README.md 23.3 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
<div align="center">
Kushal Agrawal's avatar
Kushal Agrawal committed
2
<img src="https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png" alt="logo" width="400" margin="10px"></img>
Lianmin Zheng's avatar
Lianmin Zheng committed
3

Yineng Zhang's avatar
Yineng Zhang committed
4
5
6
7
8
9
[![PyPI](https://img.shields.io/pypi/v/sglang)](https://pypi.org/project/sglang)
![PyPI - Downloads](https://img.shields.io/pypi/dm/sglang)
[![license](https://img.shields.io/github/license/sgl-project/sglang.svg)](https://github.com/sgl-project/sglang/tree/main/LICENSE)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)
[![open issues](https://img.shields.io/github/issues-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)

Yineng Zhang's avatar
Yineng Zhang committed
10
11
</div>

Lianmin Zheng's avatar
Lianmin Zheng committed
12
13
--------------------------------------------------------------------------------

Lianmin Zheng's avatar
Lianmin Zheng committed
14
| [**Blog**](https://lmsys.org/blog/2024-07-25-sglang-llama3/) | [**Paper**](https://arxiv.org/abs/2312.07104) | [**Slides**](https://github.com/sgl-project/sgl-learning-materials/blob/main/slides/amd_dev_day_v2.pptx) | [**Join Slack**](https://join.slack.com/t/sgl-fru7574/shared_invite/zt-2ngly9muu-t37XiH87qvD~6rVBTkTEHw) | [**Join Bi-Weekly Development Meeting (Oct. 19)**](https://calendar.app.google/GYW7S8QGoanCuaxW6) |
Lianmin Zheng's avatar
Lianmin Zheng committed
15

Ying Sheng's avatar
Ying Sheng committed
16
17
## Upcoming Events
- [Oct. 16, 2024] Online meetup for efficient LLM deployment and serving, co-hosted by SGLang, FlashInfer, and MLC LLM! Fill out the [Google form](https://forms.gle/B3YeedLxmrrhL1NM8) to receive the invite link.
18

Lianmin Zheng's avatar
Lianmin Zheng committed
19
## News
Yineng Zhang's avatar
Yineng Zhang committed
20
- [2024/09] 🔥 SGLang v0.3 Release: 7x Faster DeepSeek MLA, 1.5x Faster torch.compile, Multi-Image/Video LLaVA-OneVision ([blog](https://lmsys.org/blog/2024-09-04-sglang-v0-3/)).
Ying Sheng's avatar
Ying Sheng committed
21
22
- [2024/07] 🔥 Faster Llama3 Serving with SGLang Runtime (vs. TensorRT-LLM, vLLM) ([blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/)).
- [2024/02] SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
Ying Sheng's avatar
Ying Sheng committed
23

Ying Sheng's avatar
Ying Sheng committed
24
25
26
<details>
<summary>More</summary>

27
- [2024/04] SGLang is used by the official **LLaVA-NeXT (video)** release ([blog](https://llava-vl.github.io/blog/2024-04-30-llava-next-video/)).
Ying Sheng's avatar
Ying Sheng committed
28
- [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
Ying Sheng's avatar
Ying Sheng committed
29
30
31
32
- [2024/01] SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).

</details>

Ying Sheng's avatar
Ying Sheng committed
33
34
35
36
37
38
39
## About
SGLang is a fast serving framework for large language models and vision language models.
It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
The core features include:

- **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, continuous batching, token attention (paged attention), tensor parallelism, FlashInfer kernels, chunked prefill, and quantization (INT4/FP8/AWQ/GPTQ).
- **Flexible Frontend Language**: Offers an intuitive interface for programming LLM applications, including chained generation calls, advanced prompting, control flow, multi-modal inputs, parallelism, and external interactions.
Lianmin Zheng's avatar
Lianmin Zheng committed
40
- **Extensive Model Support**: Supports a wide range of generative models (Llama, Gemma, Mistral, QWen, DeepSeek, LLaVA, etc.) and embedding models (e5-mistral), with easy extensibility for integrating new models.
Ying Sheng's avatar
Ying Sheng committed
41
42
- **Active Community**: SGLang is open-source and backed by an active community with industry adoption.

