MLA = auto()

    # Use multi-head attention, but with KV cache chunked.
    # This method can avoid OOM when prefix lengths are long.
    MHA_CHUNKED_KV = auto()


Liangsheng Yin's avatar
Liangsheng Yin committed
132
133
134
135
136
137
138
139
class DeepseekV2MLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
140
        prefix: str = "",
141
142
        tp_rank: Optional[int] = None,
        tp_size: Optional[int] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
143
144
    ) -> None:
        super().__init__()
145
146
        self.tp_size = tp_size

Liangsheng Yin's avatar
Liangsheng Yin committed
147
        self.gate_up_proj = MergedColumnParallelLinear(
148
149
150
151
152
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("gate_up_proj", prefix),
153
154
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
155
156
157
158
159
160
161
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
162
            prefix=add_prefix("down_proj", prefix),
163
164
            tp_rank=tp_rank,
            tp_size=tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
165
166
167
168
169
170
171
172
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. "
                "Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

173
174
175
176
    def forward(self, x, forward_batch=None):
        if (self.tp_size == 1) and x.shape[0] == 0:
            return x

Liangsheng Yin's avatar
Liangsheng Yin committed
177
178
179
180
181
182
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


Ke Bao's avatar
Ke Bao committed
183
class MoEGate(nn.Module):
184
185
186
187
188
    def __init__(
        self,
        config,
        prefix: str = "",
    ):
Ke Bao's avatar
Ke Bao committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        super().__init__()
        self.weight = nn.Parameter(
            torch.empty((config.n_routed_experts, config.hidden_size))
        )
        if config.topk_method == "noaux_tc":
            self.e_score_correction_bias = nn.Parameter(
                torch.empty((config.n_routed_experts))
            )
        else:
            self.e_score_correction_bias = None

    def forward(self, hidden_states):
        logits = F.linear(hidden_states, self.weight, None)
        return logits


205
206
207
208
209
210
211
212
def is_non_idle_and_non_empty(forward_mode, hidden_states):
    return (
        (forward_mode is not None)
        and not forward_mode.is_idle()
        and hidden_states.shape[0] > 0
    )


Liangsheng Yin's avatar
Liangsheng Yin committed
213
214
215
216
217
class DeepseekV2MoE(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
fzyzcjy's avatar
fzyzcjy committed
218
        layer_id: int,
Liangsheng Yin's avatar
Liangsheng Yin committed
219
        quant_config: Optional[QuantizationConfig] = None,
220
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
221
222
223
224
225
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.routed_scaling_factor = config.routed_scaling_factor
        self.n_shared_experts = config.n_shared_experts
226
        self.n_share_experts_fusion = global_server_args_dict["n_share_experts_fusion"]
fzyzcjy's avatar
fzyzcjy committed
227
        self.layer_id = layer_id
228

Liangsheng Yin's avatar
Liangsheng Yin committed
229
230
231
232
233
234
235
236
237
238
239
240
        if self.tp_size > config.n_routed_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {config.n_routed_experts}."
            )

        if config.hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {config.hidden_act}. "
                "Only silu is supported for now."
            )

241
        self.gate = MoEGate(config=config, prefix=add_prefix("gate", prefix))
Ke Bao's avatar
Ke Bao committed
242

243
        self.experts = get_moe_impl_class()(
244
245
            num_experts=config.n_routed_experts + self.n_share_experts_fusion,
            top_k=config.num_experts_per_tok + min(self.n_share_experts_fusion, 1),
246
247
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
fzyzcjy's avatar
fzyzcjy committed
248
            layer_id=self.layer_id,
249
250
251
252
253
254
            renormalize=config.norm_topk_prob,
            quant_config=quant_config,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
            topk_group=config.topk_group,
            correction_bias=self.gate.e_score_correction_bias,
255
            routed_scaling_factor=self.routed_scaling_factor,
256
257
258
259
260
261
262
            prefix=add_prefix("experts", prefix),
            **(
                dict(deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]])
                if global_server_args_dict["enable_deepep_moe"]
                else {}
            ),
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
263

264
        if config.n_shared_experts is not None and self.n_share_experts_fusion == 0:
Liangsheng Yin's avatar
Liangsheng Yin committed
265
            intermediate_size = config.moe_intermediate_size * config.n_shared_experts
266
            # disable tp for shared experts when enable deepep moe
267
268
269
270
271
272
273
274
275
276
277
278
279
            self.shared_experts = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                reduce_results=False,
                prefix=add_prefix("shared_experts", prefix),
                **(
                    dict(tp_rank=0, tp_size=1)
                    if global_server_args_dict["enable_deepep_moe"]
                    else {}
                ),
            )
280

281
282
        self.top_k = config.num_experts_per_tok

283
        if global_server_args_dict["enable_deepep_moe"]:
284
285
            # TODO: we will support tp < ep in the future
            self.ep_size = get_tensor_model_parallel_world_size()
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
            self.num_experts = config.n_routed_experts
            self.renormalize = config.norm_topk_prob
            self.topk_group = config.topk_group
            self.num_expert_group = config.n_group
            self.correction_bias = (
                self.gate.e_score_correction_bias.data
                if self.gate.e_score_correction_bias is not None
                else None
            )

            self.deepep_dispatcher = DeepEPDispatcher(
                group=parallel_state.get_tp_group().device_group,
                router_topk=self.top_k,
                permute_fusion=True,
                num_experts=config.n_routed_experts,
                num_local_experts=config.n_routed_experts // self.tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
302
                hidden_size=config.hidden_size,
303
                params_dtype=config.torch_dtype,
304
                deepep_mode=DeepEPMode[global_server_args_dict["deepep_mode"]],
fzyzcjy's avatar
fzyzcjy committed
305
                async_finish=True,  # TODO
306
                return_recv_hook=True,
Liangsheng Yin's avatar
Liangsheng Yin committed
307
308
            )

309
310
311
312
    @property
    def _enable_deepep_moe(self):
        return global_server_args_dict["enable_deepep_moe"]

313
    def op_gate(self, state):
314
        if (not self._enable_deepep_moe) or is_non_idle_and_non_empty(
315
            state.forward_batch.forward_mode, state.hidden_states_mlp_input
316
        ):
317
            # router_logits: (num_tokens, n_experts)
318
            state.router_logits = self.gate(state.hidden_states_mlp_input)
319
        else:
320
            state.router_logits = None
321

322
    def op_shared_experts(self, state):
323
324
        if (self.n_share_experts_fusion == 0) and (
            (not self._enable_deepep_moe)
325
326
327
            or is_non_idle_and_non_empty(
                state.forward_batch.forward_mode, state.hidden_states_mlp_input
            )
328
        ):
329
            state.shared_output = self.shared_experts(state.hidden_states_mlp_input)
330
        else:
331
            state.shared_output = None
332

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    def op_select_experts(self, state):
        router_logits = state.router_logits
        hidden_states = state.hidden_states_mlp_input

        if self._enable_deepep_moe:
            if router_logits is not None:
                state.topk_weights_local, state.topk_idx_local = select_experts(
                    hidden_states=hidden_states,
                    router_logits=router_logits,
                    top_k=self.top_k,
                    use_grouped_topk=True,
                    renormalize=self.renormalize,
                    topk_group=self.topk_group,
                    num_expert_group=self.num_expert_group,
                    correction_bias=self.correction_bias,
                    routed_scaling_factor=self.routed_scaling_factor,
fzyzcjy's avatar
fzyzcjy committed
349
350
351
                    expert_location_dispatch_info=ExpertLocationDispatchInfo.init_new(
                        layer_id=self.layer_id,
                    ),
352
353
354
355
356
357
358
359
                )
            else:
                state.topk_idx_local = torch.full(
                    (0, self.top_k), -1, dtype=torch.int, device=hidden_states.device
                )
                state.topk_weights_local = torch.empty(
                    (0, self.top_k), dtype=torch.float32, device=hidden_states.device
                )
360

