README.md 23 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
<div align="center">
2
<img src="https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png" alt="logo" width="400"></img>
Lianmin Zheng's avatar
Lianmin Zheng committed
3

Yineng Zhang's avatar
Yineng Zhang committed
4
5
6
7
8
9
[![PyPI](https://img.shields.io/pypi/v/sglang)](https://pypi.org/project/sglang)
![PyPI - Downloads](https://img.shields.io/pypi/dm/sglang)
[![license](https://img.shields.io/github/license/sgl-project/sglang.svg)](https://github.com/sgl-project/sglang/tree/main/LICENSE)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)
[![open issues](https://img.shields.io/github/issues-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)

Yineng Zhang's avatar
Yineng Zhang committed
10
11
</div>

Lianmin Zheng's avatar
Lianmin Zheng committed
12
13
--------------------------------------------------------------------------------

14
| [**Blog**](https://lmsys.org/blog/2024-07-25-sglang-llama3/) | [**Paper**](https://arxiv.org/abs/2312.07104) | [**Join Slack**](https://join.slack.com/t/sgl-fru7574/shared_invite/zt-2ngly9muu-t37XiH87qvD~6rVBTkTEHw) | [**Join Weekly Development Meeting**](https://t.co/4BFjCLnVHq) |
Lianmin Zheng's avatar
Lianmin Zheng committed
15

Ying Sheng's avatar
Ying Sheng committed
16
17
SGLang is a fast serving framework for large language models and vision language models.
It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
18
The core features include:
19
20
21
22

- **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, continuous batching, token attention (paged attention), tensor parallelism, FlashInfer kernels, chunked prefill, and quantization (INT4/FP8/AWQ/GPTQ).
- **Flexible Frontend Language**: Offers an intuitive interface for programming LLM applications, including chained generation calls, advanced prompting, control flow, multi-modal inputs, parallelism, and external interactions.
- **Extensive Model Support**: Supports a wide range of generative models (Llama 3, Gemma 2, Mistral, QWen, DeepSeek, LLaVA, etc.) and embedding models (e5-mistral), with easy extensibility for integrating new models.
23
- **Active Community**: SGLang is open-source and backed by an active community with industry adoption.
Lianmin Zheng's avatar
Lianmin Zheng committed
24

Ying Sheng's avatar
Ying Sheng committed
25
## News
Yineng Zhang's avatar
Yineng Zhang committed
26
- [2024/09] 🔥 SGLang v0.3 Release: 7x Faster DeepSeek MLA, 1.5x Faster torch.compile, Multi-Image/Video LLaVA-OneVision ([blog](https://lmsys.org/blog/2024-09-04-sglang-v0-3/)).
Ying Sheng's avatar
Ying Sheng committed
27
28
- [2024/07] 🔥 Faster Llama3 Serving with SGLang Runtime (vs. TensorRT-LLM, vLLM) ([blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/)).
- [2024/02] SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
Ying Sheng's avatar
Ying Sheng committed
29

Ying Sheng's avatar
Ying Sheng committed
30
31
32
<details>
<summary>More</summary>

33
- [2024/04] SGLang is used by the official **LLaVA-NeXT (video)** release ([blog](https://llava-vl.github.io/blog/2024-04-30-llava-next-video/)).
Ying Sheng's avatar
Ying Sheng committed
34
- [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
Ying Sheng's avatar
Ying Sheng committed
35
36
37
38
- [2024/01] SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).

</details>

Lianmin Zheng's avatar
Lianmin Zheng committed
39
40
41
## Contents
- [Install](#install)
- [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
Ying Sheng's avatar
Ying Sheng committed
42
- [Frontend: Structured Generation Language (SGLang)](#frontend-structured-generation-language-sglang)
Lianmin Zheng's avatar
Lianmin Zheng committed
43
44
45
46
47
48
- [Benchmark And Performance](#benchmark-and-performance)
- [Roadmap](#roadmap)
- [Citation And Acknowledgment](#citation-and-acknowledgment)

## Install

49
50
You can install SGLang using any of the methods below.