Lianmin Zheng's avatar
Lianmin Zheng committed
43
44
45
## Contents
- [Install](#install)
- [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
Ying Sheng's avatar
Ying Sheng committed
46
- [Frontend: Structured Generation Language (SGLang)](#frontend-structured-generation-language-sglang)
Lianmin Zheng's avatar
Lianmin Zheng committed
47
48
49
50
51
52
- [Benchmark And Performance](#benchmark-and-performance)
- [Roadmap](#roadmap)
- [Citation And Acknowledgment](#citation-and-acknowledgment)

## Install

53
54
You can install SGLang using any of the methods below.

Lianmin Zheng's avatar
Lianmin Zheng committed
55
56
### Method 1: With pip
```
57
pip install --upgrade pip
Lianmin Zheng's avatar
Lianmin Zheng committed
58
pip install "sglang[all]"
Lianmin Zheng's avatar
Lianmin Zheng committed
59

Lianmin Zheng's avatar
Lianmin Zheng committed
60
# Install FlashInfer CUDA kernels
61
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
Lianmin Zheng's avatar
Lianmin Zheng committed
62
```
63

Lianmin Zheng's avatar
Lianmin Zheng committed
64
### Method 2: From source
Lianmin Zheng's avatar
Lianmin Zheng committed
65
```
Ying Sheng's avatar
Ying Sheng committed
66
# Use the last release branch
Lianmin Zheng's avatar
Lianmin Zheng committed
67
git clone -b v0.3.3 https://github.com/sgl-project/sglang.git
Lianmin Zheng's avatar
Lianmin Zheng committed
68
69
cd sglang

Lianmin Zheng's avatar
Lianmin Zheng committed
70
pip install --upgrade pip
Lianmin Zheng's avatar
Lianmin Zheng committed
71
72
pip install -e "python[all]"

Lianmin Zheng's avatar
Lianmin Zheng committed
73
# Install FlashInfer CUDA kernels
74
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
Lianmin Zheng's avatar
Lianmin Zheng committed
75
```
76

Lianmin Zheng's avatar
Lianmin Zheng committed
77
### Method 3: Using docker
78
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](https://github.com/sgl-project/sglang/tree/main/docker).
79
Replace `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
Ying Sheng's avatar
Ying Sheng committed
80

Liangsheng Yin's avatar
Liangsheng Yin committed
81
82
83
84
```bash
docker run --gpus all \
    -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
85
    --env "HF_TOKEN=<secret>" \
Liangsheng Yin's avatar
Liangsheng Yin committed
86
87
    --ipc=host \
    lmsysorg/sglang:latest \
88
    python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000
Liangsheng Yin's avatar
Liangsheng Yin committed
89
90
```

91
92
### Method 4: Using docker compose

93
<details>
Dr. Artificial曾小健's avatar
Dr. Artificial曾小健 committed
94
<summary>More</summary>
95

96
> This method is recommended if you plan to serve it as a service.
97
> A better approach is to use the [k8s-sglang-service.yaml](docker/k8s-sglang-service.yaml).
98

99
1. Copy the [compose.yml](docker/compose.yaml) to your local machine
100
2. Execute the command `docker compose up -d` in your terminal.
101
</details>
102

103
104
### Method 5: Run on Kubernetes or Clouds with SkyPilot

105
<details>
Dr. Artificial曾小健's avatar
Dr. Artificial曾小健 committed
106
<summary>More</summary>
107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
To deploy on Kubernetes or 12+ clouds, you can use [SkyPilot](https://github.com/skypilot-org/skypilot).

1. Install SkyPilot and set up Kubernetes cluster or cloud access: see [SkyPilot's documentation](https://skypilot.readthedocs.io/en/latest/getting-started/installation.html).
2. Deploy on your own infra with a single command and get the HTTP API endpoint:
<details>
<summary>SkyPilot YAML: <code>sglang.yaml</code></summary>

```yaml
# sglang.yaml
envs:
  HF_TOKEN: null

resources:
  image_id: docker:lmsysorg/sglang:latest
  accelerators: A100
  ports: 30000

run: |
  conda deactivate
  python3 -m sglang.launch_server \
128
    --model-path meta-llama/Llama-3.1-8B-Instruct \
129
130
131
    --host 0.0.0.0 \
    --port 30000
```
132
</details>
133
134
135
136
137
138
139
140
141

```bash
# Deploy on any cloud or Kubernetes cluster. Use --cloud <cloud> to select a specific cloud provider.
HF_TOKEN=<secret> sky launch -c sglang --env HF_TOKEN sglang.yaml

# Get the HTTP API endpoint
sky status --endpoint 30000 sglang
```
3. To further scale up your deployment with autoscaling and failure recovery, check out the [SkyServe + SGLang guide](https://github.com/skypilot-org/skypilot/tree/master/llm/sglang#serving-llama-2-with-sglang-for-more-traffic-using-skyserve).
142
</details>
143
144


