"tests/vscode:/vscode.git/clone" did not exist on "531e719163d2d7cf0d725bb685c1e8fe3393b9da"
Unverified Commit 8d1095db authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

[Docs] Improve documentations (#1368)

parent 743007e1
......@@ -166,6 +166,9 @@ cython_debug/
# Vim
*.swp
# Documentation
docs/en/_build
# SGL
benchmark/mmlu/data
benchmark/mmlu/data.tar
......
......@@ -15,10 +15,12 @@
SGLang is a fast serving framework for large language models and vision language models.
It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
The core features include:
- **Fast Backend Runtime**: Efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, continuous batching, token attention (paged attention), tensor parallelism, FlashInfer kernels, and quantization (AWQ/FP8/GPTQ/Marlin).
- **Flexible Frontend Language**: Enables easy programming of LLM applications with chained generation calls, advanced prompting, control flow, multiple modalities, parallelism, and external interactions.
- **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, continuous batching, token attention (paged attention), tensor parallelism, FlashInfer kernels, chunked prefill, and quantization (INT4/FP8/AWQ/GPTQ).
- **Flexible Frontend Language**: Offers an intuitive interface for programming LLM applications, including chained generation calls, advanced prompting, control flow, multi-modal inputs, parallelism, and external interactions.
- **Extensive Model Support**: Supports a wide range of generative models (Llama 3, Gemma 2, Mistral, QWen, DeepSeek, LLaVA, etc.) and embedding models (e5-mistral), with easy extensibility for integrating new models.
- **Active Community**: SGLang is open-source and backed by an active community with industry adoption, welcoming contributions to improve LLM and VLM serving.
## News
- [2024/09] 🔥 SGLang v0.3 Release: 7x Faster DeepSeek MLA, 1.5x Faster torch.compile, Multi-Image/Video LLaVA-OneVision ([blog](https://lmsys.org/blog/2024-09-04-sglang-v0-3/)).
......@@ -44,6 +46,8 @@ The core features include:
## Install
You can install SGLang using any of the methods below.
### Method 1: With pip
```
pip install --upgrade pip
......@@ -67,7 +71,7 @@ pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
```
### Method 3: Using docker
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](docker).
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](https://github.com/sgl-project/sglang/tree/main/docker).
Replace `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
```bash
......@@ -218,6 +222,10 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --chunked-prefill-size 4096
```
- To enable torch.compile support, you can add `--enable-torch-compile`. It accelerates small models on small batch sizes.
- To enable fp8 weight quantization, you can add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
- To enable fp8 kv cache quanzation, you can add `--kv-cache-dtype fp8_e5m2`.
- If the model does not have a template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/en/custom_chat_template.md).
- Add `--nnodes 2` to run tensor parallelism on multiple nodes. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-0` be the hostname of the first node and `50000` be an available port.
```
# Node 0
......@@ -226,9 +234,6 @@ python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct
# Node 1
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 1
```
- If the model does not have a template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/en/custom_chat_template.md).
- To enable experimental torch.compile support, you can add `--enable-torch-compile`. It accelerates small models on small batch sizes.
- To enable fp8 quantization, you can add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
### Supported Models
......
## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is an efficient serving engine.
### Quick Start
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
```
Send a request
```
curl http://localhost:30000/generate \
-H "Content-Type: application/json" \
-d '{
"text": "Once upon a time,",
"sampling_params": {
"max_new_tokens": 16,
"temperature": 0
}
}'
```
Learn more about the argument format [here](docs/en/sampling_params.md).
### OpenAI Compatible API
In addition, the server supports OpenAI-compatible APIs.
```python
import openai
client = openai.Client(
base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")
# Text completion
response = client.completions.create(
model="default",
prompt="The capital of France is",
temperature=0,
max_tokens=32,
)
print(response)
# Chat completion
response = client.chat.completions.create(
model="default",
messages=[
{"role": "system", "content": "You are a helpful AI assistant"},
{"role": "user", "content": "List 3 countries and their capitals."},
],
temperature=0,
max_tokens=64,
)
print(response)
# Text embedding
response = client.embeddings.create(
model="default",
input="How are you today",
)
print(response)
```
It supports streaming, vision, and most features of the Chat/Completions/Models/Batch endpoints specified by the [OpenAI API Reference](https://platform.openai.com/docs/api-reference/).
### Additional Server Arguments
- Add `--tp 2` to enable multi-GPU tensor parallelism. If it reports the error "peer access is not supported between these two devices", add `--enable-p2p-check` to the server launch command.