Lianmin Zheng's avatar
Lianmin Zheng committed
51
52
### Method 1: With pip
```
53
pip install --upgrade pip
Lianmin Zheng's avatar
Lianmin Zheng committed
54
pip install "sglang[all]"
Lianmin Zheng's avatar
Lianmin Zheng committed
55

Lianmin Zheng's avatar
Lianmin Zheng committed
56
# Install FlashInfer CUDA kernels
57
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
Lianmin Zheng's avatar
Lianmin Zheng committed
58
```
59

Lianmin Zheng's avatar
Lianmin Zheng committed
60
### Method 2: From source
Lianmin Zheng's avatar
Lianmin Zheng committed
61
```
Ying Sheng's avatar
Ying Sheng committed
62
# Use the last release branch
Ying Sheng's avatar
Ying Sheng committed
63
git clone -b v0.3.2 https://github.com/sgl-project/sglang.git
Lianmin Zheng's avatar
Lianmin Zheng committed
64
65
cd sglang

Lianmin Zheng's avatar
Lianmin Zheng committed
66
pip install --upgrade pip
Lianmin Zheng's avatar
Lianmin Zheng committed
67
68
pip install -e "python[all]"

Lianmin Zheng's avatar
Lianmin Zheng committed
69
# Install FlashInfer CUDA kernels
70
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
Lianmin Zheng's avatar
Lianmin Zheng committed
71
```
72

Lianmin Zheng's avatar
Lianmin Zheng committed
73
### Method 3: Using docker
74
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](https://github.com/sgl-project/sglang/tree/main/docker).
75
Replace `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
Ying Sheng's avatar
Ying Sheng committed
76

Liangsheng Yin's avatar
Liangsheng Yin committed
77
78
79
80
```bash
docker run --gpus all \
    -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
81
    --env "HF_TOKEN=<secret>" \
Liangsheng Yin's avatar
Liangsheng Yin committed
82
83
    --ipc=host \
    lmsysorg/sglang:latest \
84
    python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000
Liangsheng Yin's avatar
Liangsheng Yin committed
85
86
```

87
88
### Method 4: Using docker compose

89
<details>
Dr. Artificial曾小健's avatar
Dr. Artificial曾小健 committed
90
<summary>More</summary>
91

92
> This method is recommended if you plan to serve it as a service.
93
> A better approach is to use the [k8s-sglang-service.yaml](docker/k8s-sglang-service.yaml).
94

95
1. Copy the [compose.yml](docker/compose.yaml) to your local machine
96
2. Execute the command `docker compose up -d` in your terminal.
97
</details>
98

99
100
### Method 5: Run on Kubernetes or Clouds with SkyPilot

101
<details>
Dr. Artificial曾小健's avatar
Dr. Artificial曾小健 committed
102
<summary>More</summary>
103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
To deploy on Kubernetes or 12+ clouds, you can use [SkyPilot](https://github.com/skypilot-org/skypilot).

1. Install SkyPilot and set up Kubernetes cluster or cloud access: see [SkyPilot's documentation](https://skypilot.readthedocs.io/en/latest/getting-started/installation.html).
2. Deploy on your own infra with a single command and get the HTTP API endpoint:
<details>
<summary>SkyPilot YAML: <code>sglang.yaml</code></summary>

```yaml
# sglang.yaml
envs:
  HF_TOKEN: null

resources:
  image_id: docker:lmsysorg/sglang:latest
  accelerators: A100
  ports: 30000

run: |
  conda deactivate
  python3 -m sglang.launch_server \
    --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \
    --host 0.0.0.0 \
    --port 30000
```
128
</details>
129
130
131
132
133
134
135
136
137

```bash
# Deploy on any cloud or Kubernetes cluster. Use --cloud <cloud> to select a specific cloud provider.
HF_TOKEN=<secret> sky launch -c sglang --env HF_TOKEN sglang.yaml

# Get the HTTP API endpoint
sky status --endpoint 30000 sglang
```
3. To further scale up your deployment with autoscaling and failure recovery, check out the [SkyServe + SGLang guide](https://github.com/skypilot-org/skypilot/tree/master/llm/sglang#serving-llama-2-with-sglang-for-more-traffic-using-skyserve).
138
</details>
139
140


Lianmin Zheng's avatar
Lianmin Zheng committed
141
### Common Notes
Lianmin Zheng's avatar
Lianmin Zheng committed
142
- [FlashInfer](https://github.com/flashinfer-ai/flashinfer) is the default attention kernel backend. It only supports sm75 and above. If you encounter any FlashInfer-related issues on sm75+ devices (e.g., T4, A10, A100, L4, L40S, H100), please switch to other kernels by adding `--attention-backend triton --sampling-backend pytorch` and open an issue on GitHub.
Lianmin Zheng's avatar
Lianmin Zheng committed
143
- If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
Ying Sheng's avatar
Ying Sheng committed
144

Ying Sheng's avatar
Ying Sheng committed
145
146
147
## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is an efficient serving engine.