Lianmin Zheng's avatar
Lianmin Zheng committed
145
### Common Notes
Lianmin Zheng's avatar
Lianmin Zheng committed
146
- [FlashInfer](https://github.com/flashinfer-ai/flashinfer) is the default attention kernel backend. It only supports sm75 and above. If you encounter any FlashInfer-related issues on sm75+ devices (e.g., T4, A10, A100, L4, L40S, H100), please switch to other kernels by adding `--attention-backend triton --sampling-backend pytorch` and open an issue on GitHub.
Lianmin Zheng's avatar
Lianmin Zheng committed
147
- If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
Ying Sheng's avatar
Ying Sheng committed
148

Ying Sheng's avatar
Ying Sheng committed
149
150
151
## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is an efficient serving engine.

Ying Sheng's avatar
Ying Sheng committed
152
### Quick Start
Ying Sheng's avatar
Ying Sheng committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
```

Send a request
```
curl http://localhost:30000/generate \
  -H "Content-Type: application/json" \
  -d '{
    "text": "Once upon a time,",
    "sampling_params": {
      "max_new_tokens": 16,
      "temperature": 0
    }
  }'
```
Lianmin Zheng's avatar
Lianmin Zheng committed
170
171

Learn more about the argument specification, streaming, and multi-modal support [here](docs/en/sampling_params.md).
Ying Sheng's avatar
Ying Sheng committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

### OpenAI Compatible API
In addition, the server supports OpenAI-compatible APIs.

```python
import openai
client = openai.Client(
    base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")

# Text completion
response = client.completions.create(
	model="default",
	prompt="The capital of France is",
	temperature=0,
	max_tokens=32,
)
print(response)

# Chat completion
response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "system", "content": "You are a helpful AI assistant"},
        {"role": "user", "content": "List 3 countries and their capitals."},
    ],
    temperature=0,
    max_tokens=64,
)
print(response)
201
202
203
204
205
206
207

# Text embedding
response = client.embeddings.create(
    model="default",
    input="How are you today",
)
print(response)
Ying Sheng's avatar
Ying Sheng committed
208
209
```

Lianmin Zheng's avatar
Lianmin Zheng committed
210
It supports streaming, vision, and almost all features of the Chat/Completions/Models/Batch endpoints specified by the [OpenAI API Reference](https://platform.openai.com/docs/api-reference/).
Ying Sheng's avatar
Ying Sheng committed
211
212

### Additional Server Arguments
213
- To enable multi-GPU tensor parallelism, add `--tp 2`. If it reports the error "peer access is not supported between these two devices", add `--enable-p2p-check` to the server launch command.
Ying Sheng's avatar
Ying Sheng committed
214
```
215
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 2
Ying Sheng's avatar
Ying Sheng committed
216
```
217
- To enable multi-GPU data parallelism, add `--dp 2`. Data parallelism is better for throughput if there is enough memory. It can also be used together with tensor parallelism. The following command uses 4 GPUs in total.
Ying Sheng's avatar
Ying Sheng committed
218
```
219
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --dp 2 --tp 2
Ying Sheng's avatar
Ying Sheng committed
220
```
221
- If you see out-of-memory errors during serving, try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`.
Ying Sheng's avatar
Ying Sheng committed
222
```
223
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --mem-fraction-static 0.7
Ying Sheng's avatar
Ying Sheng committed
224
```
225
226
- See [hyperparameter_tuning.md](docs/en/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
- If you see out-of-memory errors during prefill for long prompts, try to set a smaller chunked prefill size.
Ying Sheng's avatar
Ying Sheng committed
227
```
228
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --chunked-prefill-size 4096
Ying Sheng's avatar
Ying Sheng committed
229
```
230
- To enable torch.compile acceleration, add `--enable-torch-compile`. It accelerates small models on small batch sizes.
Lianmin Zheng's avatar
Lianmin Zheng committed
231
- To enable torchao quantization, add `--torchao-config int4wo-128`. It supports various quantization strategies.
232
233
234
- To enable fp8 weight quantization, add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
- To enable fp8 kv cache quantization, add `--kv-cache-dtype fp8_e5m2`.
- If the model does not have a chat template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/en/custom_chat_template.md).
235
- To run tensor parallelism on multiple nodes, add `--nnodes 2`. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-0` be the hostname of the first node and `50000` be an available port, you can use the following commands. If you meet deadlock, please try to add `--disable-cuda-graph`
Ying Sheng's avatar
Ying Sheng committed
236
237
```
# Node 0
238
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 0
Ying Sheng's avatar
Ying Sheng committed
239
240