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --tp 2
```
- Add `--dp 2` to enable multi-GPU data parallelism. Data parallelism is better for throughput if there is enough memory. It can also be used together with tensor parallelism. The following command uses 4 GPUs in total.
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --dp 2 --tp 2
```
- If you see out-of-memory errors during serving, try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`.
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --mem-fraction-static 0.7
```
- See [hyperparameter_tuning.md](docs/en/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
- If you see out-of-memory errors during prefill for long prompts, try to set a smaller chunked prefill size.
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --chunked-prefill-size 4096
```
- To enable torch.compile support, you can add `--enable-torch-compile`. It accelerates small models on small batch sizes.
- To enable fp8 weight quantization, you can add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
- To enable fp8 kv cache quanzation, you can add `--kv-cache-dtype fp8_e5m2`.
- If the model does not have a template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/en/custom_chat_template.md).
- Add `--nnodes 2` to run tensor parallelism on multiple nodes. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-0` be the hostname of the first node and `50000` be an available port.
```
# Node 0
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 0
# Node 1
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 1
```
### Supported Models
**Generative Models**
- Llama / Llama 2 / Llama 3 / Llama 3.1
- Mistral / Mixtral / Mistral NeMo
- Gemma / Gemma 2
- Qwen / Qwen 2 / Qwen 2 MoE
- DeepSeek / DeepSeek 2
- [LLaVA-OneVision](https://llava-vl.github.io/blog/2024-08-05-llava-onevision/)
- `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-7b-ov --port=30000 --chat-template=chatml-llava`
- `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-72b-ov --port=30000 --tp-size=8 --chat-template=chatml-llava`
- Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](test/srt/test_vision_openai_server.py)
- LLaVA 1.5 / 1.6 / NeXT
- `python -m sglang.launch_server --model-path lmms-lab/llama3-llava-next-8b --port=30000 --tp-size=1 --chat-template=llava_llama_3`
- `python -m sglang.launch_server --model-path lmms-lab/llava-next-72b --port=30000 --tp-size=8 --chat-template=chatml-llava`
- Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](test/srt/test_vision_openai_server.py)
- Yi-VL
- StableLM
- Command-R
- DBRX
- Grok
- ChatGLM
- InternLM 2
- Exaone 3
**Embedding Models**
- e5-mistral
- gte-Qwen2
- `python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct --is-embedding`
Instructions for supporting a new model are [here](https://github.com/sgl-project/sglang/blob/main/docs/en/model_support.md).
#### Use Models From ModelScope
<details>
<summary>More</summary>
To use a model from [ModelScope](https://www.modelscope.cn), set the environment variable SGLANG_USE_MODELSCOPE.
```
export SGLANG_USE_MODELSCOPE=true
```
Launch [Qwen2-7B-Instruct](https://www.modelscope.cn/models/qwen/qwen2-7b-instruct) Server
```
SGLANG_USE_MODELSCOPE=true python -m sglang.launch_server --model-path qwen/Qwen2-7B-Instruct --port 30000
```
</details>
#### Run Llama 3.1 405B
<details>
<summary>More</summary>
```bash
# Run 405B (fp8) on a single node
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8
# Run 405B (fp16) on two nodes
## on the first node, replace the `172.16.4.52:20000` with your own first node ip address and port
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 0 --disable-cuda-graph
## on the first node, replace the `172.16.4.52:20000` with your own first node ip address and port
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 1 --disable-cuda-graph
```
</details>
### Benchmark Performance
- Benchmark a single static batch by running the following command without launching a server. The arguments are the same as for `launch_server.py`.
Note that this is not a dynamic batching server, so it may run out of memory for a batch size that a real server can handle.
A real server truncates the prefill into several batches, while this unit test does not. For accurate large batch testing, please use `sglang.bench_serving` instead.
```
python -m sglang.bench_latency --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 32 --input-len 256 --output-len 32
```
- Benchmark online serving. Launch a server first and run the following command.
```
python3 -m sglang.bench_serving --backend sglang --num-prompt 10
```
\ No newline at end of file
## Frontend: Structured Generation Language (SGLang)
The frontend language can be used with local models or API models. It is an alternative to the OpenAI API. You may found it easier to use for complex prompting workflow.
### Quick Start
The example below shows how to use sglang to answer a mulit-turn question.
#### Using Local Models
First, launch a server with
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
```
Then, connect to the server and answer a multi-turn question.