Ying Sheng's avatar
Ying Sheng committed
148
### Quick Start
Ying Sheng's avatar
Ying Sheng committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
```

Send a request
```
curl http://localhost:30000/generate \
  -H "Content-Type: application/json" \
  -d '{
    "text": "Once upon a time,",
    "sampling_params": {
      "max_new_tokens": 16,
      "temperature": 0
    }
  }'
```
Lianmin Zheng's avatar
Lianmin Zheng committed
166
167

Learn more about the argument specification, streaming, and multi-modal support [here](docs/en/sampling_params.md).
Ying Sheng's avatar
Ying Sheng committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

### OpenAI Compatible API
In addition, the server supports OpenAI-compatible APIs.

```python
import openai
client = openai.Client(
    base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")

# Text completion
response = client.completions.create(
	model="default",
	prompt="The capital of France is",
	temperature=0,
	max_tokens=32,
)
print(response)

# Chat completion
response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "system", "content": "You are a helpful AI assistant"},
        {"role": "user", "content": "List 3 countries and their capitals."},
    ],
    temperature=0,
    max_tokens=64,
)
print(response)
197
198
199
200
201
202
203

# Text embedding
response = client.embeddings.create(
    model="default",
    input="How are you today",
)
print(response)
Ying Sheng's avatar
Ying Sheng committed
204
205
```

Lianmin Zheng's avatar
Lianmin Zheng committed
206
It supports streaming, vision, and almost all features of the Chat/Completions/Models/Batch endpoints specified by the [OpenAI API Reference](https://platform.openai.com/docs/api-reference/).
Ying Sheng's avatar
Ying Sheng committed
207
208

### Additional Server Arguments
209
- To enable multi-GPU tensor parallelism, add `--tp 2`. If it reports the error "peer access is not supported between these two devices", add `--enable-p2p-check` to the server launch command.
Ying Sheng's avatar
Ying Sheng committed
210
```
211
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 2
Ying Sheng's avatar
Ying Sheng committed
212
```
213
- To enable multi-GPU data parallelism, add `--dp 2`. Data parallelism is better for throughput if there is enough memory. It can also be used together with tensor parallelism. The following command uses 4 GPUs in total.
Ying Sheng's avatar
Ying Sheng committed
214
```
215
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --dp 2 --tp 2
Ying Sheng's avatar
Ying Sheng committed
216
```
217
- If you see out-of-memory errors during serving, try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`.
Ying Sheng's avatar
Ying Sheng committed
218
```
219
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --mem-fraction-static 0.7
Ying Sheng's avatar
Ying Sheng committed
220
```
221
222
- See [hyperparameter_tuning.md](docs/en/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
- If you see out-of-memory errors during prefill for long prompts, try to set a smaller chunked prefill size.
Ying Sheng's avatar
Ying Sheng committed
223
```
224
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --chunked-prefill-size 4096
Ying Sheng's avatar
Ying Sheng committed
225
```
226
- To enable torch.compile acceleration, add `--enable-torch-compile`. It accelerates small models on small batch sizes.
Lianmin Zheng's avatar
Lianmin Zheng committed
227
- To enable torchao quantization, add `--torchao-config int4wo-128`. It supports various quantization strategies.
228
229
230
- To enable fp8 weight quantization, add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
- To enable fp8 kv cache quantization, add `--kv-cache-dtype fp8_e5m2`.
- If the model does not have a chat template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/en/custom_chat_template.md).
231
- To run tensor parallelism on multiple nodes, add `--nnodes 2`. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-0` be the hostname of the first node and `50000` be an available port, you can use the following commands. If you meet deadlock, please try to add `--disable-cuda-graph`
Ying Sheng's avatar
Ying Sheng committed
232
233
```
# Node 0
234
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 0
Ying Sheng's avatar
Ying Sheng committed
235
236