# Node 1
241
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 1
Ying Sheng's avatar
Ying Sheng committed
242
```
Lianmin Zheng's avatar
Lianmin Zheng committed
243
 
Ying Sheng's avatar
Ying Sheng committed
244
245
### Supported Models

246
**Generative Models**
247
- Llama / Llama 2 / Llama 3 / Llama 3.1
248
- Mistral / Mixtral / Mistral NeMo
Ying Sheng's avatar
Ying Sheng committed
249
250
- Gemma / Gemma 2
- Qwen / Qwen 2 / Qwen 2 MoE
251
- DeepSeek / DeepSeek 2
Lianmin Zheng's avatar
Lianmin Zheng committed
252
- OLMoE
253
- [LLaVA-OneVision](https://llava-vl.github.io/blog/2024-08-05-llava-onevision/)
254
  - `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-7b-ov --port=30000 --chat-template=chatml-llava`
255
  - `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-72b-ov --port=30000 --tp-size=8 --chat-template=chatml-llava`
256
257
258
259
260
  - Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](test/srt/test_vision_openai_server.py)
- LLaVA 1.5 / 1.6 / NeXT
  - `python -m sglang.launch_server --model-path lmms-lab/llama3-llava-next-8b --port=30000 --tp-size=1 --chat-template=llava_llama_3`
  - `python -m sglang.launch_server --model-path lmms-lab/llava-next-72b --port=30000 --tp-size=8 --chat-template=chatml-llava`
  - Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](test/srt/test_vision_openai_server.py)
Ying Sheng's avatar
Ying Sheng committed
261
262
263
264
265
266
267
- Yi-VL
- StableLM
- Command-R
- DBRX
- Grok
- ChatGLM
- InternLM 2
268
- Exaone 3
Vectory's avatar
Vectory committed
269
- BaiChuan2
William's avatar
William committed
270
- MiniCPM / MiniCPM 3
271
- XVERSE / XVERSE MoE
272
- SmolLM
William's avatar
William committed
273

274
275
276
277
278
279
**Embedding Models**

- e5-mistral
- gte-Qwen2
  - `python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct --is-embedding`

280
Instructions for supporting a new model are [here](docs/en/model_support.md).
Ying Sheng's avatar
Ying Sheng committed
281

Lianmin Zheng's avatar
Lianmin Zheng committed
282
#### Use Models From ModelScope
283
<details>
Dr. Artificial曾小健's avatar
Dr. Artificial曾小健 committed
284
<summary>More</summary>
285

Lianmin Zheng's avatar
Lianmin Zheng committed
286
To use a model from [ModelScope](https://www.modelscope.cn), set the environment variable SGLANG_USE_MODELSCOPE.
Lianmin Zheng's avatar
Lianmin Zheng committed
287
288
289
290
291
292
```
export SGLANG_USE_MODELSCOPE=true
```
Launch [Qwen2-7B-Instruct](https://www.modelscope.cn/models/qwen/qwen2-7b-instruct) Server
```
SGLANG_USE_MODELSCOPE=true python -m sglang.launch_server --model-path qwen/Qwen2-7B-Instruct --port 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
293
```
294
295
296
297
298
299
300
301
302
303
304

Or start it by docker.
```bash
docker run --gpus all \
    -p 30000:30000 \
    -v ~/.cache/modelscope:/root/.cache/modelscope \
    --env "SGLANG_USE_MODELSCOPE=true" \
    --ipc=host \
    lmsysorg/sglang:latest \
    python3 -m sglang.launch_server --model-path Qwen/Qwen2.5-7B-Instruct --host 0.0.0.0 --port 30000
```
Lianmin Zheng's avatar
Lianmin Zheng committed
305
  
306
</details>
Lianmin Zheng's avatar
Lianmin Zheng committed
307
308

#### Run Llama 3.1 405B
Lianmin Zheng's avatar
Lianmin Zheng committed
309
<details>
Dr. Artificial曾小健's avatar
Dr. Artificial曾小健 committed
310
<summary>More</summary>
Ying Sheng's avatar
Ying Sheng committed
311
312