361
    def op_dispatch_a(self, state):
362
        if self._enable_deepep_moe and (self.ep_size > 1):
363
            # TODO(ch-wan): allow users to set num_max_dispatch_tokens_per_rank value
364
365
366
367
368
            self.deepep_dispatcher.dispatch_a(
                hidden_states=state.pop("hidden_states_mlp_input"),
                topk_idx=state.pop("topk_idx_local"),
                topk_weights=state.pop("topk_weights_local"),
                forward_mode=state.forward_batch.forward_mode,
369
            )
370

371
372
373
374
375
376
377
378
379
380
381
382
383
384
    def op_dispatch_b(self, state):
        if self._enable_deepep_moe and (self.ep_size > 1):
            (
                state.hidden_states_experts_input,
                state.topk_idx_dispatched,
                state.topk_weights_dispatched,
                state.reorder_topk_ids,
                state.num_recv_tokens_per_expert,
                state.seg_indptr,
                state.masked_m,
                state.expected_m,
            ) = self.deepep_dispatcher.dispatch_b()

    def op_experts(self, state):
385
        if self._enable_deepep_moe:
386
387
388
389
390
391
392
393
394
395
396
            state.pop("router_logits")
            state.hidden_states_experts_output = self.experts(
                hidden_states=state.pop("hidden_states_experts_input"),
                topk_idx=state.topk_idx_dispatched,
                topk_weights=state.topk_weights_dispatched,
                reorder_topk_ids=state.pop("reorder_topk_ids"),
                seg_indptr=state.pop("seg_indptr"),
                masked_m=state.pop("masked_m"),
                expected_m=state.pop("expected_m"),
                num_recv_tokens_per_expert=state.pop("num_recv_tokens_per_expert"),
                forward_mode=state.forward_batch.forward_mode,
397
398
            )
        else:
399
400
401
            state.hidden_states_experts_output = self.experts(
                hidden_states=state.pop("hidden_states_mlp_input"),
                router_logits=state.pop("router_logits"),
402
403
            )

404
    def op_combine_a(self, state):
405
        if self._enable_deepep_moe and (self.ep_size > 1):
406
407
408
409
410
            self.deepep_dispatcher.combine_a(
                state.pop("hidden_states_experts_output"),
                topk_idx=state.pop("topk_idx_dispatched"),
                topk_weights=state.pop("topk_weights_dispatched"),
                forward_mode=state.forward_batch.forward_mode,
411
            )
412

413
414
415
416
417
418
419
420
421
422
423
    def op_combine_b(self, state):
        if self._enable_deepep_moe and (self.ep_size > 1):
            state.hidden_states_after_combine = self.deepep_dispatcher.combine_b()

    def op_output(self, state):
        final_hidden_states = (
            state.pop("hidden_states_after_combine")
            if self._enable_deepep_moe
            else state.pop("hidden_states_experts_output")
        )

424
425
        final_hidden_states *= self.routed_scaling_factor

426
427
        if (s := state.pop("shared_output")) is not None:
            final_hidden_states = final_hidden_states + s
Liangsheng Yin's avatar
Liangsheng Yin committed
428

429
430
        if (not self._enable_deepep_moe) and (self.tp_size > 1):
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
Liangsheng Yin's avatar
Liangsheng Yin committed
431

432
        state.hidden_states_mlp_output = final_hidden_states
433

Liangsheng Yin's avatar
Liangsheng Yin committed
434
435
436
437
438
439
440
441
442

def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
    import math

    if scale <= 1:
        return 1.0
    return 0.1 * mscale * math.log(scale) + 1.0


443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
class DeepseekV2AttentionMLA(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[Dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        quant_config: Optional[QuantizationConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
459
460
        reduce_results: bool = True,
        layer_id: int = None,
461
        prefix: str = "",
462
        alt_stream: Optional[torch.cuda.Stream] = None,
463
464
465
466
467
468
469
470
471
472
    ) -> None:
        super().__init__()
        self.layer_id = layer_id
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
Lianmin Zheng's avatar
Lianmin Zheng committed
473
474
475
        attn_tp_rank = get_attention_tp_rank()
        attn_tp_size = get_attention_tp_size()

476
        self.num_heads = num_heads
Lianmin Zheng's avatar
Lianmin Zheng committed
477
478
        assert num_heads % attn_tp_size == 0
        self.num_local_heads = num_heads // attn_tp_size
479
480
481
482
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

Lianmin Zheng's avatar
Lianmin Zheng committed
483
484
        # For tensor parallel attention
        if self.q_lora_rank is not None:
485
            self.fused_qkv_a_proj_with_mqa = ReplicatedLinear(
Ke Bao's avatar
Ke Bao committed
486
                self.hidden_size,
487
                self.q_lora_rank + self.kv_lora_rank + self.qk_rope_head_dim,
488
489
                bias=False,
                quant_config=quant_config,
490
                prefix=add_prefix("fused_qkv_a_proj_with_mqa", prefix),
491
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
492
493
494
495
            self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(
                q_lora_rank,
                self.num_heads * self.qk_head_dim,
Ke Bao's avatar
Ke Bao committed
496
497
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
498
499
500
                prefix=add_prefix("q_b_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
Ke Bao's avatar
Ke Bao committed
501
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
502
503
        else:
            self.q_proj = ColumnParallelLinear(
504
                self.hidden_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
505
                self.num_heads * self.qk_head_dim,
506
507
                bias=False,
                quant_config=quant_config,
Lianmin Zheng's avatar
Lianmin Zheng committed
508
509
510
                prefix=add_prefix("q_proj", prefix),
                tp_rank=attn_tp_rank,
                tp_size=attn_tp_size,
511
            )
512
513
514
515
516
517
518
519
            self.kv_a_proj_with_mqa = ReplicatedLinear(
                self.hidden_size,
                self.kv_lora_rank + self.qk_rope_head_dim,
                bias=False,
                quant_config=quant_config,
                prefix=add_prefix("kv_a_proj_with_mqa", prefix),
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
            prefix=add_prefix("kv_b_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
        # O projection.
        self.o_proj = RowParallelLinear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
            prefix=add_prefix("o_proj", prefix),
            tp_rank=attn_tp_rank,
            tp_size=attn_tp_size,
        )
540
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
Ke Bao's avatar
Ke Bao committed
541
542
543
544

        if rope_scaling:
            rope_scaling["rope_type"] = "deepseek_yarn"

545
        self.rotary_emb = get_rope(
546
547
548
549
550
551
552
553
554
555
556
557
558
            qk_rope_head_dim,
            rotary_dim=qk_rope_head_dim,
            max_position=max_position_embeddings,
            base=rope_theta,
            rope_scaling=rope_scaling,
            is_neox_style=False,
        )

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale
Ke Bao's avatar
Ke Bao committed
559
560
        else:
            self.rotary_emb.forward = self.rotary_emb.forward_native
561