# Node 1
237
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 1
Ying Sheng's avatar
Ying Sheng committed
238
```
Lianmin Zheng's avatar
Lianmin Zheng committed
239
 
Ying Sheng's avatar
Ying Sheng committed
240
241
### Supported Models

242
**Generative Models**
243
- Llama / Llama 2 / Llama 3 / Llama 3.1
244
- Mistral / Mixtral / Mistral NeMo
Ying Sheng's avatar
Ying Sheng committed
245
246
- Gemma / Gemma 2
- Qwen / Qwen 2 / Qwen 2 MoE
247
- DeepSeek / DeepSeek 2
Lianmin Zheng's avatar
Lianmin Zheng committed
248
- OLMoE
249
- [LLaVA-OneVision](https://llava-vl.github.io/blog/2024-08-05-llava-onevision/)
250
  - `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-7b-ov --port=30000 --chat-template=chatml-llava`
251
  - `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-72b-ov --port=30000 --tp-size=8 --chat-template=chatml-llava`
252
253
254
255
256
  - Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](test/srt/test_vision_openai_server.py)
- LLaVA 1.5 / 1.6 / NeXT
  - `python -m sglang.launch_server --model-path lmms-lab/llama3-llava-next-8b --port=30000 --tp-size=1 --chat-template=llava_llama_3`
  - `python -m sglang.launch_server --model-path lmms-lab/llava-next-72b --port=30000 --tp-size=8 --chat-template=chatml-llava`
  - Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](test/srt/test_vision_openai_server.py)
Ying Sheng's avatar
Ying Sheng committed
257
258
259
260
261
262
263
- Yi-VL
- StableLM
- Command-R
- DBRX
- Grok
- ChatGLM
- InternLM 2
264
- Exaone 3
Vectory's avatar
Vectory committed
265
- BaiChuan2
William's avatar
William committed
266
- MiniCPM / MiniCPM 3
267
- XVERSE / XVERSE MoE
268
- SmolLM
William's avatar
William committed
269

270
271
272
273
274
275
**Embedding Models**

- e5-mistral
- gte-Qwen2
  - `python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct --is-embedding`

276
Instructions for supporting a new model are [here](docs/en/model_support.md).
Ying Sheng's avatar
Ying Sheng committed
277

Lianmin Zheng's avatar
Lianmin Zheng committed
278
#### Use Models From ModelScope
279
<details>
Dr. Artificial曾小健's avatar
Dr. Artificial曾小健 committed
280
<summary>More</summary>
281

Lianmin Zheng's avatar
Lianmin Zheng committed
282
To use a model from [ModelScope](https://www.modelscope.cn), set the environment variable SGLANG_USE_MODELSCOPE.
Lianmin Zheng's avatar
Lianmin Zheng committed
283
284
285
286
287
288
```
export SGLANG_USE_MODELSCOPE=true
```
Launch [Qwen2-7B-Instruct](https://www.modelscope.cn/models/qwen/qwen2-7b-instruct) Server
```
SGLANG_USE_MODELSCOPE=true python -m sglang.launch_server --model-path qwen/Qwen2-7B-Instruct --port 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
289
```
290
291
292
293
294
295
296
297
298
299
300

Or start it by docker.
```bash
docker run --gpus all \
    -p 30000:30000 \
    -v ~/.cache/modelscope:/root/.cache/modelscope \
    --env "SGLANG_USE_MODELSCOPE=true" \
    --ipc=host \
    lmsysorg/sglang:latest \
    python3 -m sglang.launch_server --model-path Qwen/Qwen2.5-7B-Instruct --host 0.0.0.0 --port 30000
```
Lianmin Zheng's avatar
Lianmin Zheng committed
301
  
302
</details>
Lianmin Zheng's avatar
Lianmin Zheng committed
303
304

#### Run Llama 3.1 405B
Lianmin Zheng's avatar
Lianmin Zheng committed
305
<details>
Dr. Artificial曾小健's avatar
Dr. Artificial曾小健 committed
306
<summary>More</summary>
Ying Sheng's avatar
Ying Sheng committed
307
308

```bash
309
# Run 405B (fp8) on a single node
Ying Sheng's avatar
Ying Sheng committed
310
311
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8