```bash
313
# Run 405B (fp8) on a single node
Ying Sheng's avatar
Ying Sheng committed
314
315
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8

316
317
318
# Run 405B (fp16) on two nodes
## on the first node, replace the `172.16.4.52:20000` with your own first node ip address and port
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 0 --disable-cuda-graph
Ying Sheng's avatar
Ying Sheng committed
319

320
321
## on the first node, replace the `172.16.4.52:20000` with your own first node ip address and port
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 1 --disable-cuda-graph
Ying Sheng's avatar
Ying Sheng committed
322
323
```

Lianmin Zheng's avatar
Lianmin Zheng committed
324
325
</details>

Ying Sheng's avatar
Ying Sheng committed
326
327
### Benchmark Performance

Lianmin Zheng's avatar
Lianmin Zheng committed
328
329
330
- Benchmark a single static batch by running the following command without launching a server. The arguments are the same as for `launch_server.py`.
  Note that this is not a dynamic batching server, so it may run out of memory for a batch size that a real server can handle.
  A real server truncates the prefill into several batches, while this unit test does not. For accurate large batch testing, please use `sglang.bench_serving` instead.
Ying Sheng's avatar
Ying Sheng committed
331
  ```
332
  python -m sglang.bench_latency --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 32 --input-len 256 --output-len 32
Ying Sheng's avatar
Ying Sheng committed
333
334
335
  ```
- Benchmark online serving. Launch a server first and run the following command.
  ```
336
  python3 -m sglang.bench_serving --backend sglang --num-prompt 10
Ying Sheng's avatar
Ying Sheng committed
337
338
  ```

Ying Sheng's avatar
Ying Sheng committed
339
## Frontend: Structured Generation Language (SGLang)
340
The frontend language can be used with local models or API models. It is an alternative to the OpenAI API. You may found it easier to use for complex prompting workflow.
Ying Sheng's avatar
Ying Sheng committed
341
342

### Quick Start
343
The example below shows how to use sglang to answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
344

Ying Sheng's avatar
Ying Sheng committed
345
#### Using Local Models
346
First, launch a server with
Lianmin Zheng's avatar
Lianmin Zheng committed
347
```
Ying Sheng's avatar
Ying Sheng committed
348
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
349
350
```

351
352
Then, connect to the server and answer a multi-turn question.

Lianmin Zheng's avatar
Lianmin Zheng committed
353
```python
354
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint
Lianmin Zheng's avatar
Lianmin Zheng committed
355
356
357
358
359
360
361
362
363

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

364
set_default_backend(RuntimeEndpoint("http://localhost:30000"))
Lianmin Zheng's avatar
Lianmin Zheng committed
365
366
367
368
369
370
371
372

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
373
374

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
375
376
```

Ying Sheng's avatar
Ying Sheng committed
377
#### Using OpenAI Models
378
Set the OpenAI API Key
Lianmin Zheng's avatar
Lianmin Zheng committed
379
```
380
export OPENAI_API_KEY=sk-******
Lianmin Zheng's avatar
Lianmin Zheng committed
381
382
```

383
Then, answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
384
```python
385
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI
Lianmin Zheng's avatar
Lianmin Zheng committed
386
387
388
389
390
391
392
393
394

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

395
set_default_backend(OpenAI("gpt-3.5-turbo"))
Lianmin Zheng's avatar
Lianmin Zheng committed
396
397
398
399
400
401
402
403