```python
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint
@function
def multi_turn_question(s, question_1, question_2):
s += system("You are a helpful assistant.")
s += user(question_1)
s += assistant(gen("answer_1", max_tokens=256))
s += user(question_2)
s += assistant(gen("answer_2", max_tokens=256))
set_default_backend(RuntimeEndpoint("http://localhost:30000"))
state = multi_turn_question.run(
question_1="What is the capital of the United States?",
question_2="List two local attractions.",
)
for m in state.messages():
print(m["role"], ":", m["content"])
print(state["answer_1"])
```
#### Using OpenAI Models
Set the OpenAI API Key
```
export OPENAI_API_KEY=sk-******
```
Then, answer a multi-turn question.
```python
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI
@function
def multi_turn_question(s, question_1, question_2):
s += system("You are a helpful assistant.")
s += user(question_1)
s += assistant(gen("answer_1", max_tokens=256))
s += user(question_2)
s += assistant(gen("answer_2", max_tokens=256))
set_default_backend(OpenAI("gpt-3.5-turbo"))
state = multi_turn_question.run(
question_1="What is the capital of the United States?",
question_2="List two local attractions.",
)
for m in state.messages():
print(m["role"], ":", m["content"])
print(state["answer_1"])
```
#### More Examples
Anthropic and VertexAI (Gemini) models are also supported.
You can find more examples at [examples/quick_start](examples/frontend_language/quick_start).
### Language Feature
To begin with, import sglang.
```python
import sglang as sgl
```
`sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
You can implement your prompt flow in a function decorated by `sgl.function`.
You can then invoke the function with `run` or `run_batch`.
The system will manage the state, chat template, parallelism and batching for you.
The complete code for the examples below can be found at [readme_examples.py](examples/frontend_language/usage/readme_examples.py)
#### Control Flow
You can use any Python code within the function body, including control flow, nested function calls, and external libraries.
```python
@sgl.function
def tool_use(s, question):
s += "To answer this question: " + question + ". "
s += "I need to use a " + sgl.gen("tool", choices=["calculator", "search engine"]) + ". "
if s["tool"] == "calculator":
s += "The math expression is" + sgl.gen("expression")
elif s["tool"] == "search engine":
s += "The key word to search is" + sgl.gen("word")
```
#### Parallelism
Use `fork` to launch parallel prompts.
Because `sgl.gen` is non-blocking, the for loop below issues two generation calls in parallel.
```python
@sgl.function
def tip_suggestion(s):
s += (
"Here are two tips for staying healthy: "
"1. Balanced Diet. 2. Regular Exercise.\n\n"
)
forks = s.fork(2)
for i, f in enumerate(forks):
f += f"Now, expand tip {i+1} into a paragraph:\n"
f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")
s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
s += "In summary" + sgl.gen("summary")
```
#### Multi-Modality
Use `sgl.image` to pass an image as input.
```python
@sgl.function
def image_qa(s, image_file, question):
s += sgl.user(sgl.image(image_file) + question)
s += sgl.assistant(sgl.gen("answer", max_tokens=256)
```
See also [srt_example_llava.py](examples/frontend_language/quick_start/local_example_llava_next.py).
#### Constrained Decoding
Use `regex` to specify a regular expression as a decoding constraint.
This is only supported for local models.
```python
@sgl.function
def regular_expression_gen(s):
s += "Q: What is the IP address of the Google DNS servers?\n"
s += "A: " + sgl.gen(
"answer",
temperature=0,
regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
)
```
#### JSON Decoding
Use `regex` to specify a JSON schema with a regular expression.
```python
character_regex = (
r"""\{\n"""
+ r""" "name": "[\w\d\s]{1,16}",\n"""
+ r""" "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
+ r""" "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
+ r""" "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
+ r""" "wand": \{\n"""
+ r""" "wood": "[\w\d\s]{1,16}",\n"""
+ r""" "core": "[\w\d\s]{1,16}",\n"""
+ r""" "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
+ r""" \},\n"""
+ r""" "alive": "(Alive|Deceased)",\n"""
+ r""" "patronus": "[\w\d\s]{1,16}",\n"""
+ r""" "bogart": "[\w\d\s]{1,16}"\n"""
+ r"""\}"""
)
@sgl.function
def character_gen(s, name):
s += name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
```
See also [json_decode.py](examples/frontend_language/usage/json_decode.py) for an additional example of specifying formats with Pydantic models.
#### Batching
Use `run_batch` to run a batch of requests with continuous batching.
```python
@sgl.function
def text_qa(s, question):
s += "Q: " + question + "\n"
s += "A:" + sgl.gen("answer", stop="\n")
states = text_qa.run_batch(
[
{"question": "What is the capital of the United Kingdom?"},
{"question": "What is the capital of France?"},
{"question": "What is the capital of Japan?"},
],
progress_bar=True
)
```
#### Streaming
Add `stream=True` to enable streaming.