312
313
314
# Run 405B (fp16) on two nodes
## on the first node, replace the `172.16.4.52:20000` with your own first node ip address and port
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 0 --disable-cuda-graph
Ying Sheng's avatar
Ying Sheng committed
315

316
317
## on the first node, replace the `172.16.4.52:20000` with your own first node ip address and port
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 1 --disable-cuda-graph
Ying Sheng's avatar
Ying Sheng committed
318
319
```

Lianmin Zheng's avatar
Lianmin Zheng committed
320
321
</details>

Ying Sheng's avatar
Ying Sheng committed
322
323
### Benchmark Performance

Lianmin Zheng's avatar
Lianmin Zheng committed
324
325
326
- Benchmark a single static batch by running the following command without launching a server. The arguments are the same as for `launch_server.py`.
  Note that this is not a dynamic batching server, so it may run out of memory for a batch size that a real server can handle.
  A real server truncates the prefill into several batches, while this unit test does not. For accurate large batch testing, please use `sglang.bench_serving` instead.
Ying Sheng's avatar
Ying Sheng committed
327
  ```
328
  python -m sglang.bench_latency --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 32 --input-len 256 --output-len 32
Ying Sheng's avatar
Ying Sheng committed
329
330
331
  ```
- Benchmark online serving. Launch a server first and run the following command.
  ```
332
  python3 -m sglang.bench_serving --backend sglang --num-prompt 10
Ying Sheng's avatar
Ying Sheng committed
333
334
  ```

Ying Sheng's avatar
Ying Sheng committed
335
## Frontend: Structured Generation Language (SGLang)
336
The frontend language can be used with local models or API models. It is an alternative to the OpenAI API. You may found it easier to use for complex prompting workflow.
Ying Sheng's avatar
Ying Sheng committed
337
338

### Quick Start
Lianmin Zheng's avatar
Lianmin Zheng committed
339
340
The example below shows how to use sglang to answer a mulit-turn question.

Ying Sheng's avatar
Ying Sheng committed
341
#### Using Local Models
342
First, launch a server with
Lianmin Zheng's avatar
Lianmin Zheng committed
343
```
Ying Sheng's avatar
Ying Sheng committed
344
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
345
346
```

347
348
Then, connect to the server and answer a multi-turn question.

Lianmin Zheng's avatar
Lianmin Zheng committed
349
```python
350
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint
Lianmin Zheng's avatar
Lianmin Zheng committed
351
352
353
354
355
356
357
358
359

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

360
set_default_backend(RuntimeEndpoint("http://localhost:30000"))
Lianmin Zheng's avatar
Lianmin Zheng committed
361
362
363
364
365
366
367
368

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
369
370

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
371
372
```

Ying Sheng's avatar
Ying Sheng committed
373
#### Using OpenAI Models
374
Set the OpenAI API Key
Lianmin Zheng's avatar
Lianmin Zheng committed
375
```
376
export OPENAI_API_KEY=sk-******
Lianmin Zheng's avatar
Lianmin Zheng committed
377
378
```

379
Then, answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
380
```python
381
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI
Lianmin Zheng's avatar
Lianmin Zheng committed
382
383
384
385
386
387
388
389
390

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

391
set_default_backend(OpenAI("gpt-3.5-turbo"))
Lianmin Zheng's avatar
Lianmin Zheng committed
392
393
394
395
396
397
398
399