562
        self.attn_mqa = RadixAttention(
563
564
565
566
567
568
            self.num_local_heads,
            self.kv_lora_rank + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=1,
            layer_id=layer_id,
            v_head_dim=self.kv_lora_rank,
569
            quant_config=quant_config,
570
            prefix=add_prefix("attn_mqa", prefix),
571
572
        )

573
574
575
576
577
578
579
        self.attn_mha = RadixAttention(
            self.num_local_heads,
            self.qk_nope_head_dim + self.qk_rope_head_dim,
            self.scaling,
            num_kv_heads=self.num_local_heads,
            layer_id=layer_id,
            v_head_dim=self.v_head_dim,
580
            quant_config=quant_config,
581
            prefix=add_prefix("attn_mha", prefix),
582
583
        )

584
585
        self.alt_stream = alt_stream

Ke Bao's avatar
Ke Bao committed
586
587
        self.w_kc = None
        self.w_vc = None
588
        self.w_scale = None
589

590
591
592
593
        self.w_scale_k = None
        self.w_scale_v = None
        self.use_deep_gemm_bmm = False

Lianmin Zheng's avatar
Lianmin Zheng committed
594
595
596
        self.flashinfer_mla_disable_ragged = global_server_args_dict[
            "flashinfer_mla_disable_ragged"
        ]
597
598
599
        self.disable_chunked_prefix_cache = global_server_args_dict[
            "disable_chunked_prefix_cache"
        ]
600
        self.attention_backend = global_server_args_dict["attention_backend"]
601
602
603
        self.rocm_fused_decode_mla = get_bool_env_var(
            "SGLANG_ROCM_FUSED_DECODE_MLA", "false"
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
604

605
        # TODO: Design a finer way to determine the threshold
606
607
608
        self.chunked_prefix_cache_threshold = get_int_env_var(
            "SGL_CHUNKED_PREFIX_CACHE_THRESHOLD", 8192
        )
609
610
611
612

    def dispatch_attn_forward_method(
        self, forward_batch: ForwardBatch
    ) -> AttnForwardMethod:
613
        if self.attention_backend == "flashinfer":
Lianmin Zheng's avatar
Lianmin Zheng committed
614
            # Flashinfer MLA: Do not absorb when enabling ragged prefill
615
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
616
617
618
619
                not self.flashinfer_mla_disable_ragged
                and forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
620
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
621
622
623
624
            ):
                return AttnForwardMethod.MHA
            else:
                return AttnForwardMethod.MLA
625
        elif self.attention_backend == "fa3":
626
            # Flash Attention: Use MHA with chunked KV cache when prefilling on long sequences.
627
628
            if forward_batch.extend_prefix_lens_cpu is not None:
                sum_extend_prefix_lens = sum(forward_batch.extend_prefix_lens_cpu)
629
630
631
632
633
            if (
                forward_batch.forward_mode.is_extend()
                and not self.disable_chunked_prefix_cache
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
634
635
636
637
                and (
                    sum_extend_prefix_lens >= self.chunked_prefix_cache_threshold
                    or sum_extend_prefix_lens == 0
                )
638
639
640
641
            ):
                return AttnForwardMethod.MHA_CHUNKED_KV
            else:
                return AttnForwardMethod.MLA
Lianmin Zheng's avatar
Lianmin Zheng committed
642
643
        else:
            # Triton: Use normal computation for prefill and use weight absorption for extend/decode
644
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
645
646
647
                forward_batch.forward_mode.is_extend()
                and not forward_batch.forward_mode.is_target_verify()
                and not forward_batch.forward_mode.is_draft_extend()
648
                and sum(forward_batch.extend_prefix_lens_cpu) == 0
649
650
651
652
            ):
                return AttnForwardMethod.MHA
            else:
                return AttnForwardMethod.MLA
Lianmin Zheng's avatar
Lianmin Zheng committed
653

654
655
656
657
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
658
        forward_batch: ForwardBatch,
659
        zero_allocator: BumpAllocator,
660
    ) -> torch.Tensor:
Lianmin Zheng's avatar
Lianmin Zheng committed
661
662
663
664
665
        if hidden_states.shape[0] == 0:
            assert (
                not self.o_proj.reduce_results
            ), "short-circuiting allreduce will lead to hangs"
            return hidden_states
666

667
668
669
        attn_forward_method = self.dispatch_attn_forward_method(forward_batch)

        if attn_forward_method == AttnForwardMethod.MHA:
670
            return self.forward_normal(positions, hidden_states, forward_batch)
671
672
673
674
        elif attn_forward_method == AttnForwardMethod.MHA_CHUNKED_KV:
            return self.forward_normal_chunked_kv(
                positions, hidden_states, forward_batch
            )
675
        else:
676
            if _is_hip:
677
                if (
Lianmin Zheng's avatar
Lianmin Zheng committed
678
                    self.rocm_fused_decode_mla
679
680
681
682
683
684
                    and forward_batch.forward_mode.is_decode()
                ):
                    return self.forward_absorb_fused_mla_rope(
                        positions, hidden_states, forward_batch
                    )
                else:
685
686
687
                    return self.forward_absorb(
                        positions, hidden_states, forward_batch, zero_allocator
                    )
688
            else:
689
690
691
                return self.forward_absorb(
                    positions, hidden_states, forward_batch, zero_allocator
                )
692
693
694
695
696
697
698
699

    def forward_normal(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:
        if self.q_lora_rank is not None:
700
701
702
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
703
704
705
706
707
708
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
709
710
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )
        attn_output = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

    def forward_absorb(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
743
        zero_allocator: BumpAllocator,
744
745
    ) -> torch.Tensor:
        if self.q_lora_rank is not None:
746
747
748
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
            k_nope = latent_cache[..., : self.kv_lora_rank]

            # overlap qk norm
            if self.alt_stream is not None and torch.cuda.is_current_stream_capturing():
                current_stream = torch.cuda.current_stream()
                self.alt_stream.wait_stream(current_stream)
                q = self.q_a_layernorm(q)
                with torch.cuda.stream(self.alt_stream):
                    k_nope = self.kv_a_layernorm(k_nope)
                current_stream.wait_stream(self.alt_stream)
            else:
                q = self.q_a_layernorm(q)
                k_nope = self.kv_a_layernorm(k_nope)

            k_nope = k_nope.unsqueeze(1)
764
765
766
767
768
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
769
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
770
771
772
            k_nope = latent_cache[..., : self.kv_lora_rank]
            k_nope = self.kv_a_layernorm(k_nope).unsqueeze(1)

773
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
774
        k_pe = latent_cache[..., self.kv_lora_rank :].unsqueeze(1)
775

776
777
        if self.use_deep_gemm_bmm:
            q_nope_val, q_nope_scale, masked_m, expected_m, aligned_m = (
778
                per_token_group_quant_mla_deep_gemm_masked_fp8(q_nope.transpose(0, 1))
779
780
781
782
            )
            q_nope_out = q_nope.new_empty(
                (self.num_local_heads, aligned_m, self.kv_lora_rank)
            )
783
            deep_gemm_grouped_gemm_nt_f8f8bf16_masked(
784
785
786
787
788
789
790
791
                (q_nope_val, q_nope_scale),
                (self.w_kc, self.w_scale_k),
                q_nope_out,
                masked_m,
                expected_m,
            )
            q_nope_out = q_nope_out[:, :expected_m, :]
        elif self.w_kc.dtype == torch.float8_e4m3fnuz:
792
793
794
795
796
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
797
        elif self.w_kc.dtype == torch.float8_e4m3fn:
798
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
799
                q_nope.transpose(0, 1),
800
                zero_allocator.allocate(1),
801
802
803
804
805
806
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
807
808

        q_nope_out = q_nope_out.transpose(0, 1)
809
810
        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)

xu-yfei's avatar
xu-yfei committed
811
        if self.attention_backend == "fa3" or self.attention_backend == "flashinfer":
812
            attn_output = self.attn_mqa(
Ke Bao's avatar
Ke Bao committed
813
                q_nope_out, k_nope, k_nope, forward_batch, q_rope=q_pe, k_rope=k_pe
814
815
816
            )
        else:
            q = torch.cat([q_nope_out, q_pe], dim=-1)
Ke Bao's avatar
Ke Bao committed
817
            k = torch.cat([k_nope, k_pe], dim=-1)
818
            attn_output = self.attn_mqa(q, k, k_nope, forward_batch)
819
820
        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

821
822
        if self.use_deep_gemm_bmm:
            attn_output_val, attn_output_scale, masked_m, expected_m, aligned_m = (
823
824
                per_token_group_quant_mla_deep_gemm_masked_fp8(
                    attn_output.transpose(0, 1)
825
826
827
828
829
                )
            )
            attn_bmm_output = attn_output.new_empty(
                (self.num_local_heads, aligned_m, self.v_head_dim)
            )
830
            deep_gemm_grouped_gemm_nt_f8f8bf16_masked(
831
832
833
834
835
836
837
838
                (attn_output_val, attn_output_scale),
                (self.w_vc, self.w_scale_v),
                attn_bmm_output,
                masked_m,
                expected_m,
            )
            attn_bmm_output = attn_bmm_output[:, :expected_m, :]
        elif self.w_vc.dtype == torch.float8_e4m3fnuz:
839
840
841
842
843
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
844
        elif self.w_vc.dtype == torch.float8_e4m3fn:
845
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
Lianmin Zheng's avatar
Lianmin Zheng committed
846
                attn_output.transpose(0, 1),
847
                zero_allocator.allocate(1),
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
        output, _ = self.o_proj(attn_output)

        return output

    def forward_absorb_fused_mla_rope(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
868
        zero_allocator: BumpAllocator,
869
870
871
872
873
874
875
876
877
    ) -> torch.Tensor:
        enable_rope_fusion = (
            os.getenv("SGLANG_FUSED_MLA_ENABLE_ROPE_FUSION", "1") == "1"
        )
        q_len = hidden_states.shape[0]
        q_input = hidden_states.new_empty(
            q_len, self.num_local_heads, self.kv_lora_rank + self.qk_rope_head_dim
        )
        if self.q_lora_rank is not None:
878
879
880
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
881
882
883
884
885
886
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
887
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
888
889
890
891
892
893
894
895
896
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)

        if self.w_kc.dtype == torch.float8_e4m3fnuz:
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            q_nope_out = torch.bmm(
                q_nope.to(torch.bfloat16).transpose(0, 1),
                self.w_kc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_kc.dtype == torch.float8_e4m3fn:
897
            q_nope_val, q_nope_scale = per_tensor_quant_mla_fp8(
898
899
900
                q_nope.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
            )
            q_nope_out = bmm_fp8(
                q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
            )
        else:
            q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
        q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)
        v_input = latent_cache[..., : self.kv_lora_rank]
        v_input = self.kv_a_layernorm(v_input.contiguous()).unsqueeze(1)
        k_input = latent_cache.unsqueeze(1)
        k_input[..., : self.kv_lora_rank] = v_input

        if not enable_rope_fusion:
            k_pe = k_input[..., self.kv_lora_rank :]
            q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
            q_input[..., self.kv_lora_rank :] = q_pe
            k_input[..., self.kv_lora_rank :] = k_pe
            k_pe_output = None
        else:
            k_pe_output = torch.empty_like(k_input[..., self.kv_lora_rank :])

        q_input[..., self.kv_lora_rank :] = q_pe

        # attn_output = self.attn_mqa(q_input, k_input, v_input, forward_batch)
        # Use Fused ROPE with use_rope=OFF.
        attn_output = torch.empty(
            (q_len, self.num_local_heads, self.kv_lora_rank),
            dtype=q.dtype,
            device=q.device,
        )
        attn_logits, _, kv_indptr, kv_indices, _, _, _ = (
            forward_batch.attn_backend.forward_metadata
        )
        cos_sin_cache = self.rotary_emb.cos_sin_cache
        num_kv_split = forward_batch.attn_backend.num_kv_splits
        sm_scale = self.attn_mqa.scaling
        if attn_logits is None:
            attn_logits = torch.empty(
                (
                    forward_batch.batch_size,
                    self.num_local_heads,
                    num_kv_split,
                    self.kv_lora_rank + 1,
                ),
                dtype=torch.float32,
                device=q.device,
            )

        # save current latent cache.
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mqa, forward_batch.out_cache_loc, k_input, None
        )
        key_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
            self.attn_mqa.layer_id
        )
        val_cache_buf = key_cache_buf[..., : self.kv_lora_rank]

        decode_attention_fwd_grouped_rope(
            q_input,
            key_cache_buf,
            val_cache_buf,
            attn_output,
            kv_indptr,
            kv_indices,
            k_pe_output,
            self.kv_lora_rank,
            self.rotary_emb.rotary_dim,
            cos_sin_cache,
            positions,
            attn_logits,
            num_kv_split,
            sm_scale,
            logit_cap=self.attn_mqa.logit_cap,
            use_rope=enable_rope_fusion,
            is_neox_style=self.rotary_emb.is_neox_style,
        )

        if enable_rope_fusion:
            k_input[..., self.kv_lora_rank :] = k_pe_output
            forward_batch.token_to_kv_pool.set_kv_buffer(
                self.attn_mqa, forward_batch.out_cache_loc, k_input, None
            )

        attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)

986
987
988
989
990
991
992
        if self.w_vc.dtype == torch.float8_e4m3fnuz:
            # TODO(kernel): add bmm_fp8 for torch.float8_e4m3fnuz
            attn_bmm_output = torch.bmm(
                attn_output.to(torch.bfloat16).transpose(0, 1),
                self.w_vc.to(torch.bfloat16) * self.w_scale,
            )
        elif self.w_vc.dtype == torch.float8_e4m3fn:
993
            attn_output_val, attn_output_scale = per_tensor_quant_mla_fp8(
994
995
996
                attn_output.transpose(0, 1),
                zero_allocator.allocate(1),
                dtype=torch.float8_e4m3fn,
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
            )
            attn_bmm_output = bmm_fp8(
                attn_output_val,
                self.w_vc,
                attn_output_scale,
                self.w_scale,
                torch.bfloat16,
            )
        else:
            attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
        attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
1008
1009
1010
1011
        output, _ = self.o_proj(attn_output)

        return output

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
    def _chunked_prefix_attn_mha(
        self,
        q: torch.Tensor,
        accum_output: torch.Tensor,
        accum_lse: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:

        assert forward_batch.num_prefix_chunks is not None
        for i in range(forward_batch.num_prefix_chunks):
            forward_batch.set_prefix_chunk_idx(i)

            # Fetch latent cache from memory pool with precomputed chunked kv indices
            latent_cache_buf = forward_batch.token_to_kv_pool.get_key_buffer(
                self.attn_mha.layer_id
            )
            latent_cache = latent_cache_buf[
                forward_batch.prefix_chunk_kv_indices[i]
            ].contiguous()

            kv_a_normed, k_pe = latent_cache.split(
                [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
            )
            kv_a_normed = kv_a_normed.squeeze(1).contiguous()
            kv = self.kv_b_proj(kv_a_normed)[0]
            kv = kv.view(
                -1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim
            )
            v = kv[..., self.qk_nope_head_dim :]
            k_nope = kv[..., : self.qk_nope_head_dim]

            k = torch.empty(
                (
                    k_nope.shape[0],
                    self.num_local_heads,
                    self.qk_nope_head_dim + self.qk_rope_head_dim,
                ),
                dtype=v.dtype,
                device=v.device,
            )
            k[..., : self.qk_nope_head_dim] = k_nope
            k[..., self.qk_nope_head_dim :] = k_pe

            output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
            lse = torch.transpose(lse, 0, 1).contiguous()
            tmp_output = torch.empty_like(accum_output)
            tmp_lse = torch.empty_like(accum_lse)
            merge_state_v2(output, lse, accum_output, accum_lse, tmp_output, tmp_lse)
            accum_output, accum_lse = tmp_output, tmp_lse

        return accum_output

    def forward_normal_chunked_kv(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:
        # In normal mha, the k and v tensors will become overly large when the prefix length is long.
        # To avoid this, we split the kv cache into chunks and process them one after another.
        # Since mha is compute friendly, the for loop induced here will not introduce significant overhead.
        # The top comments in https://github.com/vllm-project/vllm/blob/main/vllm/v1/attention/backends/mla/common.py
        # will be helpful for understanding the purpose of this function.

        # First do normal mha forward to get output for extended part
        if self.q_lora_rank is not None:
1078
1079
1080
            q, latent_cache = self.fused_qkv_a_proj_with_mqa(hidden_states)[0].split(
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim], dim=-1
            )
1081
1082
1083
1084
1085
1086
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(
                -1, self.num_local_heads, self.qk_head_dim
            )
1087
            latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
        _, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a.contiguous())
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
        k_nope = kv[..., : self.qk_nope_head_dim]
        v = kv[..., self.qk_nope_head_dim :]
        k_pe = latent_cache[:, :, self.kv_lora_rank :]

        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
        q[..., self.qk_nope_head_dim :] = q_pe
        k = torch.empty_like(q)
        k[..., : self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim :] = k_pe

        latent_cache[:, :, : self.kv_lora_rank] = kv_a.unsqueeze(1)
        latent_cache[:, :, self.kv_lora_rank :] = k_pe

        # Save latent cache
        forward_batch.token_to_kv_pool.set_kv_buffer(
            self.attn_mha, forward_batch.out_cache_loc, latent_cache, None
        )

        # Do mha for extended part without prefix
        forward_batch.set_attn_attend_prefix_cache(False)
        attn_output, lse = self.attn_mha(q, k, v, forward_batch, save_kv_cache=False)
        lse = torch.transpose(lse, 0, 1).contiguous()

        # Do mha attention with chunked prefix cache if there are any sequence with prefix
        if any(forward_batch.extend_prefix_lens_cpu):
            # Only initialize the info once
            if forward_batch.num_prefix_chunks is None:
                forward_batch.prepare_chunked_prefix_cache_info(q.device)

            forward_batch.set_attn_attend_prefix_cache(True)
            attn_output = self._chunked_prefix_attn_mha(
                q=q,
                accum_output=attn_output,
                accum_lse=lse,
                forward_batch=forward_batch,
            )

        attn_output = attn_output.reshape(-1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

1135

Liangsheng Yin's avatar
Liangsheng Yin committed
1136
1137
1138
1139
1140
1141
1142
class DeepseekV2DecoderLayer(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        layer_id: int,
        quant_config: Optional[QuantizationConfig] = None,
1143
        is_nextn: bool = False,
1144
        prefix: str = "",
1145
        alt_stream: Optional[torch.cuda.Stream] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1146
1147
1148
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
1149
        self.config = config
Liangsheng Yin's avatar
Liangsheng Yin committed
1150
1151
1152
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
Lianmin Zheng's avatar
Lianmin Zheng committed
1153
1154
        self.enable_dp_attention = global_server_args_dict["enable_dp_attention"]
        self.layer_id = layer_id
Baizhou Zhang's avatar
Baizhou Zhang committed
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
        self.self_attn = DeepseekV2AttentionMLA(
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            qk_nope_head_dim=config.qk_nope_head_dim,
            qk_rope_head_dim=config.qk_rope_head_dim,
            v_head_dim=config.v_head_dim,
            q_lora_rank=(
                config.q_lora_rank if hasattr(config, "q_lora_rank") else None
            ),
            kv_lora_rank=config.kv_lora_rank,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            quant_config=quant_config,
            layer_id=layer_id,
            reduce_results=False,
            prefix=add_prefix("self_attn", prefix),
1173
            alt_stream=alt_stream,
Baizhou Zhang's avatar
Baizhou Zhang committed
1174
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1175

1176
1177
1178
1179
1180
1181
1182
1183
        self.is_layer_sparse = self._is_layer_sparse(layer_id, is_nextn=is_nextn)
        is_previous_layer_sparse = self._is_layer_sparse(layer_id - 1, is_nextn=False)

        self.layer_scatter_modes = LayerScatterModes.init_new(
            layer_id=layer_id,
            num_layers=config.num_hidden_layers,
            is_layer_sparse=self.is_layer_sparse,
            is_previous_layer_sparse=is_previous_layer_sparse,
1184
1185
        )

1186
        if self.is_layer_sparse:
1187
1188
1189
1190
            self.mlp = DeepseekV2MoE(
                config=config,
                quant_config=quant_config,
                prefix=add_prefix("mlp", prefix),
fzyzcjy's avatar
fzyzcjy committed
1191
                layer_id=self.layer_id,
1192
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
1193
        else:
1194
            if enable_moe_dense_fully_dp():
1195
1196
1197
                mlp_tp_rank, mlp_tp_size = 0, 1
            else:
                mlp_tp_rank, mlp_tp_size = None, None
Liangsheng Yin's avatar
Liangsheng Yin committed
1198
1199
1200
1201
1202
            self.mlp = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
1203
                prefix=add_prefix("mlp", prefix),
1204
1205
                tp_rank=mlp_tp_rank,
                tp_size=mlp_tp_size,
Liangsheng Yin's avatar
Liangsheng Yin committed
1206
            )
1207

Liangsheng Yin's avatar
Liangsheng Yin committed
1208
1209
1210
1211
1212
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

1213
1214
1215
1216
        self.layer_communicator = LayerCommunicator(
            layer_scatter_modes=self.layer_scatter_modes,
            input_layernorm=self.input_layernorm,
            post_attention_layernorm=self.post_attention_layernorm,
1217
        )
1218
1219
1220
1221
1222
1223

    def _is_layer_sparse(self, layer_id: int, is_nextn: bool) -> bool:
        return is_nextn or (
            self.config.n_routed_experts is not None
            and layer_id >= self.config.first_k_dense_replace
            and layer_id % self.config.moe_layer_freq == 0
1224
1225
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
1226
1227
1228
1229
    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
1230
        forward_batch: ForwardBatch,
Liangsheng Yin's avatar
Liangsheng Yin committed
1231
        residual: Optional[torch.Tensor],
1232
        zero_allocator: BumpAllocator,
Liangsheng Yin's avatar
Liangsheng Yin committed
1233
    ) -> torch.Tensor:
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
        return execute_operations(
            inputs=dict(
                positions=positions,
                hidden_states=hidden_states,
                forward_batch=forward_batch,
                residual=residual,
                zero_allocator=zero_allocator,
            ),
            operations=compute_layer_operations(self),
        )

    def op_comm_prepare_attn(
        self,
        state,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        forward_batch: ForwardBatch,
        residual: Optional[torch.Tensor],
        zero_allocator: BumpAllocator,
    ):
        state.hidden_states_after_comm_pre_attn, state.residual_after_input_ln = (
fzyzcjy's avatar
fzyzcjy committed
1255
            self.layer_communicator.prepare_attn(hidden_states, residual, forward_batch)
1256
1257
1258
1259
1260
1261
1262
        )
        state.update(
            dict(
                forward_batch=forward_batch,
                positions=positions,
                zero_allocator=zero_allocator,
            )
1263
        )
1264

1265
1266
1267
1268
1269
1270
    def op_attn(self, state):
        state.hidden_states_after_attn = self.self_attn(
            positions=state.positions,
            hidden_states=state.pop("hidden_states_after_comm_pre_attn"),
            forward_batch=state.forward_batch,
            zero_allocator=state.zero_allocator,
1271
1272
        )

1273
1274
1275
1276
1277
1278
1279
    def op_comm_prepare_mlp(self, state):
        state.hidden_states_mlp_input, state.residual_after_comm_pre_mlp = (
            self.layer_communicator.prepare_mlp(
                state.pop("hidden_states_after_attn"),
                state.pop("residual_after_input_ln"),
                state.forward_batch,
            )
1280
        )
1281

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
    def op_mlp(self, state):
        hidden_states = state.pop("hidden_states_mlp_input")
        if not (
            enable_moe_dense_fully_dp()
            and (not self.is_layer_sparse)
            and hidden_states.shape[0] == 0
        ):
            state.hidden_states_mlp_output = self.mlp(
                hidden_states, state.forward_batch.forward_mode
            )
        else:
            state.hidden_states_mlp_output = hidden_states
1294

1295
    def op_comm_postprocess_layer(self, state):
1296
        hidden_states, residual = self.layer_communicator.postprocess_layer(
1297
1298
1299
            state.pop("hidden_states_mlp_output"),
            state.pop("residual_after_comm_pre_mlp"),
            state.forward_batch,
1300
        )
1301

1302
        state.clear(expect_keys={"positions", "forward_batch", "zero_allocator"})
1303
1304
        return hidden_states, residual

Liangsheng Yin's avatar
Liangsheng Yin committed
1305
1306
1307
1308
1309
1310
1311
1312

class DeepseekV2Model(nn.Module):
    fall_back_to_pt_during_load = False

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1313
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1314
1315
1316
1317
1318
1319
1320
1321
    ) -> None:
        super().__init__()
        self.padding_id = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
Ke Bao's avatar
Ke Bao committed
1322
            enable_tp=not global_server_args_dict["enable_dp_attention"],
Liangsheng Yin's avatar
Liangsheng Yin committed
1323
        )
1324
1325
        # TODO(haishaw): multi-stream performance on ROCm
        self.alt_stream = None if _is_hip else torch.cuda.Stream()
Liangsheng Yin's avatar
Liangsheng Yin committed
1326
1327
1328
1329
1330
1331
        self.layers = nn.ModuleList(
            [
                DeepseekV2DecoderLayer(
                    config,
                    layer_id,
                    quant_config=quant_config,
1332
                    prefix=add_prefix(f"layers.{layer_id}", prefix),
1333
                    alt_stream=self.alt_stream,
Liangsheng Yin's avatar
Liangsheng Yin committed
1334
1335
1336
1337
1338
1339
                )
                for layer_id in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

1340
        self.dp_size = get_local_attention_dp_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1341

1342
1343
1344
    def get_input_embeddings(self) -> torch.Tensor:
        return self.embed_tokens

Liangsheng Yin's avatar
Liangsheng Yin committed
1345
1346
1347
1348
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
1349
        forward_batch: ForwardBatch,
1350
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1351
    ) -> torch.Tensor:
1352
1353
1354
1355
        zero_allocator = BumpAllocator(
            # TODO for two-batch-overlap, we need a larger buffer size
            buffer_size=len(self.layers) * 2,
            dtype=torch.float32,
1356
1357
1358
            device=(
                input_embeds.device if input_embeds is not None else input_ids.device
            ),
1359
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1360

1361
1362
1363
1364
1365
        if input_embeds is None:
            hidden_states = self.embed_tokens(input_ids)
        else:
            hidden_states = input_embeds

Liangsheng Yin's avatar
Liangsheng Yin committed
1366
1367
        residual = None
        for i in range(len(self.layers)):
1368
1369
1370
1371
1372
            with get_global_expert_distribution_recorder().with_current_layer(i):
                layer = self.layers[i]
                hidden_states, residual = layer(
                    positions, hidden_states, forward_batch, residual, zero_allocator
                )
Ke Bao's avatar
Ke Bao committed
1373
        if not forward_batch.forward_mode.is_idle():
1374
1375
1376
1377
            if residual is None:
                hidden_states = self.norm(hidden_states)
            else:
                hidden_states, _ = self.norm(hidden_states, residual)
Liangsheng Yin's avatar
Liangsheng Yin committed
1378
1379
1380
1381
1382
1383
1384
1385
1386
        return hidden_states


class DeepseekV2ForCausalLM(nn.Module):

    def __init__(
        self,
        config: PretrainedConfig,
        quant_config: Optional[QuantizationConfig] = None,
1387
        prefix: str = "",
Liangsheng Yin's avatar
Liangsheng Yin committed
1388
1389
1390
    ) -> None:
        super().__init__()
        self.config = config
1391
        self.tp_size = get_tensor_model_parallel_world_size()
Liangsheng Yin's avatar
Liangsheng Yin committed
1392
        self.quant_config = quant_config
1393
1394
1395
1396
1397
1398
1399
1400
1401
        self.determine_n_share_experts_fusion()
        self.model = DeepseekV2Model(
            config, quant_config, prefix=add_prefix("model", prefix)
        )
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=add_prefix("lm_head", prefix),
1402
            use_attn_tp_group=global_server_args_dict["enable_dp_lm_head"],
1403
1404
        )
        self.logits_processor = LogitsProcessor(config)
1405
        self.dp_size = get_local_attention_dp_size()
1406
1407
1408
1409

    def determine_n_share_experts_fusion(
        self, architecture: str = "DeepseekV3ForCausalLM"
    ):
1410
        self.n_share_experts_fusion = global_server_args_dict["n_share_experts_fusion"]
1411
1412
1413
        if self.n_share_experts_fusion > 0:
            # Only Deepseek V3/R1 can use shared experts fusion optimization now.
            if (
1414
1415
                not _is_cuda
                or self.config.architectures[0] != architecture
1416
1417
1418
1419
                or self.config.n_routed_experts != 256
            ):
                self.n_share_experts_fusion = 0
                global_server_args_dict["n_share_experts_fusion"] = 0
1420
1421
                log_info_on_rank0(
                    logger,
1422
                    "Only Deepseek V3/R1 on NV-platform can use shared experts fusion optimization. Shared experts fusion optimization is disabled.",
1423
1424
1425
1426
                )
            else:
                assert (
                    self.n_share_experts_fusion == self.tp_size
1427
                ), f"Shared experts fusion optimization is enabled in DeepSeek V3/R1, set it to {self.tp_size} can get best optimized performance."
1428
1429
        elif self.n_share_experts_fusion == 0:
            if (
1430
1431
                _is_cuda
                and torch.cuda.get_device_capability("cuda") >= (9, 0)
1432
                and self.config.architectures[0] == architecture
1433
1434
1435
1436
1437
                and self.config.n_routed_experts == 256
                and (not global_server_args_dict["enable_deepep_moe"])
            ):
                self.n_share_experts_fusion = self.tp_size
                global_server_args_dict["n_share_experts_fusion"] = self.tp_size
1438
1439
1440
                log_info_on_rank0(
                    logger,
                    "Deepseek V3/R1 with fp8 can use shared experts fusion optimization when SM version >=90. Shared experts fusion optimization is enabled.",
1441
                )
1442

Mick's avatar
Mick committed
1443
1444
1445
    def get_input_embeddings(self) -> nn.Embedding:
        return self.model.embed_tokens

1446
    @torch.no_grad()
Liangsheng Yin's avatar
Liangsheng Yin committed
1447
1448
1449
1450
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
1451
        forward_batch: ForwardBatch,
1452
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
1453
    ) -> torch.Tensor:
1454
1455

        hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
Lianmin Zheng's avatar
Lianmin Zheng committed
1456

1457
1458
1459
        return self.logits_processor(
            input_ids, hidden_states, self.lm_head, forward_batch
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
1460

1461
    def post_load_weights(self, is_nextn=False):
inkcherry's avatar
inkcherry committed
1462
1463

        # Perform post-processing after loading weights
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
        layer_ids = (
            range(self.config.num_hidden_layers)
            if not is_nextn
            else [self.config.num_hidden_layers]
        )
        for layer_id in layer_ids:
            self_attn = (
                self.model.layers[layer_id].self_attn
                if not is_nextn
                else self.model.decoder.self_attn
            )
Baizhou Zhang's avatar
Baizhou Zhang committed
1475
1476
1477
1478
1479
1480
1481
1482
            if hasattr(self_attn.kv_b_proj, "qweight"):
                # AWQ compatible
                if _is_cuda:
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                    ).T
inkcherry's avatar
inkcherry committed
1483
                else:
Baizhou Zhang's avatar
Baizhou Zhang committed
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
                    w = awq_dequantize(
                        self_attn.kv_b_proj.qweight,
                        self_attn.kv_b_proj.scales,
                        self_attn.kv_b_proj.qzeros,
                        0,
                        0,
                        0,
                    ).T
            else:
                w = self_attn.kv_b_proj.weight
            # NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
            # This may affect the accuracy of fp8 model.
1496
1497
1498
1499
            # Fix deepseek v3 blockwise bmm by using deep_gemm
            use_deep_gemm_bmm = False
            model_dtype = torch.get_default_dtype()

Baizhou Zhang's avatar
Baizhou Zhang committed
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
            if w.dtype in (
                torch.float8_e4m3fn,
                torch.float8_e4m3fnuz,
            ):
                if hasattr(self.quant_config, "weight_block_size"):
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                        if _is_hip:
                            weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                                weight=w,
                                weight_scale=self_attn.kv_b_proj.weight_scale_inv,
                                input_scale=None,
inkcherry's avatar
inkcherry committed
1513
                            )
Baizhou Zhang's avatar
Baizhou Zhang committed
1514
                        else:
inkcherry's avatar
inkcherry committed
1515
1516
                            weight = w
                            weight_scale = self_attn.kv_b_proj.weight_scale_inv
Baizhou Zhang's avatar
Baizhou Zhang committed
1517

1518
1519
1520
1521
1522
1523
                        if (
                            _is_cuda
                            and weight_block_size[0] == 128
                            and weight_block_size[1] == 128
                            and model_dtype == torch.bfloat16
                        ):
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
                            if _ENABLE_JIT_DEEPGEMM and get_bool_env_var(
                                "SGL_USE_DEEPGEMM_BMM", "false"
                            ):
                                block_scale = weight_scale
                                use_deep_gemm_bmm = True
                            else:
                                w = block_quant_dequant(
                                    weight,
                                    weight_scale,
                                    weight_block_size,
                                    model_dtype,
                                )
1536
1537
1538
1539
1540
                        else:
                            w, scale = block_quant_to_tensor_quant(
                                weight, weight_scale, weight_block_size
                            )
                            self_attn.w_scale = scale
Baizhou Zhang's avatar
Baizhou Zhang committed
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
                else:
                    weight = w
                    weight_scale = self_attn.kv_b_proj.weight_scale
                    w, scale = channel_quant_to_tensor_quant(weight, weight_scale)
                    self_attn.w_scale = scale

            if w.dtype == torch.int8:
                if hasattr(self.quant_config, "weight_block_size"):
                    # block-wise int8 need it
                    weight_block_size = self.quant_config.weight_block_size
                    if weight_block_size is not None:
                        assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
                        weight = w
                        weight_scale = self_attn.kv_b_proj.weight_scale_inv
                        w = int8_block_dequant(
                            weight, weight_scale, weight_block_size
                        ).to(torch.bfloat16)
                else:
                    # channel-wise int8 need it
                    w = w.to(torch.bfloat16) * self_attn.kv_b_proj.weight_scale.to(
                        torch.bfloat16
                    )
1563

Baizhou Zhang's avatar
Baizhou Zhang committed
1564
1565
1566
            w_kc, w_vc = w.unflatten(
                0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
            ).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
            if not use_deep_gemm_bmm:
                self_attn.w_kc = w_kc.transpose(1, 2).contiguous().transpose(1, 2)
                self_attn.w_vc = w_vc.contiguous().transpose(1, 2)
                if (
                    hasattr(self_attn.kv_b_proj, "weight_scale")
                    and self_attn.w_scale is None
                ):
                    self_attn.w_scale = self_attn.kv_b_proj.weight_scale
                    if _is_hip:
                        self_attn.w_scale *= 2.0
            else:
                num_tiles_k = self_attn.qk_nope_head_dim // weight_block_size[1]
                num_tiles_n = self_attn.v_head_dim // weight_block_size[0]
                ws_kc, ws_vc = block_scale.unflatten(
                    0, (-1, (num_tiles_k + num_tiles_n))
                ).split([num_tiles_k, num_tiles_n], dim=1)
                self_attn.w_scale_k = ws_kc.transpose(1, 2).contiguous()
                self_attn.w_scale_v = ws_vc.contiguous()
                self_attn.w_kc = w_kc.transpose(1, 2).contiguous()
                self_attn.w_vc = w_vc.contiguous()
                self_attn.use_deep_gemm_bmm = True
inkcherry's avatar
inkcherry committed
1588

1589
1590
1591
1592
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]], is_nextn=False):
        if is_nextn:
            if hasattr(self.config, "num_nextn_predict_layers"):
                num_nextn_layers = self.config.num_nextn_predict_layers
1593
                assert num_nextn_layers == 1, "Only 1 nextn layer is supported"
1594
1595
1596
1597
1598
1599
1600
1601
1602
                # compatible with old design
                nextn_layer_id = (
                    0
                    if self.config.num_hidden_layers == 1
                    else self.config.num_hidden_layers
                )
            else:
                raise ValueError("num_nextn_predict_layers is not in the config")

Liangsheng Yin's avatar
Liangsheng Yin committed
1603
1604
1605
1606
1607
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
1608
        if self.n_share_experts_fusion > 0:
1609
1610
            weights_list = list(weights)
            weights_dict = dict(weights_list)
1611
            if self.quant_config is None or self.quant_config.get_name() == "w8a8_int8":
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
                suffix_list = [
                    "down_proj.weight",
                    "down_proj.weight_scale",
                    "gate_proj.weight",
                    "gate_proj.weight_scale",
                    "up_proj.weight",
                    "up_proj.weight_scale",
                ]
            else:
                suffix_list = [
                    "down_proj.weight",
                    "down_proj.weight_scale_inv",
                    "gate_proj.weight",
                    "gate_proj.weight_scale_inv",
                    "up_proj.weight",
                    "up_proj.weight_scale_inv",
                ]
1629
            names_to_remove = []
1630
1631

            moe_layers = (
1632
1633
1634
1635
                range(
                    self.config.first_k_dense_replace,
                    self.config.num_hidden_layers,
                    self.config.moe_layer_freq,
1636
1637
1638
1639
1640
1641
1642
                )
                if not is_nextn
                else [nextn_layer_id]
            )

            for moe_layer in tqdm(
                moe_layers,
1643
1644
1645
                desc=f"Cloning {self.n_share_experts_fusion} "
                "replicas of the shared expert into MoE",
            ):
1646
1647
1648
1649
1650
                for suffix in suffix_list:
                    shared_expert_weight_name = (
                        f"model.layers.{moe_layer}.mlp.shared_experts.{suffix}"
                    )
                    for num_repeat in range(self.n_share_experts_fusion):
1651
1652
1653
1654
1655
1656
                        weights_list.append(
                            (
                                f"model.layers.{moe_layer}."
                                f"mlp.experts."
                                f"{self.config.n_routed_experts + num_repeat}"
                                f".{suffix}",
1657
                                weights_dict[shared_expert_weight_name],
1658
1659
                            )
                        )
1660
                    names_to_remove += [shared_expert_weight_name]
1661
            weights = [w for w in weights_list if w[0] not in names_to_remove]
Liangsheng Yin's avatar
Liangsheng Yin committed
1662
1663
1664

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
1665
        expert_params_mapping = get_moe_impl_class().make_expert_params_mapping(
Liangsheng Yin's avatar
Liangsheng Yin committed
1666
1667
1668
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
1669
            num_experts=self.config.n_routed_experts + self.n_share_experts_fusion,
Liangsheng Yin's avatar
Liangsheng Yin committed
1670
1671
        )

1672
1673
1674
1675
1676
1677
        # Fuse q_a_proj and kv_a_proj_with_mqa along output dimension when q_lora_rank is not None
        fuse_qkv_a_proj = hasattr(self.config, "q_lora_rank") and (
            self.config.q_lora_rank is not None
        )
        cached_a_proj = {} if fuse_qkv_a_proj else None

1678
1679
1680
1681
1682
1683
1684
1685
1686
        if is_nextn:
            nextn_layer_prefix = f"model.layers.{nextn_layer_id}"
            nextn_spec_weight_names = [
                "shared_head.norm",
                "eh_proj",
                "enorm",
                "hnorm",
            ]

Liangsheng Yin's avatar
Liangsheng Yin committed
1687
1688
        params_dict = dict(self.named_parameters())
        for name, loaded_weight in weights:
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
            if not is_nextn:
                if hasattr(self.config, "num_nextn_predict_layers"):
                    num_nextn_layers = self.config.num_nextn_predict_layers
                    if num_nextn_layers > 0 and name.startswith("model.layers"):
                        name_list = name.split(".")
                        if (
                            len(name_list) >= 3
                            and int(name_list[2]) >= self.config.num_hidden_layers
                        ):
                            continue
            else:
                if not name.startswith(nextn_layer_prefix):
                    continue

                # Use shared head and embed weights from target model
                if "shared_head.head" in name or "embed_tokens" in name:
                    continue

                is_decoder = True
                # For nextn specific weights
                for weight_name in nextn_spec_weight_names:
                    if weight_name in name:
                        name = name.replace(nextn_layer_prefix, "model")
                        is_decoder = False
                        break
                # For decoder layer weights
                if is_decoder:
                    name = name.replace(nextn_layer_prefix, "model.decoder")

Liangsheng Yin's avatar
Liangsheng Yin committed
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
            if "rotary_emb.inv_freq" in name:
                continue
            for param_name, weight_name, shard_id in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if ("mlp.experts." in name) and name not in params_dict:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(
                        param,
                        loaded_weight,
1751
                        name,
Liangsheng Yin's avatar
Liangsheng Yin committed
1752
1753
1754
1755
1756
1757
1758
1759
1760
                        shard_id=shard_id,
                        expert_id=expert_id,
                    )
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue

1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
                    if fuse_qkv_a_proj and (
                        "q_a_proj" in name or "kv_a_proj_with_mqa" in name
                    ):
                        cached_a_proj[name] = loaded_weight
                        q_a_proj_name = (
                            name
                            if "q_a_proj" in name
                            else name.replace("kv_a_proj_with_mqa", "q_a_proj")
                        )
                        kv_a_proj_name = (
                            name
                            if "kv_a_proj_with_mqa" in name
                            else name.replace("q_a_proj", "kv_a_proj_with_mqa")
                        )

                        # When both q_a_proj and kv_a_proj_with_mqa has been cached, load the fused weight to parameter
                        if (
                            q_a_proj_name in cached_a_proj
                            and kv_a_proj_name in cached_a_proj
                        ):
                            q_a_proj_weight = cached_a_proj[q_a_proj_name]
                            kv_a_proj_weight = cached_a_proj[kv_a_proj_name]
                            fused_weight = torch.cat(
                                [q_a_proj_weight, kv_a_proj_weight], dim=0
                            )

                            param_name = name.replace(
                                "q_a_proj", "fused_qkv_a_proj_with_mqa"
                            )
                            param = params_dict[param_name]

                            weight_loader = getattr(
                                param, "weight_loader", default_weight_loader
                            )
                            weight_loader(param, fused_weight)
                            cached_a_proj.pop(q_a_proj_name)
                            cached_a_proj.pop(kv_a_proj_name)
                    else:
                        param = params_dict[name]
                        weight_loader = getattr(
                            param, "weight_loader", default_weight_loader
                        )
                        weight_loader(param, loaded_weight)
Liangsheng Yin's avatar
Liangsheng Yin committed
1804

1805
        self.post_load_weights(is_nextn=is_nextn)
Ke Bao's avatar
Ke Bao committed
1806

1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
    def get_embed_and_head(self):
        return self.model.embed_tokens.weight, self.lm_head.weight

    def set_embed_and_head(self, embed, head):
        del self.model.embed_tokens.weight
        del self.lm_head.weight
        self.model.embed_tokens.weight = embed
        self.lm_head.weight = head
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

1818
1819
1820
1821
1822
1823
1824
1825
    @classmethod
    def get_model_config_for_expert_location(cls, config):
        return ModelConfigForExpertLocation(
            num_layers=config.num_hidden_layers,
            num_logical_experts=config.n_routed_experts,
            num_groups=config.n_group,
        )

Liangsheng Yin's avatar
Liangsheng Yin committed
1826

HandH1998's avatar
HandH1998 committed
1827
1828
1829
1830
1831
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
    pass


EntryClass = [DeepseekV2ForCausalLM, DeepseekV3ForCausalLM]