```python
@sgl.function
def text_qa(s, question):
s += "Q: " + question + "\n"
s += "A:" + sgl.gen("answer", stop="\n")
state = text_qa.run(
question="What is the capital of France?",
temperature=0.1,
stream=True
)
for out in state.text_iter():
print(out, end="", flush=True)
```
#### Roles
Use `sgl.system``sgl.user` and `sgl.assistant` to set roles when using Chat models. You can also define more complex role prompts using begin and end tokens.
```python
@sgl.function
def chat_example(s):
s += sgl.system("You are a helpful assistant.")
# Same as: s += s.system("You are a helpful assistant.")
with s.user():
s += "Question: What is the capital of France?"
s += sgl.assistant_begin()
s += "Answer: " + sgl.gen(max_tokens=100, stop="\n")
s += sgl.assistant_end()
```
#### Tips and Implementation Details
- The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
- The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
Welcome to SGLang!
SGLang Documentation
====================================
.. figure:: ./_static/image/logo.png
:width: 50%
:align: center
:alt: SGLang
:class: no-scaled-link
SGLang is a fast serving framework for large language models and vision language models.
It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
The core features include:
.. raw:: html
- **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, continuous batching, token attention (paged attention), tensor parallelism, FlashInfer kernels, chunked prefill, and quantization (INT4/FP8/AWQ/GPTQ).
- **Flexible Frontend Language**: Offers an intuitive interface for programming LLM applications, including chained generation calls, advanced prompting, control flow, multi-modal inputs, parallelism, and external interactions.
- **Extensive Model Support**: Supports a wide range of generative models (Llama 3, Gemma 2, Mistral, QWen, DeepSeek, LLaVA, etc.) and embedding models (e5-mistral), with easy extensibility for integrating new models.
- **Active Community**: SGLang is open-source and backed by an active community with industry adoption, welcoming contributions to improve LLM and VLM serving.
<p style="text-align:center">
<strong>SGLang is yet another fast serving framework for large language models and vision language models.
</strong>
</p>
<p style="text-align:center">
<script async defer src="https://buttons.github.io/buttons.js"></script>
<a class="github-button" href="https://github.com/sgl-project/sglang" data-show-count="true" data-size="large" aria-label="Star">Star</a>
<a class="github-button" href="https://github.com/sgl-project/sglang/subscription" data-icon="octicon-eye" data-size="large" aria-label="Watch">Watch</a>
<a class="github-button" href="https://github.com/sgl-project/sglang/fork" data-icon="octicon-repo-forked" data-size="large" aria-label="Fork">Fork</a>
</p>
SGLang has the following core features:
* **Fast Backend Runtime**: Efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, continuous batching, token attention (paged attention), tensor parallelism, flashinfer kernels, and quantization (AWQ/FP8/GPTQ/Marlin).
* **Flexible Frontend Language**: Enables easy programming of LLM applications with chained generation calls, advanced prompting, control flow, multiple modalities, parallelism, and external interactions.
* **Extensive Model Support**: SGLang supports a wide range of generative models including the Llama series (up to Llama 3.1), Mistral, Gemma, Qwen, DeepSeek, LLaVA, Yi-VL, StableLM, Command-R, DBRX, Grok, ChatGLM, InternLM 2 and Exaone 3. It also supports embedding models such as e5-mistral and gte-Qwen2. Easily extensible to support new models.
* **Open Source Community**: SGLang is an open source project with a vibrant community of contributors. We welcome contributions from anyone interested in advancing the state of the art in LLM and VLM serving.
Documentation
-------------
.. In this documentation, we'll dive into these following areas to help you get the most out of SGLang.
.. _installation:
.. toctree::
:maxdepth: 1
:caption: Installation
:caption: Getting Started
install.md
backend.md
frontend.md
.. _hyperparameter_tuning:
.. toctree::
:maxdepth: 1
:caption: Hyperparameter Tuning
:caption: References
sampling_params.md
hyperparameter_tuning.md
.. _custom_chat_template:
.. toctree::
:maxdepth: 1
:caption: Custom Chat Template
custom_chat_template.md
.. _model_support:
.. toctree::
:maxdepth: 1
:caption: Model Support
model_support.md
.. _sampling_params:
.. toctree::
:maxdepth: 1
:caption: Sampling Params
sampling_params.md
.. _benchmark_and_profilling:
.. toctree::
:maxdepth: 1
:caption: Benchmark and Profilling
benchmark_and_profiling.md
\ No newline at end of file
contributor_guide.md
choices_methods.md
benchmark_and_profiling.md
troubleshooting.md
# SGLang Installation Guide
## Install SGLang
SGLang consists of a frontend language (Structured Generation Language, SGLang) and a backend runtime (SGLang Runtime, SRT). The frontend can be used separately from the backend, allowing for a detached frontend-backend setup.