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
404
405

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
406
407
```

Ying Sheng's avatar
Ying Sheng committed
408
#### More Examples
Lianmin Zheng's avatar
Lianmin Zheng committed
409

410
Anthropic and VertexAI (Gemini) models are also supported.
Byron Hsu's avatar
Byron Hsu committed
411
You can find more examples at [examples/quick_start](examples/frontend_language/quick_start).
Lianmin Zheng's avatar
Lianmin Zheng committed
412

Ying Sheng's avatar
Ying Sheng committed
413
### Language Feature
Lianmin Zheng's avatar
Lianmin Zheng committed
414
415
416
417
418
To begin with, import sglang.
```python
import sglang as sgl
```

Lianmin Zheng's avatar
Lianmin Zheng committed
419
`sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
Lianmin Zheng's avatar
Lianmin Zheng committed
420
421
You can implement your prompt flow in a function decorated by `sgl.function`.
You can then invoke the function with `run` or `run_batch`.
422
The system will manage the state, chat template, parallelism and batching for you.
Lianmin Zheng's avatar
Lianmin Zheng committed
423

424
The complete code for the examples below can be found at [readme_examples.py](examples/frontend_language/usage/readme_examples.py)
425

Ying Sheng's avatar
Ying Sheng committed
426
#### Control Flow
Lianmin Zheng's avatar
Lianmin Zheng committed
427
428
You can use any Python code within the function body, including control flow, nested function calls, and external libraries.

Lianmin Zheng's avatar
Lianmin Zheng committed
429
430
```python
@sgl.function
431
432
433
def tool_use(s, question):
    s += "To answer this question: " + question + ". "
    s += "I need to use a " + sgl.gen("tool", choices=["calculator", "search engine"]) + ". "
Lianmin Zheng's avatar
Lianmin Zheng committed
434
435
436

    if s["tool"] == "calculator":
        s += "The math expression is" + sgl.gen("expression")
437
438
    elif s["tool"] == "search engine":
        s += "The key word to search is" + sgl.gen("word")
Lianmin Zheng's avatar
Lianmin Zheng committed
439
```
Lianmin Zheng's avatar
Lianmin Zheng committed
440

Ying Sheng's avatar
Ying Sheng committed
441
#### Parallelism
Lianmin Zheng's avatar
Lianmin Zheng committed
442
443
444
Use `fork` to launch parallel prompts.
Because `sgl.gen` is non-blocking, the for loop below issues two generation calls in parallel.

Lianmin Zheng's avatar
Lianmin Zheng committed
445
446
447
448
449
450
451
452
```python
@sgl.function
def tip_suggestion(s):
    s += (
        "Here are two tips for staying healthy: "
        "1. Balanced Diet. 2. Regular Exercise.\n\n"
    )

Lianmin Zheng's avatar
Lianmin Zheng committed
453
    forks = s.fork(2)
Lianmin Zheng's avatar
Lianmin Zheng committed
454
455
456
457
458
459
460
461
    for i, f in enumerate(forks):
        f += f"Now, expand tip {i+1} into a paragraph:\n"
        f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")

    s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
    s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
    s += "In summary" + sgl.gen("summary")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
462

Lianmin Zheng's avatar
Lianmin Zheng committed
463
#### Multi-Modality
Lianmin Zheng's avatar
Lianmin Zheng committed
464
465
Use `sgl.image` to pass an image as input.

Lianmin Zheng's avatar
Lianmin Zheng committed
466
467
```python
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
468
def image_qa(s, image_file, question):
Lianmin Zheng's avatar
Lianmin Zheng committed
469
    s += sgl.user(sgl.image(image_file) + question)
Lianmin Zheng's avatar
Lianmin Zheng committed
470
    s += sgl.assistant(sgl.gen("answer", max_tokens=256)
Lianmin Zheng's avatar
Lianmin Zheng committed
471
472
```

473
See also [srt_example_llava.py](examples/frontend_language/quick_start/local_example_llava_next.py).
474

Ying Sheng's avatar
Ying Sheng committed
475
#### Constrained Decoding
476
477
Use `regex` to specify a regular expression as a decoding constraint.
This is only supported for local models.
Lianmin Zheng's avatar
Lianmin Zheng committed
478

Lianmin Zheng's avatar
Lianmin Zheng committed
479
```python
Lianmin Zheng's avatar
Lianmin Zheng committed
480
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
481
482
def regular_expression_gen(s):
    s += "Q: What is the IP address of the Google DNS servers?\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
483
    s += "A: " + sgl.gen(
Lianmin Zheng's avatar
Lianmin Zheng committed
484
485
486
487
488
        "answer",
        temperature=0,
        regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
    )
```
Lianmin Zheng's avatar
Lianmin Zheng committed
489

Ying Sheng's avatar
Ying Sheng committed
490
#### JSON Decoding
Lianmin Zheng's avatar
Lianmin Zheng committed
491
Use `regex` to specify a JSON schema with a regular expression.
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

```python
character_regex = (
    r"""\{\n"""
    + r"""    "name": "[\w\d\s]{1,16}",\n"""
    + r"""    "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
    + r"""    "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
    + r"""    "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
    + r"""    "wand": \{\n"""
    + r"""        "wood": "[\w\d\s]{1,16}",\n"""
    + r"""        "core": "[\w\d\s]{1,16}",\n"""
    + r"""        "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
    + r"""    \},\n"""
    + r"""    "alive": "(Alive|Deceased)",\n"""
    + r"""    "patronus": "[\w\d\s]{1,16}",\n"""
    + r"""    "bogart": "[\w\d\s]{1,16}"\n"""
    + r"""\}"""
)

@sgl.function
def character_gen(s, name):
Lianmin Zheng's avatar
Lianmin Zheng committed
513
    s += name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
514
515
516
    s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
```

517
See also [json_decode.py](examples/frontend_language/usage/json_decode.py) for an additional example of specifying formats with Pydantic models.
518

Ying Sheng's avatar
Ying Sheng committed
519
#### Batching
Lianmin Zheng's avatar
Lianmin Zheng committed
520
521
Use `run_batch` to run a batch of requests with continuous batching.

Lianmin Zheng's avatar
Lianmin Zheng committed
522
523
524
525
526
527
528
529
530
531
532
533
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run_batch(
    [
        {"question": "What is the capital of the United Kingdom?"},
        {"question": "What is the capital of France?"},
        {"question": "What is the capital of Japan?"},
    ],
Lianmin Zheng's avatar
Lianmin Zheng committed
534
    progress_bar=True
Lianmin Zheng's avatar
Lianmin Zheng committed
535
536
)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
537

Ying Sheng's avatar
Ying Sheng committed
538
#### Streaming
Lianmin Zheng's avatar
Lianmin Zheng committed
539
540
Add `stream=True` to enable streaming.

Lianmin Zheng's avatar
Lianmin Zheng committed
541
542
543
544
545
546
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

547
state = text_qa.run(
Lianmin Zheng's avatar
Lianmin Zheng committed
548
    question="What is the capital of France?",
Lianmin Zheng's avatar
Lianmin Zheng committed
549
550
551
    temperature=0.1,
    stream=True
)
Lianmin Zheng's avatar
Lianmin Zheng committed
552

Lianmin Zheng's avatar
Lianmin Zheng committed
553
554
555
for out in state.text_iter():
    print(out, end="", flush=True)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
556

557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
#### Roles

Use `sgl.system``sgl.user` and `sgl.assistant` to set roles when using Chat models. You can also define more complex role prompts using begin and end tokens.

```python
@sgl.function
def chat_example(s):
    s += sgl.system("You are a helpful assistant.")
    # Same as: s += s.system("You are a helpful assistant.")

    with s.user():
        s += "Question: What is the capital of France?"

    s += sgl.assistant_begin()
    s += "Answer: " + sgl.gen(max_tokens=100, stop="\n")
    s += sgl.assistant_end()
```

Ying Sheng's avatar
Ying Sheng committed
575
#### Tips and Implementation Details
576
577
- The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
- The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
Lianmin Zheng's avatar
Lianmin Zheng committed
578

Ying Sheng's avatar
Ying Sheng committed
579
580
581
## Benchmark And Performance
![8b_throughput](https://lmsys.org/images/blog/sglang_llama3/8b_throughput.svg)
![70b_fp8_throughput](https://lmsys.org/images/blog/sglang_llama3/70b_fp8_throughput.svg)
Lianmin Zheng's avatar
Lianmin Zheng committed
582

Ying Sheng's avatar
Ying Sheng committed
583
Learn more at this [blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/).
Lianmin Zheng's avatar
Lianmin Zheng committed
584

Lianmin Zheng's avatar
Lianmin Zheng committed
585
## Roadmap
586
[Development Roadmap (2024 Q4)](https://github.com/sgl-project/sglang/issues/1487)
Lianmin Zheng's avatar
Lianmin Zheng committed
587
588

## Citation And Acknowledgment
Ying Sheng's avatar
Ying Sheng committed
589
590
Please cite our paper, [SGLang: Efficient Execution of Structured Language Model Programs](https://arxiv.org/abs/2312.07104), if you find the project useful.
We also learned from the design and reused code from the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), and [LMQL](https://github.com/eth-sri/lmql).