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
400
401

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
402
403
```

Ying Sheng's avatar
Ying Sheng committed
404
#### More Examples
Lianmin Zheng's avatar
Lianmin Zheng committed
405

406
Anthropic and VertexAI (Gemini) models are also supported.
Byron Hsu's avatar
Byron Hsu committed
407
You can find more examples at [examples/quick_start](examples/frontend_language/quick_start).
Lianmin Zheng's avatar
Lianmin Zheng committed
408

Ying Sheng's avatar
Ying Sheng committed
409
### Language Feature
Lianmin Zheng's avatar
Lianmin Zheng committed
410
411
412
413
414
To begin with, import sglang.
```python
import sglang as sgl
```

Lianmin Zheng's avatar
Lianmin Zheng committed
415
`sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
Lianmin Zheng's avatar
Lianmin Zheng committed
416
417
You can implement your prompt flow in a function decorated by `sgl.function`.
You can then invoke the function with `run` or `run_batch`.
418
The system will manage the state, chat template, parallelism and batching for you.
Lianmin Zheng's avatar
Lianmin Zheng committed
419

420
The complete code for the examples below can be found at [readme_examples.py](examples/frontend_language/usage/readme_examples.py)
421

Ying Sheng's avatar
Ying Sheng committed
422
#### Control Flow
Lianmin Zheng's avatar
Lianmin Zheng committed
423
424
You can use any Python code within the function body, including control flow, nested function calls, and external libraries.

Lianmin Zheng's avatar
Lianmin Zheng committed
425
426
```python
@sgl.function
427
428
429
def tool_use(s, question):
    s += "To answer this question: " + question + ". "
    s += "I need to use a " + sgl.gen("tool", choices=["calculator", "search engine"]) + ". "
Lianmin Zheng's avatar
Lianmin Zheng committed
430
431
432

    if s["tool"] == "calculator":
        s += "The math expression is" + sgl.gen("expression")
433
434
    elif s["tool"] == "search engine":
        s += "The key word to search is" + sgl.gen("word")
Lianmin Zheng's avatar
Lianmin Zheng committed
435
```
Lianmin Zheng's avatar
Lianmin Zheng committed
436

Ying Sheng's avatar
Ying Sheng committed
437
#### Parallelism
Lianmin Zheng's avatar
Lianmin Zheng committed
438
439
440
Use `fork` to launch parallel prompts.
Because `sgl.gen` is non-blocking, the for loop below issues two generation calls in parallel.

Lianmin Zheng's avatar
Lianmin Zheng committed
441
442
443
444
445
446
447
448
```python
@sgl.function
def tip_suggestion(s):
    s += (
        "Here are two tips for staying healthy: "
        "1. Balanced Diet. 2. Regular Exercise.\n\n"
    )

Lianmin Zheng's avatar
Lianmin Zheng committed
449
    forks = s.fork(2)
Lianmin Zheng's avatar
Lianmin Zheng committed
450
451
452
453
454
455
456
457
    for i, f in enumerate(forks):
        f += f"Now, expand tip {i+1} into a paragraph:\n"
        f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")

    s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
    s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
    s += "In summary" + sgl.gen("summary")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
458

Lianmin Zheng's avatar
Lianmin Zheng committed
459
#### Multi-Modality
Lianmin Zheng's avatar
Lianmin Zheng committed
460
461
Use `sgl.image` to pass an image as input.

Lianmin Zheng's avatar
Lianmin Zheng committed
462
463
```python
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
464
def image_qa(s, image_file, question):
Lianmin Zheng's avatar
Lianmin Zheng committed
465
    s += sgl.user(sgl.image(image_file) + question)
Lianmin Zheng's avatar
Lianmin Zheng committed
466
    s += sgl.assistant(sgl.gen("answer", max_tokens=256)
Lianmin Zheng's avatar
Lianmin Zheng committed
467
468
```

469
See also [srt_example_llava.py](examples/frontend_language/quick_start/local_example_llava_next.py).
470

Ying Sheng's avatar
Ying Sheng committed
471
#### Constrained Decoding
472
473
Use `regex` to specify a regular expression as a decoding constraint.
This is only supported for local models.
Lianmin Zheng's avatar
Lianmin Zheng committed
474

Lianmin Zheng's avatar
Lianmin Zheng committed
475
```python
Lianmin Zheng's avatar
Lianmin Zheng committed
476
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
477
478
def regular_expression_gen(s):
    s += "Q: What is the IP address of the Google DNS servers?\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
479
    s += "A: " + sgl.gen(
Lianmin Zheng's avatar
Lianmin Zheng committed
480
481
482
483
484
        "answer",
        temperature=0,
        regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
    )
```
Lianmin Zheng's avatar
Lianmin Zheng committed
485

Ying Sheng's avatar
Ying Sheng committed
486
#### JSON Decoding
Lianmin Zheng's avatar
Lianmin Zheng committed
487
Use `regex` to specify a JSON schema with a regular expression.
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

```python
character_regex = (
    r"""\{\n"""
    + r"""    "name": "[\w\d\s]{1,16}",\n"""
    + r"""    "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
    + r"""    "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
    + r"""    "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
    + r"""    "wand": \{\n"""
    + r"""        "wood": "[\w\d\s]{1,16}",\n"""
    + r"""        "core": "[\w\d\s]{1,16}",\n"""
    + r"""        "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
    + r"""    \},\n"""
    + r"""    "alive": "(Alive|Deceased)",\n"""
    + r"""    "patronus": "[\w\d\s]{1,16}",\n"""
    + r"""    "bogart": "[\w\d\s]{1,16}"\n"""
    + r"""\}"""
)

@sgl.function
def character_gen(s, name):
Lianmin Zheng's avatar
Lianmin Zheng committed
509
    s += name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
510
511
512
    s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
```

513
See also [json_decode.py](examples/frontend_language/usage/json_decode.py) for an additional example of specifying formats with Pydantic models.
514

Ying Sheng's avatar
Ying Sheng committed
515
#### Batching
Lianmin Zheng's avatar
Lianmin Zheng committed
516
517
Use `run_batch` to run a batch of requests with continuous batching.

Lianmin Zheng's avatar
Lianmin Zheng committed
518
519
520
521
522
523
524
525
526
527
528
529
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run_batch(
    [
        {"question": "What is the capital of the United Kingdom?"},
        {"question": "What is the capital of France?"},
        {"question": "What is the capital of Japan?"},
    ],
Lianmin Zheng's avatar
Lianmin Zheng committed
530
    progress_bar=True
Lianmin Zheng's avatar
Lianmin Zheng committed
531
532
)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
533

Ying Sheng's avatar
Ying Sheng committed
534
#### Streaming
Lianmin Zheng's avatar
Lianmin Zheng committed
535
536
Add `stream=True` to enable streaming.

Lianmin Zheng's avatar
Lianmin Zheng committed
537
538
539
540
541
542
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

543
state = text_qa.run(
Lianmin Zheng's avatar
Lianmin Zheng committed
544
    question="What is the capital of France?",
Lianmin Zheng's avatar
Lianmin Zheng committed
545
546
547
    temperature=0.1,
    stream=True
)
Lianmin Zheng's avatar
Lianmin Zheng committed
548

Lianmin Zheng's avatar
Lianmin Zheng committed
549
550
551
for out in state.text_iter():
    print(out, end="", flush=True)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
552

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
#### Roles

Use `sgl.system``sgl.user` and `sgl.assistant` to set roles when using Chat models. You can also define more complex role prompts using begin and end tokens.

```python
@sgl.function
def chat_example(s):
    s += sgl.system("You are a helpful assistant.")
    # Same as: s += s.system("You are a helpful assistant.")

    with s.user():
        s += "Question: What is the capital of France?"

    s += sgl.assistant_begin()
    s += "Answer: " + sgl.gen(max_tokens=100, stop="\n")
    s += sgl.assistant_end()
```

Ying Sheng's avatar
Ying Sheng committed
571
#### Tips and Implementation Details
572
573
- The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
- The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
Lianmin Zheng's avatar
Lianmin Zheng committed
574

Ying Sheng's avatar
Ying Sheng committed
575
576
577
## Benchmark And Performance
![8b_throughput](https://lmsys.org/images/blog/sglang_llama3/8b_throughput.svg)
![70b_fp8_throughput](https://lmsys.org/images/blog/sglang_llama3/70b_fp8_throughput.svg)
Lianmin Zheng's avatar
Lianmin Zheng committed
578

Ying Sheng's avatar
Ying Sheng committed
579
Learn more at this [blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/).
Lianmin Zheng's avatar
Lianmin Zheng committed
580

Lianmin Zheng's avatar
Lianmin Zheng committed
581
## Roadmap
582
[Development Roadmap (2024 Q4)](https://github.com/sgl-project/sglang/issues/1487)
Lianmin Zheng's avatar
Lianmin Zheng committed
583
584

## Citation And Acknowledgment
Ying Sheng's avatar
Ying Sheng committed
585
586
Please cite our paper, [SGLang: Efficient Execution of Structured Language Model Programs](https://arxiv.org/abs/2312.07104), if you find the project useful.
We also learned from the design and reused code from the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), and [LMQL](https://github.com/eth-sri/lmql).