You can install SGLang using any of the methods below.
## Quick Installation Options
### 1. Frontend Installation (Client-side, any platform)
```bash
pip install --upgrade pip
pip install sglang
### Method 1: With pip
```
**Note: You can check [these examples](https://github.com/sgl-project/sglang/tree/main/examples/frontend_language/usage) for how to use frontend and backend separately.**
### 2. Backend Installation (Server-side, Linux only)
```bash
pip install --upgrade pip
pip install "sglang[all]"
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
```
**Note: The backend (SRT) is only needed on the server side and is only available for Linux right now.**
**Important: Please check the [flashinfer installation guidance](https://docs.flashinfer.ai/installation.html) to install the proper version according to your PyTorch and CUDA versions.**
### 3. From Source (Latest version, Linux only for full installation)
```bash
# Use the latest release branch
# As of this documentation, it's v0.2.15, but newer versions may be available
# Do not clone the main branch directly; always use a specific release version
# The main branch may contain unresolved bugs before a new release
git clone -b v0.2.15 https://github.com/sgl-project/sglang.git
cd sglang
pip install -e "python[all]"
# Install FlashInfer CUDA kernels
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
```
### 4. OpenAI Backend Only (Client-side, any platform)
If you only need to use the OpenAI backend, you can avoid installing other dependencies by using:
```bash
pip install "sglang[openai]"
### Method 2: From source
```
# Use the last release branch
git clone -b v0.3.0 https://github.com/sgl-project/sglang.git
cd sglang
## Advanced Installation Options
pip install --upgrade pip
pip install -e "python[all]"
### 1. Using Docker (Server-side, Linux only)
# Install FlashInfer CUDA kernels
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
```
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](https://github.com/sgl-project/sglang/blob/main/docker). Replace `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
### Method 3: Using docker
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](https://github.com/sgl-project/sglang/tree/main/docker).
Replace `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
```bash
docker run --gpus all -p 30000:30000 \
docker run --gpus all \
-p 30000:30000 \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HF_TOKEN=<secret>" --ipc=host \
--env "HF_TOKEN=<secret>" \
--ipc=host \
lmsysorg/sglang:latest \
python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000
```
### 2.Using docker compose
### Method 4: Using docker compose
<details>
<summary>More</summary>
This method is recommended if you plan to serve it as a service. A better approach is to use the [k8s-sglang-service.yaml](https://github.com/sgl-project/sglang/blob/main/docker/k8s-sglang-service.yaml).
> This method is recommended if you plan to serve it as a service.
> A better approach is to use the [k8s-sglang-service.yaml](./docker/k8s-sglang-service.yaml).
1. Copy the [compose.yml](https://github.com/sgl-project/sglang/blob/main/docker/compose.yaml) to your local machine
1. Copy the [compose.yml](./docker/compose.yaml) to your local machine
2. Execute the command `docker compose up -d` in your terminal.
</details>
### 3.Run on Kubernetes or Clouds with SkyPilot
### Method 5: Run on Kubernetes or Clouds with SkyPilot
<details>
<summary>More</summary>
......@@ -108,9 +91,6 @@ sky status --endpoint 30000 sglang
3. To further scale up your deployment with autoscaling and failure recovery, check out the [SkyServe + SGLang guide](https://github.com/skypilot-org/skypilot/tree/master/llm/sglang#serving-llama-2-with-sglang-for-more-traffic-using-skyserve).
</details>
## Troubleshooting
- For FlashInfer issues on newer GPUs, use `--disable-flashinfer --disable-flashinfer-sampling` when launching the server.
- For out-of-memory errors, try `--mem-fraction-static 0.7` when launching the server.
For more details and advanced usage, visit the [SGLang GitHub repository](https://github.com/sgl-project/sglang).
\ No newline at end of file
### Common Notes
- [FlashInfer](https://github.com/flashinfer-ai/flashinfer) is currently one of the dependencies that must be installed for SGLang. It only supports sm75 and above. If you encounter any FlashInfer-related issues on sm75+ devices (e.g., T4, A10, A100, L4, L40S, H100), consider using Triton's kernel by `--disable-flashinfer --disable-flashinfer-sampling` and raise an issue.
- If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment