"vscode:/vscode.git/clone" did not exist on "684a9a8c5a01acfe13ee4a55a7dc7aff69f6b17a"
schedule_batch.py 74.3 KB
Newer Older
1
2
from __future__ import annotations

3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
16
17
18
19
20
21
22
23
24
25
"""
Store information about requests and batches.

The following is the flow of data structures for a batch:

ScheduleBatch -> ModelWorkerBatch -> ForwardBatch

- ScheduleBatch is managed by `scheduler.py::Scheduler`.
  It contains high-level scheduling data. Most of the data is on the CPU.
- ModelWorkerBatch is managed by `tp_worker.py::TpModelWorker`.
26
27
  It is a subset of `ScheduleBatch` that only contains data related to the model forward on GPU.
  It will be transformed from CPU scheduler to GPU model runner.
28
29
- ForwardBatch is managed by `model_runner.py::ModelRunner`.
  It contains low-level tensor data. Most of the data consists of GPU tensors.
Lianmin Zheng's avatar
Lianmin Zheng committed
30
31

TODO(lmzheng): ModelWorkerBatch seems a bit redundant and we consider removing it in the future.
32
"""
Lianmin Zheng's avatar
Lianmin Zheng committed
33

34
import copy
35
import dataclasses
Ying Sheng's avatar
Ying Sheng committed
36
import logging
37
import threading
Lianmin Zheng's avatar
Lianmin Zheng committed
38
from enum import Enum, auto
39
from http import HTTPStatus
40
from typing import TYPE_CHECKING, Any, List, Optional, Set, Tuple, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
41

42
import numpy as np
Lianmin Zheng's avatar
Lianmin Zheng committed
43
import torch
44
45
import triton
import triton.language as tl
46

Liangsheng Yin's avatar
Liangsheng Yin committed
47
from sglang.global_config import global_config
48
from sglang.srt.constrained.base_grammar_backend import BaseGrammarObject
49
from sglang.srt.disaggregation.base import BaseKVSender
Byron Hsu's avatar
Byron Hsu committed
50
51
52
from sglang.srt.disaggregation.decode_schedule_batch_mixin import (
    ScheduleBatchDisaggregationDecodeMixin,
)
53
from sglang.srt.distributed.parallel_state import get_tensor_model_parallel_rank
Hanming Lu's avatar
Hanming Lu committed
54
55
56
57
from sglang.srt.mem_cache.allocator import (
    BaseTokenToKVPoolAllocator,
    SWATokenToKVPoolAllocator,
)
58
from sglang.srt.mem_cache.base_prefix_cache import BasePrefixCache
tarinkk's avatar
tarinkk committed
59
from sglang.srt.mem_cache.chunk_cache import ChunkCache, SWAChunkCache
60
from sglang.srt.mem_cache.memory_pool import ReqToTokenPool
Hanming Lu's avatar
Hanming Lu committed
61
from sglang.srt.mem_cache.swa_radix_cache import SWARadixCache
62
from sglang.srt.metrics.collector import TimeStats
Lianmin Zheng's avatar
Lianmin Zheng committed
63
from sglang.srt.model_executor.forward_batch_info import CaptureHiddenMode, ForwardMode
64
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
65
from sglang.srt.sampling.sampling_params import SamplingParams
66
from sglang.srt.server_args import ServerArgs
67
from sglang.srt.utils import flatten_nested_list, support_triton
Liangsheng Yin's avatar
Liangsheng Yin committed
68

69
if TYPE_CHECKING:
Cheng Wan's avatar
Cheng Wan committed
70
    from sglang.srt.configs.model_config import ModelConfig
71
72
73
    from sglang.srt.speculative.eagle_utils import EagleDraftInput, EagleVerifyInput
    from sglang.srt.speculative.spec_info import SpeculativeAlgorithm

Liangsheng Yin's avatar
Liangsheng Yin committed
74
INIT_INCREMENTAL_DETOKENIZATION_OFFSET = 5
Lianmin Zheng's avatar
Lianmin Zheng committed
75

76
77
GLOBAL_SERVER_ARGS_KEYS = [
    "attention_backend",
78
    "mm_attention_backend",
79
80
81
82
83
84
85
86
87
    "debug_tensor_dump_inject",
    "debug_tensor_dump_output_folder",
    "chunked_prefill_size",
    "device",
    "disable_chunked_prefix_cache",
    "disable_radix_cache",
    "enable_dp_attention",
    "enable_two_batch_overlap",
    "enable_dp_lm_head",
88
89
    "enable_deepep_moe",
    "deepep_mode",
90
    "enable_ep_moe",
91
    "enable_flashinfer_moe",
92
    "enable_flashinfer_allreduce_fusion",
93
94
    "moe_dense_tp_size",
    "ep_dispatch_algorithm",
95
    "deepep_config",
96
    "ep_num_redundant_experts",
97
98
99
100
101
102
    "enable_nan_detection",
    "flashinfer_mla_disable_ragged",
    "max_micro_batch_size",
    "disable_shared_experts_fusion",
    "sampling_backend",
    "speculative_accept_threshold_single",
103
    "speculative_accept_threshold_acc",
104
105
    "torchao_config",
    "triton_attention_reduce_in_fp32",
106
    "num_reserved_decode_tokens",
107
    "weight_loader_disable_mmap",
Yuan Luo's avatar
Yuan Luo committed
108
    "enable_triton_kernel_moe",
109
    "enable_multimodal",
110
111
]

112
# Put some global args for easy access
113
global_server_args_dict = {k: getattr(ServerArgs, k) for k in GLOBAL_SERVER_ARGS_KEYS}
114

Ying Sheng's avatar
Ying Sheng committed
115
116
117
logger = logging.getLogger(__name__)


118
119
120
class BaseFinishReason:
    def __init__(self, is_error: bool = False):
        self.is_error = is_error
Lianmin Zheng's avatar
Lianmin Zheng committed
121

122
    def to_json(self):
123
        raise NotImplementedError()
124
125
126


class FINISH_MATCHED_TOKEN(BaseFinishReason):
Mingyi's avatar
Mingyi committed
127
    def __init__(self, matched: Union[int, List[int]]):
128
129
130
        super().__init__()
        self.matched = matched

131
132
133
134
135
    def to_json(self):
        return {
            "type": "stop",  # to match OpenAI API's return value
            "matched": self.matched,
        }
136
137


138
139
class FINISH_MATCHED_STR(BaseFinishReason):
    def __init__(self, matched: str):
140
        super().__init__()
141
        self.matched = matched
142

143
144
145
146
147
    def to_json(self):
        return {
            "type": "stop",  # to match OpenAI API's return value
            "matched": self.matched,
        }
148
149


150
151
class FINISH_LENGTH(BaseFinishReason):
    def __init__(self, length: int):
152
        super().__init__()
153
        self.length = length
154

155
156
157
158
159
    def to_json(self):
        return {
            "type": "length",  # to match OpenAI API's return value
            "length": self.length,
        }
160
161
162


class FINISH_ABORT(BaseFinishReason):
Lianmin Zheng's avatar
Lianmin Zheng committed
163
    def __init__(self, message=None, status_code=None, err_type=None):
164
        super().__init__(is_error=True)
Lianmin Zheng's avatar
Lianmin Zheng committed
165
        self.message = message or "Aborted"
166
167
        self.status_code = status_code
        self.err_type = err_type
168

169
170
171
    def to_json(self):
        return {
            "type": "abort",
Lianmin Zheng's avatar
Lianmin Zheng committed
172
            "message": self.message,
173
174
            "status_code": self.status_code,
            "err_type": self.err_type,
175
        }
176

Lianmin Zheng's avatar
Lianmin Zheng committed
177

Mick's avatar
Mick committed
178
179
180
181
182
183
class Modality(Enum):
    IMAGE = auto()
    MULTI_IMAGES = auto()
    VIDEO = auto()
    AUDIO = auto()

184
185
186
187
188
189
190
191
192
    @staticmethod
    def from_str(modality_str: str):
        try:
            return Modality[modality_str.upper()]
        except KeyError:
            raise ValueError(
                f"Invalid modality string: {modality_str}. Valid modalities are: {[m.name for m in Modality]}"
            )

193
194
195
196
    @staticmethod
    def all():
        return [Modality.IMAGE, Modality.VIDEO, Modality.AUDIO]

Mick's avatar
Mick committed
197

198
@dataclasses.dataclass
Mick's avatar
Mick committed
199
200
class MultimodalDataItem:
    """
201
202
203
    One MultimodalDataItem contains all inputs for one modality.
    For example, if there are 3 images and 1 audio inputs, there will be 2 MultimodalDataItem.
    One for images and one for audio.
204

205
    We put the common fields first and the model-specific fields in model_specific_data.
Mick's avatar
Mick committed
206
    """
207

Mick's avatar
Mick committed
208
209
210
    modality: Modality
    hash: int = None
    pad_value: int = None
211
    offsets: Optional[list] = None
212
213
214
    # the raw features returned by processor, e.g. pixel_values or audio_features
    feature: Union[torch.Tensor, np.ndarray] = None

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
    # the precomputed embeddings for the modality, e.g. image_emb for image, audio_emb for audio
    precomputed_embeddings: Optional[Union[torch.Tensor, np.ndarray]] = None

    # Model-specific data stored in a dictionary
    model_specific_data: dict[str, Any] = dataclasses.field(default_factory=dict)

    def __getattr__(self, name: str):
        if (
            "model_specific_data" in self.__dict__
            and name in self.__dict__["model_specific_data"]
        ):
            return self.__dict__["model_specific_data"][name]
        else:
            raise AttributeError(
                f"'{self.__class__.__name__}' object has no attribute '{name}'"
            )
Mick's avatar
Mick committed
231

232
233
234
235
236
    def __setitem__(self, key: str, value: Any):
        if key in self.__dict__:
            self.__dict__[key] = value
        else:
            self.model_specific_data[key] = value
237

238
239
    def set(self, key: str, value: Any):
        self.__setitem__(key, value)
240

Mick's avatar
Mick committed
241
242
243
244
245
246
247
248
    @staticmethod
    def is_empty_list(l):
        if l is None:
            return True
        return len([item for item in flatten_nested_list(l) if item is not None]) == 0

    def set_pad_value(self):
        """
Mick's avatar
Mick committed
249
        Set the pad value after first hashing the data
Mick's avatar
Mick committed
250
        """
251
        from sglang.srt.managers.mm_utils import hash_feature
Mick's avatar
Mick committed
252

253
        if self.hash is None:
254
255
            if self.feature is not None:
                hashed_feature = self.feature
256
            else:
257
                hashed_feature = self.precomputed_embeddings
258
            self.hash = hash_feature(hashed_feature)
Mick's avatar
Mick committed
259
260
261
        assert self.hash is not None
        self.pad_value = self.hash % (1 << 30)

262
263
264
    def is_modality(self, modality: Modality) -> bool:
        return self.modality == modality

Mick's avatar
Mick committed
265
    def is_audio(self):
266
        return self.modality == Modality.AUDIO
Mick's avatar
Mick committed
267
268

    def is_image(self):
269
        return self.modality in [Modality.IMAGE, Modality.MULTI_IMAGES]
Mick's avatar
Mick committed
270
271

    def is_video(self):
272
        return self.modality == Modality.VIDEO
Mick's avatar
Mick committed
273

274
275
276
    def is_valid(self) -> bool:
        return self.is_image() or self.is_video() or self.is_audio()

Mick's avatar
Mick committed
277
278
279
280
    def validate(self):
        ...
        # TODO

281
282
283
284
285
286
287
288
289
290
    @staticmethod
    def from_dict(obj: dict):
        kwargs = dict(obj)
        modality = kwargs.pop("modality")
        if isinstance(modality, str):
            modality = Modality[modality]
        ret = MultimodalDataItem(modality=modality, **kwargs)
        ret.validate()
        return ret

291
    def merge(self, other):
292
        self.feature += other.feature
293
        self.offsets += other.offsets
294
295
296
        self.hash = hash((self.hash, other.hash))
        self.set_pad_value()

Mick's avatar
Mick committed
297
298
299
300
301
302
303

@dataclasses.dataclass
class MultimodalInputs:
    """The multimodal data related inputs."""

    # items of data
    mm_items: List[MultimodalDataItem]
304
    image_pad_len: Optional[list] = None
305
    num_image_tokens: Optional[int] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
306

Mick's avatar
Mick committed
307
    # image
Mick's avatar
Mick committed
308
    im_token_id: Optional[int] = None
309
310
311
312
    im_start_id: Optional[int] = None
    im_end_id: Optional[int] = None
    slice_start_id: Optional[int] = None
    slice_end_id: Optional[int] = None
Mick's avatar
Mick committed
313
314
315

    # video
    video_token_id: Optional[int] = None
Mick's avatar
Mick committed
316

Mick's avatar
Mick committed
317
    # audio
318
319
320
    audio_token_id: Optional[int] = None
    audio_start_id: Optional[int] = None
    audio_end_id: Optional[int] = None
Mick's avatar
Mick committed
321

322
323
324
325
    # QWen2-VL related
    mrope_positions: Optional[torch.Tensor] = None
    mrope_position_delta: Optional[torch.Tensor] = None

Liangsheng Yin's avatar
Liangsheng Yin committed
326
    @staticmethod
327
    def from_dict(obj: dict):
Mick's avatar
Mick committed
328
        ret = MultimodalInputs(
Mick's avatar
Mick committed
329
            mm_items=obj["mm_items"],
Liangsheng Yin's avatar
Liangsheng Yin committed
330
        )
331

Mick's avatar
Mick committed
332
        assert isinstance(ret.mm_items, list)
333
        ret.mm_items = [item for item in ret.mm_items if item.is_valid()]
Mick's avatar
Mick committed
334
335
        for item in ret.mm_items:
            item.set_pad_value()
336
337

        optional_args = [
338
339
            "mrope_positions",
            "mrope_position_delta",
340
            "im_token_id",
Mick's avatar
Mick committed
341
342
            "im_start_id",
            "im_end_id",
343
            "video_token_id",
Mick's avatar
Mick committed
344
345
            "slice_start_id",
            "slice_end_id",
Mick's avatar
Mick committed
346
347
            "audio_start_id",
            "audio_end_id",
348
            "audio_token_id",
349
350
351
352
353
        ]
        for arg in optional_args:
            if arg in obj:
                setattr(ret, arg, obj[arg])

Liangsheng Yin's avatar
Liangsheng Yin committed
354
355
        return ret

Mick's avatar
Mick committed
356
    def contains_image_inputs(self) -> bool:
Mick's avatar
Mick committed
357
        return any(item.is_image() for item in self.mm_items)
Mick's avatar
Mick committed
358

359
360
361
    def contains_video_inputs(self) -> bool:
        return any(item.is_video() for item in self.mm_items)

Mick's avatar
Mick committed
362
    def contains_audio_inputs(self) -> bool:
Mick's avatar
Mick committed
363
364
        return any(item.is_audio() for item in self.mm_items)

365
366
    def contains_mm_input(self) -> bool:
        return any(True for item in self.mm_items if item.is_valid())
Mick's avatar
Mick committed
367
368

    def merge(self, other: MultimodalInputs):
369
370
371
        """
        merge image inputs when requests are being merged
        """
372

373
        # args needed to be merged
374
        optional_args = [
Mick's avatar
Mick committed
375
            "mm_items",
376
            "image_pad_len",
377
378
        ]
        for arg in optional_args:
379
380
381
            self_arg = getattr(self, arg, None)
            if self_arg is not None:
                setattr(self, arg, self_arg + getattr(other, arg))
382
383
384
385
386
387
388
389
390
391

        mrope_positions = self.mrope_positions
        if mrope_positions is not None:
            if other.mrope_positions is None:
                self.mrope_positions = mrope_positions
            else:
                self.mrope_positions = torch.cat(
                    [self.mrope_positions, other.mrope_positions], dim=1
                )

392
393
394
395
396
397
398
399
        mrope_position_delta = self.mrope_position_delta
        if mrope_position_delta is not None:
            if other.mrope_position_delta is None:
                self.mrope_position_delta = mrope_position_delta
            else:
                self.mrope_position_delta = torch.cat(
                    [self.mrope_position_delta, other.mrope_position_delta], dim=0
                )
400
401
402
403
404
405

        for key, val in other.__dict__.items():
            if "_id" in key:
                # set token_ids
                if getattr(self, key, None) is None:
                    setattr(self, key, getattr(other, key, None))
406
        # other args would be kept intact
407

Liangsheng Yin's avatar
Liangsheng Yin committed
408

Lianmin Zheng's avatar
Lianmin Zheng committed
409
class Req:
410
    """The input and output status of a request."""
411

412
413
414
415
    def __init__(
        self,
        rid: str,
        origin_input_text: str,
416
        origin_input_ids: List[int],
417
        sampling_params: SamplingParams,
Lianmin Zheng's avatar
Lianmin Zheng committed
418
419
        return_logprob: bool = False,
        top_logprobs_num: int = 0,
420
        token_ids_logprob: List[int] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
421
        stream: bool = False,
422
        origin_input_ids_unpadded: Optional[Tuple[int]] = None,
423
        lora_path: Optional[str] = None,
Rin Intachuen's avatar
Rin Intachuen committed
424
        input_embeds: Optional[List[List[float]]] = None,
woodx's avatar
woodx committed
425
        token_type_ids: List[int] = None,
426
        session_id: Optional[str] = None,
427
        custom_logit_processor: Optional[str] = None,
428
        return_hidden_states: bool = False,
429
        eos_token_ids: Optional[Set[int]] = None,
430
        bootstrap_host: Optional[str] = None,
431
        bootstrap_port: Optional[int] = None,
432
        bootstrap_room: Optional[int] = None,
433
        data_parallel_rank: Optional[int] = None,
434
        vocab_size: Optional[int] = None,
435
    ):
436
        # Input and output info
Lianmin Zheng's avatar
Lianmin Zheng committed
437
        self.rid = rid
Liangsheng Yin's avatar
Liangsheng Yin committed
438
        self.origin_input_text = origin_input_text
439
440
441
442
443
        self.origin_input_ids_unpadded = (
            origin_input_ids_unpadded
            if origin_input_ids_unpadded
            else origin_input_ids  # Before image padding
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
444
        self.origin_input_ids = origin_input_ids
445
446
447
        # Each decode stage's output ids
        self.output_ids = []
        # fill_ids = origin_input_ids + output_ids. Updated if chunked.
448
        self.fill_ids = []
449
        self.session_id = session_id
Lianmin Zheng's avatar
Lianmin Zheng committed
450
        self.input_embeds = input_embeds
451

woodx's avatar
woodx committed
452
453
454
        # for corss-endoder model
        self.token_type_ids = token_type_ids

tarinkk's avatar
tarinkk committed
455
456
457
        # The length of KV that have been removed in local attention chunked prefill
        self.evicted_seqlen_local = 0

Lianmin Zheng's avatar
Lianmin Zheng committed
458
        # Sampling info
459
460
461
462
463
        if isinstance(sampling_params.custom_params, dict):
            sampling_params = copy.copy(sampling_params)
            sampling_params.custom_params = sampling_params.custom_params | {
                "__req__": self
            }
464
        self.sampling_params = sampling_params
465
        self.custom_logit_processor = custom_logit_processor
466
        self.return_hidden_states = return_hidden_states
467
        self.lora_path = lora_path
Liangsheng Yin's avatar
Liangsheng Yin committed
468

469
        # Memory pool info
470
        self.req_pool_idx: Optional[int] = None
471

472
473
474
        # Check finish
        self.tokenizer = None
        self.finished_reason = None
Lianmin Zheng's avatar
Lianmin Zheng committed
475
476
        # Whether this request has finished output
        self.finished_output = None
477
478
        # If we want to abort the request in the middle of the event loop, set this to true
        # Note: We should never set finished_reason in the middle, the req will get filtered and never respond
479
        self.to_abort = False
Lianmin Zheng's avatar
Lianmin Zheng committed
480
        # This carries the error message for `.to_abort` and will be attached to the finished_reason at the end of the event loop
Lianmin Zheng's avatar
Lianmin Zheng committed
481
        self.to_abort_message: str = None
Lianmin Zheng's avatar
Lianmin Zheng committed
482
        self.stream = stream
483
        self.eos_token_ids = eos_token_ids
484
        self.vocab_size = vocab_size
485

486
        # For incremental decoding
487
488
489
490
491
492
493
494
        # ----- | --------- read_ids -------|
        # ----- |   surr_ids  |
        # xxxxx | xxxxxxxxxxx | xxxxxxxxxxx |
        # ----- ^ ----------- ^ ----------- ^
        # ----- 1 ----------- 2 ----------- 3
        # 1: surr_offset
        # 2: read_offset
        # 3: last token
Liangsheng Yin's avatar
Liangsheng Yin committed
495
496
        self.surr_offset = None  # Surrounding offset to defeat the cleanup algorithm
        self.read_offset = None
Lianmin Zheng's avatar
Lianmin Zheng committed
497
        self.decoded_text = ""
498

499
        # For multimodal inputs
Mick's avatar
Mick committed
500
        self.multimodal_inputs: Optional[MultimodalInputs] = None
501

502
        # Prefix info
503
        # The indices to kv cache for the shared prefix.
504
        self.prefix_indices: torch.Tensor = []
505
        # Number of tokens to run prefill.
506
        self.extend_input_len = 0
507
508
        # The relative logprob_start_len in an extend batch
        self.extend_logprob_start_len = 0
509
510
511
        self.last_node: Any = None
        self.last_host_node: Any = None
        self.host_hit_length = 0
Hanming Lu's avatar
Hanming Lu committed
512
513
        # The node to lock until for swa radix tree lock ref
        self.swa_uuid_for_lock: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
514

515
516
517
518
        # Whether or not if it is chunked. It increments whenever
        # it is chunked, and decrement whenever chunked request is
        # processed.
        self.is_chunked = 0
519

520
521
522
        # For retraction
        self.is_retracted = False

523
524
525
526
527
528
529
        # Incremental streamining
        self.send_token_offset: int = 0
        self.send_decode_id_offset: int = 0
        # TODO (Byron): send_output_token_logprobs_offset and send_decode_id_offset can be different in disaggregation mode
        # because the decode server does not have the first output token logprobs
        self.send_output_token_logprobs_offset: int = 0

530
        # Logprobs (arguments)
Lianmin Zheng's avatar
Lianmin Zheng committed
531
        self.return_logprob = return_logprob
532
        # Start index to compute logprob from.
533
        self.logprob_start_len = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
534
        self.top_logprobs_num = top_logprobs_num
535
        self.token_ids_logprob = token_ids_logprob
Lianmin Zheng's avatar
Lianmin Zheng committed
536
537
        self.temp_scaled_logprobs = False
        self.top_p_normalized_logprobs = False
538

539
        # Logprobs (return values)
540
541
        # True means the input logprob has been already sent to detokenizer.
        self.input_logprob_sent: bool = False
542
543
544
545
        self.input_token_logprobs_val: Optional[List[float]] = None
        self.input_token_logprobs_idx: Optional[List[int]] = None
        self.input_top_logprobs_val: Optional[List[float]] = None
        self.input_top_logprobs_idx: Optional[List[int]] = None
546
547
548
549
550
551
552
553
        self.input_token_ids_logprobs_val: Optional[List[float]] = None
        self.input_token_ids_logprobs_idx: Optional[List[int]] = None
        # Temporary holder to store input_token_logprobs.
        self.input_token_logprobs: Optional[List[Tuple[int]]] = None
        self.temp_input_top_logprobs_val: Optional[List[torch.Tensor]] = None
        self.temp_input_top_logprobs_idx: Optional[List[int]] = None
        self.temp_input_token_ids_logprobs_val: Optional[List[float]] = None
        self.temp_input_token_ids_logprobs_idx: Optional[List[int]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
554
555

        if return_logprob:
556
            # shape: (bs, 1)
Lianmin Zheng's avatar
Lianmin Zheng committed
557
558
            self.output_token_logprobs_val = []
            self.output_token_logprobs_idx = []
559
            # shape: (bs, k)
Lianmin Zheng's avatar
Lianmin Zheng committed
560
561
            self.output_top_logprobs_val = []
            self.output_top_logprobs_idx = []
562
563
            self.output_token_ids_logprobs_val = []
            self.output_token_ids_logprobs_idx = []
Lianmin Zheng's avatar
Lianmin Zheng committed
564
565
566
        else:
            self.output_token_logprobs_val = self.output_token_logprobs_idx = (
                self.output_top_logprobs_val
567
568
569
            ) = self.output_top_logprobs_idx = self.output_token_ids_logprobs_val = (
                self.output_token_ids_logprobs_idx
            ) = None
570
        self.hidden_states: List[List[float]] = []
571
        self.hidden_states_tensor = None  # Note: use tensor instead of list to transfer hidden_states when PD + MTP
572

573
        # Embedding (return values)
574
        self.embedding = None
Lianmin Zheng's avatar
Lianmin Zheng committed
575

576
        # Constrained decoding
577
        self.grammar: Optional[BaseGrammarObject] = None
578
        self.grammar_wait_ct = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
579

580
        # The number of cached tokens that were already cached in the KV cache
581
        self.cached_tokens = 0
582
        self.already_computed = 0
583

584
585
586
        # The number of verification forward passes in the speculative decoding.
        # This is used to compute the average acceptance length per request.
        self.spec_verify_ct = 0
587
588
589
590
591
592

        # For metrics
        self.time_stats: TimeStats = TimeStats()
        self.has_log_time_stats: bool = False
        self.queue_time_start = None
        self.queue_time_end = None
593

Byron Hsu's avatar
Byron Hsu committed
594
        # For disaggregation
595
        self.bootstrap_host: str = bootstrap_host
596
        self.bootstrap_port: Optional[int] = bootstrap_port
597
        self.bootstrap_room: Optional[int] = bootstrap_room
598
        self.disagg_kv_sender: Optional[BaseKVSender] = None
Byron Hsu's avatar
Byron Hsu committed
599

600
601
602
        # For data parallel rank routing
        self.data_parallel_rank: Optional[int] = data_parallel_rank

Byron Hsu's avatar
Byron Hsu committed
603
604
605
606
607
608
609
        # the start index of the sent kv cache
        # We want to send it chunk by chunk for chunked prefill.
        # After every chunk forward, we do the following:
        # kv_send(req.input_ids[req.start_send_idx:len(req.fill_ids)])
        # start_send_idx = len(req.fill_ids)
        self.start_send_idx: int = 0

610
611
612
613
        # For overlap schedule, we delay the kv transfer until `process_batch_result_disagg_prefill` rather than `process_prefill_chunk` in non-overlap
        # This is because kv is not ready in `process_prefill_chunk`.
        # We use `tmp_end_idx` to store the end index of the kv cache to send.
        self.tmp_end_idx: int = -1
Lianmin Zheng's avatar
Lianmin Zheng committed
614
        self.metadata_buffer_index: int = -1
615

616
617
618
619
    @property
    def seqlen(self):
        return len(self.origin_input_ids) + len(self.output_ids)

620
    def extend_image_inputs(self, image_inputs):
Mick's avatar
Mick committed
621
622
        if self.multimodal_inputs is None:
            self.multimodal_inputs = image_inputs
623
        else:
Mick's avatar
Mick committed
624
            self.multimodal_inputs.merge(image_inputs)
625

626
    def finished(self) -> bool:
Lianmin Zheng's avatar
Lianmin Zheng committed
627
        # Whether request reached finished condition
628
629
        return self.finished_reason is not None

630
631
632
633
    def init_next_round_input(
        self,
        tree_cache: Optional[BasePrefixCache] = None,
    ):
634
        self.fill_ids = self.origin_input_ids + self.output_ids
635
        if tree_cache is not None:
636
637
638
639
640
641
642
643
            (
                self.prefix_indices,
                self.last_node,
                self.last_host_node,
                self.host_hit_length,
            ) = tree_cache.match_prefix(
                key=self.adjust_max_prefix_ids(),
            )
644
        self.extend_input_len = len(self.fill_ids) - len(self.prefix_indices)
645

646
    def adjust_max_prefix_ids(self):
647
648
        self.fill_ids = self.origin_input_ids + self.output_ids
        input_len = len(self.fill_ids)
649
650
651
652

        # FIXME: To work around some bugs in logprob computation, we need to ensure each
        # request has at least one token. Later, we can relax this requirement and use `input_len`.
        max_prefix_len = input_len - 1
Liangsheng Yin's avatar
Liangsheng Yin committed
653
654
655
656
657

        if self.sampling_params.max_new_tokens > 0:
            # Need at least one token to compute logits
            max_prefix_len = min(max_prefix_len, input_len - 1)

658
        if self.return_logprob:
659
            max_prefix_len = min(max_prefix_len, self.logprob_start_len)
660

661
        max_prefix_len = max(max_prefix_len, 0)
662
        return self.fill_ids[:max_prefix_len]
663

Liangsheng Yin's avatar
Liangsheng Yin committed
664
    # Based on https://github.com/vllm-project/vllm/blob/7a64d24aad69e4d2548aa0bf528d9fe63428ab01/vllm/transformers_utils/detokenizer.py#L194-L313
665
    def init_incremental_detokenize(self):
Liangsheng Yin's avatar
Liangsheng Yin committed
666
667
668
669
670
671
672
673
674
        first_iter = self.surr_offset is None or self.read_offset is None

        if first_iter:
            self.read_offset = len(self.origin_input_ids_unpadded)
            self.surr_offset = max(
                self.read_offset - INIT_INCREMENTAL_DETOKENIZATION_OFFSET, 0
            )

        all_ids = self.origin_input_ids_unpadded + self.output_ids
675
        return all_ids[self.surr_offset :], self.read_offset - self.surr_offset
Liangsheng Yin's avatar
Liangsheng Yin committed
676

677
    def check_finished(self):
678
        if self.finished():
679
680
            return

681
        if self.to_abort:
682
683
684
            self.finished_reason = FINISH_ABORT(
                message=self.to_abort_message,
            )
685
686
            return

Liangsheng Yin's avatar
Liangsheng Yin committed
687
        if len(self.output_ids) >= self.sampling_params.max_new_tokens:
688
689
690
            self.finished_reason = FINISH_LENGTH(
                length=self.sampling_params.max_new_tokens
            )
691
692
            return

693
694
695
696
697
        if self.grammar is not None:
            if self.grammar.is_terminated():
                self.finished_reason = FINISH_MATCHED_TOKEN(matched=self.output_ids[-1])
                return

698
        last_token_id = self.output_ids[-1]
699

700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
        if not self.sampling_params.ignore_eos:
            matched_eos = False

            # Check stop token ids
            if self.sampling_params.stop_token_ids:
                matched_eos = last_token_id in self.sampling_params.stop_token_ids
            if self.eos_token_ids:
                matched_eos |= last_token_id in self.eos_token_ids
            if self.tokenizer is not None:
                matched_eos |= last_token_id == self.tokenizer.eos_token_id
                if self.tokenizer.additional_stop_token_ids:
                    matched_eos |= (
                        last_token_id in self.tokenizer.additional_stop_token_ids
                    )
            if matched_eos:
                self.finished_reason = FINISH_MATCHED_TOKEN(matched=last_token_id)
                return
717

718
719
720
721
722
723
724
725
        if last_token_id > self.vocab_size or last_token_id < 0:
            if self.sampling_params.stop_token_ids:
                self.output_ids[-1] = next(iter(self.sampling_params.stop_token_ids))
            if self.eos_token_ids:
                self.output_ids[-1] = next(iter(self.eos_token_ids))
            self.finished_reason = FINISH_MATCHED_STR(matched="NaN happened")
            return

726
        # Check stop strings
727
728
729
730
731
732
        if len(self.sampling_params.stop_strs) > 0:
            tail_str = self.tokenizer.decode(
                self.output_ids[-(self.sampling_params.stop_str_max_len + 1) :]
            )

            for stop_str in self.sampling_params.stop_strs:
Liangsheng Yin's avatar
Liangsheng Yin committed
733
                if stop_str in tail_str or stop_str in self.decoded_text:
734
                    self.finished_reason = FINISH_MATCHED_STR(matched=stop_str)
735
736
                    return

737
738
739
    def reset_for_retract(self):
        self.prefix_indices = []
        self.last_node = None
Hanming Lu's avatar
Hanming Lu committed
740
        self.swa_uuid_for_lock = None
741
742
        self.extend_input_len = 0
        self.is_retracted = True
743
744
745
746
747
748
        self.input_token_logprobs = None
        self.temp_input_top_logprobs_val = None
        self.temp_input_top_logprobs_idx = None
        self.extend_logprob_start_len = 0
        self.is_chunked = 0
        self.req_pool_idx = None
749
        self.already_computed = 0
750

Lianmin Zheng's avatar
Lianmin Zheng committed
751
752
753
754
755
756
757
758
759
760
761
762
763
    def offload_kv_cache(self, req_to_token_pool, token_to_kv_pool_allocator):
        token_indices = req_to_token_pool.req_to_token[
            self.req_pool_idx, : self.seqlen - 1
        ]
        self.kv_cache_cpu = token_to_kv_pool_allocator.get_cpu_copy(token_indices)

    def load_kv_cache(self, req_to_token_pool, token_to_kv_pool_allocator):
        token_indices = req_to_token_pool.req_to_token[
            self.req_pool_idx, : self.seqlen - 1
        ]
        token_to_kv_pool_allocator.load_cpu_copy(self.kv_cache_cpu, token_indices)
        del self.kv_cache_cpu

764
765
766
767
768
769
770
771
772
773
774
775
    def log_time_stats(self):
        # If overlap schedule, we schedule one decode batch ahead so this gets called twice.
        if self.has_log_time_stats is True:
            return

        if self.bootstrap_room is not None:
            prefix = f"Req Time Stats(rid={self.rid}, bootstrap_room={self.bootstrap_room}, input len={len(self.origin_input_ids)}, output len={len(self.output_ids)}, type={self.time_stats.get_type().value})"
        else:
            prefix = f"Req Time Stats(rid={self.rid}, input len={len(self.origin_input_ids)}, output len={len(self.output_ids)}, type={self.time_stats.get_type().value})"
        logger.info(f"{prefix}: {self.time_stats}")
        self.has_log_time_stats = True

776
777
778
779
780
781
    def set_finish_with_abort(self, error_msg: str):
        if get_tensor_model_parallel_rank() == 0:
            logger.error(f"{error_msg}, {self.rid=}")
        self.multimodal_inputs = None
        self.grammar = None
        self.origin_input_ids = [0]  # set it to one token to skip the long prefill
782
        self.return_logprob = False
783
784
785
786
        self.finished_reason = FINISH_ABORT(
            error_msg, HTTPStatus.BAD_REQUEST, "BadRequestError"
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
787
    def __repr__(self):
788
        return (
789
            f"Req(rid={self.rid}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
790
791
792
            f"input_ids={self.origin_input_ids}, output_ids={self.output_ids}, "
            f"{self.grammar=}, "
            f"{self.sampling_params=})"
793
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
794
795


Lianmin Zheng's avatar
Lianmin Zheng committed
796
# Batch id
797
798
799
bid = 0


800
@dataclasses.dataclass
Byron Hsu's avatar
Byron Hsu committed
801
class ScheduleBatch(ScheduleBatchDisaggregationDecodeMixin):
802
    """Store all information of a batch on the scheduler."""
803

804
    # Request, memory pool, and cache
805
    reqs: List[Req]
806
    req_to_token_pool: ReqToTokenPool = None
807
    token_to_kv_pool_allocator: BaseTokenToKVPoolAllocator = None
808
    tree_cache: BasePrefixCache = None
Hanming Lu's avatar
Hanming Lu committed
809
    is_hybrid: bool = False
810

811
    # Batch configs
812
    model_config: ModelConfig = None
Liangsheng Yin's avatar
Liangsheng Yin committed
813
    forward_mode: ForwardMode = None
814
    enable_overlap: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
815
816
817
818
    # Tell whether the current running batch is full so that we can skip
    # the check of whether to prefill new requests.
    # This is an optimization to reduce the overhead of the prefill check.
    batch_is_full: bool = False
819

820
821
822
    # Events
    launch_done: Optional[threading.Event] = None

823
824
825
    # For chunked prefill in PP
    chunked_req: Optional[Req] = None

826
    # Sampling info
827
    sampling_info: SamplingBatchInfo = None
828
    next_batch_sampling_info: SamplingBatchInfo = None
Liangsheng Yin's avatar
Liangsheng Yin committed
829

830
    # Batched arguments to model runner
Lianmin Zheng's avatar
Lianmin Zheng committed
831
    input_ids: torch.Tensor = None  # shape: [b], int64
832
    input_embeds: torch.Tensor = None  # shape: [b, hidden_size], float32
woodx's avatar
woodx committed
833
    token_type_ids: torch.Tensor = None  # shape: [b], int64
Lianmin Zheng's avatar
Lianmin Zheng committed
834
    req_pool_indices: torch.Tensor = None  # shape: [b], int64
835
    seq_lens: torch.Tensor = None  # shape: [b], int64
836
    # The output locations of the KV cache
Lianmin Zheng's avatar
Lianmin Zheng committed
837
838
    out_cache_loc: torch.Tensor = None  # shape: [b], int64
    output_ids: torch.Tensor = None  # shape: [b], int64
839

840
841
842
    # For multimodal inputs
    multimodal_inputs: Optional[List] = None

843
844
845
    # The sum of all sequence lengths
    seq_lens_sum: int = None

Ke Bao's avatar
Ke Bao committed
846
847
    # For DP attention
    global_num_tokens: Optional[List[int]] = None
848
    global_num_tokens_for_logprob: Optional[List[int]] = None
849
    is_extend_in_batch: bool = False
850
    can_run_dp_cuda_graph: bool = False
851
852
    tbo_split_seq_index: Optional[int] = None
    global_forward_mode: Optional[ForwardMode] = None
Ke Bao's avatar
Ke Bao committed
853

854
    # For processing logprobs
855
    return_logprob: bool = False
856
    top_logprobs_nums: Optional[List[int]] = None
857
    token_ids_logprobs: Optional[List[List[int]]] = None
858

Lianmin Zheng's avatar
Lianmin Zheng committed
859
860
861
862
    # For logits and logprob post processing
    temp_scaled_logprobs: bool = False
    top_p_normalized_logprobs: bool = False

863
864
865
    # For extend and mixed chunekd prefill
    prefix_lens: List[int] = None
    extend_lens: List[int] = None
866
    extend_num_tokens: Optional[int] = None
867
    decoding_reqs: List[Req] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
868
    extend_logprob_start_lens: List[int] = None
869
870
    # It comes empty list if logprob is not required.
    extend_input_logprob_token_ids: Optional[torch.Tensor] = None
871

Lianmin Zheng's avatar
Lianmin Zheng committed
872
    # For encoder-decoder architectures
873
874
875
876
877
    encoder_cached: Optional[List[bool]] = None
    encoder_lens: Optional[torch.Tensor] = None
    encoder_lens_cpu: Optional[List[int]] = None
    encoder_out_cache_loc: Optional[torch.Tensor] = None

878
879
880
    # Stream
    has_stream: bool = False

881
882
    # Has grammar
    has_grammar: bool = False
883

884
    # Device
885
886
    device: str = "cuda"

887
    # Speculative decoding
888
    spec_algorithm: SpeculativeAlgorithm = None
889
    spec_info: Optional[Union[EagleDraftInput, EagleVerifyInput]] = None
890

891
892
893
    # Enable custom logit processor
    enable_custom_logit_processor: bool = False

894
895
896
    # Whether to return hidden states
    return_hidden_states: bool = False

897
898
899
    # hicache pointer for synchronizing data loading from CPU to GPU
    hicache_consumer_index: int = 0

900
    @classmethod
901
902
    def init_new(
        cls,
903
        reqs: List[Req],
904
        req_to_token_pool: ReqToTokenPool,
905
        token_to_kv_pool_allocator: BaseTokenToKVPoolAllocator,
906
907
908
        tree_cache: BasePrefixCache,
        model_config: ModelConfig,
        enable_overlap: bool,
909
        spec_algorithm: SpeculativeAlgorithm,
910
        enable_custom_logit_processor: bool,
911
        chunked_req: Optional[Req] = None,
912
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
913
914
        return_logprob = any(req.return_logprob for req in reqs)

Hanming Lu's avatar
Hanming Lu committed
915
916
917
918
919
920
921
        is_hybrid = False
        if isinstance(token_to_kv_pool_allocator, SWATokenToKVPoolAllocator):
            assert isinstance(tree_cache, SWARadixCache) or isinstance(
                tree_cache, SWAChunkCache
            ), "SWARadixCache or SWAChunkCache is required for SWATokenToKVPoolAllocator"
            is_hybrid = True

922
923
924
        return cls(
            reqs=reqs,
            req_to_token_pool=req_to_token_pool,
925
            token_to_kv_pool_allocator=token_to_kv_pool_allocator,
926
            tree_cache=tree_cache,
Hanming Lu's avatar
Hanming Lu committed
927
            is_hybrid=is_hybrid,
928
            model_config=model_config,
929
            enable_overlap=enable_overlap,
Lianmin Zheng's avatar
Lianmin Zheng committed
930
            return_logprob=return_logprob,
931
            has_stream=any(req.stream for req in reqs),
932
            has_grammar=any(req.grammar for req in reqs),
Zhang, Liangang's avatar
Zhang, Liangang committed
933
            device=req_to_token_pool.device,
934
            spec_algorithm=spec_algorithm,
935
            enable_custom_logit_processor=enable_custom_logit_processor,
936
            return_hidden_states=any(req.return_hidden_states for req in reqs),
937
            chunked_req=chunked_req,
Lianmin Zheng's avatar
Lianmin Zheng committed
938
939
        )

940
    def batch_size(self):
941
        return len(self.reqs)
942

Lianmin Zheng's avatar
Lianmin Zheng committed
943
944
945
    def is_empty(self):
        return len(self.reqs) == 0

946
    def alloc_req_slots(self, num_reqs: int):
947
948
949
        req_pool_indices = self.req_to_token_pool.alloc(num_reqs)
        if req_pool_indices is None:
            raise RuntimeError(
950
951
952
953
                "alloc_req_slots runs out of memory. "
                "Please set a smaller number for `--max-running-requests`. "
                f"{self.req_to_token_pool.available_size()=}, "
                f"{num_reqs=}, "
954
955
956
            )
        return req_pool_indices

957
    def alloc_token_slots(self, num_tokens: int, backup_state: bool = False):
Hanming Lu's avatar
Hanming Lu committed
958
        self._evict_tree_cache_if_needed(num_tokens)
Lianmin Zheng's avatar
Lianmin Zheng committed
959

960
961
962
        if backup_state:
            state = self.token_to_kv_pool_allocator.backup_state()

963
        out_cache_loc = self.token_to_kv_pool_allocator.alloc(num_tokens)
Lianmin Zheng's avatar
Lianmin Zheng committed
964
965
966
967
968
        if out_cache_loc is None:
            phase_str = "Prefill" if self.forward_mode.is_extend() else "Decode"
            error_msg = (
                f"{phase_str} out of memory. Try to lower your batch size.\n"
                f"Try to allocate {num_tokens} tokens.\n"
Hanming Lu's avatar
Hanming Lu committed
969
                f"{self._available_and_evictable_str()}"
Lianmin Zheng's avatar
Lianmin Zheng committed
970
971
972
973
974
975
            )
            logger.error(error_msg)
            if self.tree_cache is not None:
                self.tree_cache.pretty_print()
            raise RuntimeError(error_msg)

976
977
978
979
        if backup_state:
            return out_cache_loc, state
        else:
            return out_cache_loc
Lianmin Zheng's avatar
Lianmin Zheng committed
980
981
982
983
984
985
986

    def alloc_paged_token_slots_extend(
        self,
        prefix_lens: torch.Tensor,
        seq_lens: torch.Tensor,
        last_loc: torch.Tensor,
        extend_num_tokens: int,
987
        backup_state: bool = False,
Lianmin Zheng's avatar
Lianmin Zheng committed
988
    ):
Hanming Lu's avatar
Hanming Lu committed
989
990
        num_tokens = (
            extend_num_tokens
Lianmin Zheng's avatar
Lianmin Zheng committed
991
            + len(seq_lens) * self.token_to_kv_pool_allocator.page_size
Hanming Lu's avatar
Hanming Lu committed
992
993
        )
        self._evict_tree_cache_if_needed(num_tokens)
994

995
996
997
        if backup_state:
            state = self.token_to_kv_pool_allocator.backup_state()

Lianmin Zheng's avatar
Lianmin Zheng committed
998
999
1000
        out_cache_loc = self.token_to_kv_pool_allocator.alloc_extend(
            prefix_lens, seq_lens, last_loc, extend_num_tokens
        )
1001
        if out_cache_loc is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1002
1003
1004
            error_msg = (
                f"Prefill out of memory. Try to lower your batch size.\n"
                f"Try to allocate {extend_num_tokens} tokens.\n"
Hanming Lu's avatar
Hanming Lu committed
1005
                f"{self._available_and_evictable_str()}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1006
1007
1008
            )
            logger.error(error_msg)
            raise RuntimeError(error_msg)
1009
1010
1011
1012
1013

        if backup_state:
            return out_cache_loc, state
        else:
            return out_cache_loc
Lianmin Zheng's avatar
Lianmin Zheng committed
1014
1015
1016
1017
1018

    def alloc_paged_token_slots_decode(
        self,
        seq_lens: torch.Tensor,
        last_loc: torch.Tensor,
1019
        backup_state: bool = False,
Lianmin Zheng's avatar
Lianmin Zheng committed
1020
    ):
Hanming Lu's avatar
Hanming Lu committed
1021
1022
1023
        num_tokens = len(seq_lens) * self.token_to_kv_pool_allocator.page_size

        self._evict_tree_cache_if_needed(num_tokens)
1024

1025
1026
1027
1028
        if backup_state:
            state = self.token_to_kv_pool_allocator.backup_state()

        out_cache_loc = self.token_to_kv_pool_allocator.alloc_decode(seq_lens, last_loc)
Lianmin Zheng's avatar
Lianmin Zheng committed
1029
1030
1031
1032
        if out_cache_loc is None:
            error_msg = (
                f"Decode out of memory. Try to lower your batch size.\n"
                f"Try to allocate {len(seq_lens)} tokens.\n"
Hanming Lu's avatar
Hanming Lu committed
1033
                f"{self._available_and_evictable_str()}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1034
1035
1036
            )
            logger.error(error_msg)
            raise RuntimeError(error_msg)
1037
1038
1039
1040
1041

        if backup_state:
            return out_cache_loc, state
        else:
            return out_cache_loc
1042

1043
1044
1045
1046
1047
    def prepare_encoder_info_extend(self, input_ids: List[int], seq_lens: List[int]):
        self.encoder_lens_cpu = []
        self.encoder_cached = []

        for req in self.reqs:
Mick's avatar
Mick committed
1048
            im = req.multimodal_inputs
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
            if im is None or im.num_image_tokens is None:
                # No image input
                self.encoder_lens_cpu.append(0)
                self.encoder_cached.append(True)
            else:
                self.encoder_lens_cpu.append(im.num_image_tokens)
                self.encoder_cached.append(
                    self.forward_mode.is_decode()
                    or len(req.prefix_indices) >= im.num_image_tokens
                )

1060
        self.encoder_lens = torch.tensor(self.encoder_lens_cpu, dtype=torch.int64).to(
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
            self.device, non_blocking=True
        )

        # Strip encoder infos
        pt = 0
        decoder_out_cache_loc = []
        encoder_out_cache_loc = []
        for i, req in enumerate(self.reqs):
            encoder_len = self.encoder_lens_cpu[i]
            seq_lens[i] -= encoder_len

            if len(req.prefix_indices) < encoder_len:
1073
                # NOTE: the encoder part should be considered as a whole
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
                assert len(req.prefix_indices) == 0
                input_ids[i] = input_ids[i][encoder_len:]
                encoder_out_cache_loc.append(self.out_cache_loc[pt : pt + encoder_len])
                decoder_out_cache_loc.append(
                    self.out_cache_loc[pt + encoder_len : pt + req.extend_input_len]
                )
                self.extend_lens[i] -= encoder_len
                self.extend_num_tokens -= encoder_len
            else:
                decoder_out_cache_loc.append(
                    self.out_cache_loc[pt : pt + req.extend_input_len]
                )
                self.prefix_lens[i] -= encoder_len

            pt += req.extend_input_len

        # Reassign
Lianmin Zheng's avatar
Lianmin Zheng committed
1091
        self.input_ids = torch.tensor(sum(input_ids, []), dtype=torch.int64).to(
1092
1093
            self.device, non_blocking=True
        )
1094
        self.seq_lens = torch.tensor(seq_lens, dtype=torch.int64).to(
1095
1096
1097
1098
            self.device, non_blocking=True
        )

        if not decoder_out_cache_loc:
Lianmin Zheng's avatar
Lianmin Zheng committed
1099
            self.out_cache_loc = torch.zeros(0, dtype=torch.int64).to(
1100
1101
1102
1103
1104
1105
                self.device, non_blocking=True
            )
        else:
            self.out_cache_loc = torch.cat(decoder_out_cache_loc)

        if not encoder_out_cache_loc:
Lianmin Zheng's avatar
Lianmin Zheng committed
1106
            self.encoder_out_cache_loc = torch.zeros(0, dtype=torch.int64).to(
1107
1108
1109
1110
1111
                self.device, non_blocking=True
            )
        else:
            self.encoder_out_cache_loc = torch.cat(encoder_out_cache_loc)

1112
1113
1114
        assert (
            len(self.out_cache_loc) == self.extend_num_tokens
        ), f"Expected {len(self.out_cache_loc)}, got {self.extend_num_tokens}"
1115

1116
    def prepare_for_extend(self):
Liangsheng Yin's avatar
Liangsheng Yin committed
1117
1118
        self.forward_mode = ForwardMode.EXTEND

Lianmin Zheng's avatar
Lianmin Zheng committed
1119
        # Allocate req slots
1120
        bs = len(self.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
1121
1122
1123
        req_pool_indices = self.alloc_req_slots(bs)

        # Init tensors
Lianmin Zheng's avatar
Lianmin Zheng committed
1124
        reqs = self.reqs
1125
        input_ids = [r.fill_ids[len(r.prefix_indices) :] for r in reqs]
1126
        extend_num_tokens = sum(len(ids) for ids in input_ids)
Lianmin Zheng's avatar
Lianmin Zheng committed
1127
1128
1129
        seq_lens = [len(r.fill_ids) for r in reqs]
        prefix_lens = [len(r.prefix_indices) for r in reqs]
        extend_lens = [r.extend_input_len for r in reqs]
Lianmin Zheng's avatar
Lianmin Zheng committed
1130

woodx's avatar
woodx committed
1131
1132
1133
1134
        token_type_ids = [
            r.token_type_ids for r in reqs if r.token_type_ids is not None
        ]

Lianmin Zheng's avatar
Lianmin Zheng committed
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
        req_pool_indices_tensor = torch.tensor(req_pool_indices, dtype=torch.int64).to(
            self.device, non_blocking=True
        )
        input_ids_tensor = torch.tensor(sum(input_ids, []), dtype=torch.int64).to(
            self.device, non_blocking=True
        )
        seq_lens_tensor = torch.tensor(seq_lens, dtype=torch.int64).to(
            self.device, non_blocking=True
        )
        prefix_lens_tensor = torch.tensor(
            prefix_lens, dtype=torch.int64, device=self.device
        )
woodx's avatar
woodx committed
1147
1148
1149
1150
1151
1152
1153

        token_type_ids_tensor = None
        if len(token_type_ids) > 0:
            token_type_ids_tensor = torch.tensor(
                sum(token_type_ids, []), dtype=torch.int64
            ).to(self.device, non_blocking=True)

Lianmin Zheng's avatar
Lianmin Zheng committed
1154
        extend_lens_tensor = seq_lens_tensor - prefix_lens_tensor
1155

Lianmin Zheng's avatar
Lianmin Zheng committed
1156
        # Copy prefix and do some basic check
Rin Intachuen's avatar
Rin Intachuen committed
1157
        input_embeds = []
1158
        extend_input_logprob_token_ids = []
1159
        multimodal_inputs = []
Rin Intachuen's avatar
Rin Intachuen committed
1160

Lianmin Zheng's avatar
Lianmin Zheng committed
1161
        for i, (req, seq_len, pre_len) in enumerate(zip(reqs, seq_lens, prefix_lens)):
1162
            req.req_pool_idx = req_pool_indices[i]
1163
            assert seq_len - pre_len == req.extend_input_len
Lianmin Zheng's avatar
Lianmin Zheng committed
1164

1165
            if pre_len > 0:
1166
1167
                self.req_to_token_pool.write(
                    (req.req_pool_idx, slice(0, pre_len)), req.prefix_indices
1168
                )
tarinkk's avatar
tarinkk committed
1169
                if isinstance(self.tree_cache, SWAChunkCache):
Hanming Lu's avatar
Hanming Lu committed
1170
                    self.tree_cache.evict_swa(
tarinkk's avatar
tarinkk committed
1171
1172
                        req, pre_len, self.model_config.attention_chunk_size
                    )
1173

Rin Intachuen's avatar
Rin Intachuen committed
1174
1175
1176
1177
1178
            # If input_embeds are available, store them
            if req.input_embeds is not None:
                # If req.input_embeds is already a list, append its content directly
                input_embeds.extend(req.input_embeds)  # Use extend to avoid nesting

1179
1180
            multimodal_inputs.append(req.multimodal_inputs)

1181
1182
            req.cached_tokens += pre_len - req.already_computed
            req.already_computed = seq_len
1183
            req.is_retracted = False
Lianmin Zheng's avatar
Lianmin Zheng committed
1184

1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
            # Compute the relative logprob_start_len in an extend batch
            if req.logprob_start_len >= pre_len:
                req.extend_logprob_start_len = min(
                    req.logprob_start_len - pre_len,
                    req.extend_input_len,
                    req.seqlen - 1,
                )
            else:
                req.extend_logprob_start_len = 0

            if self.return_logprob:
                # Find input logprob token ids.
                # First, find a global index within origin_input_ids and slide it by 1
                # to compute input logprobs. It is because you need the next token
                # to compute input logprobs. E.g., (chunk size 2)
                #
                # input_logprobs = [1, 2, 3, 4]
                # fill_ids = [1, 2]
                # extend_input_logprob_token_id = [2, 3]
                #
                # Note that it can also overflow. In this case, we pad it with 0.
                # input_logprobs = [1, 2, 3, 4]
                # fill_ids = [3, 4]
                # extend_input_logprob_token_id = [4, 0]
                global_start_idx, global_end_idx = (
                    len(req.prefix_indices),
                    len(req.fill_ids),
                )
                # Apply logprob_start_len
                if global_start_idx < req.logprob_start_len:
                    global_start_idx = req.logprob_start_len

                logprob_token_ids = req.origin_input_ids[
                    global_start_idx + 1 : global_end_idx + 1
                ]
                extend_input_logprob_token_ids.extend(logprob_token_ids)

                # We will need req.extend_input_len - req.extend_logprob_start_len number of
                # tokens, and logprob_token_ids is for input logprob, so pad the rest of them by 0.
                extend_input_logprob_token_ids.extend(
                    [0]
                    * (
                        req.extend_input_len
                        - req.extend_logprob_start_len
                        - len(logprob_token_ids)
                    )
                )

        if self.return_logprob:
            extend_input_logprob_token_ids = torch.tensor(
                extend_input_logprob_token_ids
            )
        else:
            extend_input_logprob_token_ids = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1239

Lianmin Zheng's avatar
Lianmin Zheng committed
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
        # Allocate memory
        if self.token_to_kv_pool_allocator.page_size == 1:
            out_cache_loc = self.alloc_token_slots(extend_num_tokens)
        else:
            last_loc = get_last_loc(
                self.req_to_token_pool.req_to_token,
                req_pool_indices_tensor,
                prefix_lens_tensor,
            )
            out_cache_loc = self.alloc_paged_token_slots_extend(
                prefix_lens_tensor, seq_lens_tensor, last_loc, extend_num_tokens
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
1253
        # Set fields
Lianmin Zheng's avatar
Lianmin Zheng committed
1254
1255
1256
1257
        self.input_ids = input_ids_tensor
        self.req_pool_indices = req_pool_indices_tensor
        self.seq_lens = seq_lens_tensor
        self.out_cache_loc = out_cache_loc
Rin Intachuen's avatar
Rin Intachuen committed
1258
1259
1260
1261
1262
        self.input_embeds = (
            torch.tensor(input_embeds).to(self.device, non_blocking=True)
            if input_embeds
            else None
        )
1263
1264
1265
1266
        for mm_input in multimodal_inputs:
            if mm_input is None:
                continue
            for mm_item in mm_input.mm_items:
1267
                pixel_values = getattr(mm_item, "feature", None)
1268
                if isinstance(pixel_values, torch.Tensor):
1269
                    mm_item.feature = pixel_values.to(self.device, non_blocking=True)
1270
        self.multimodal_inputs = multimodal_inputs
woodx's avatar
woodx committed
1271
        self.token_type_ids = token_type_ids_tensor
1272
        self.seq_lens_sum = sum(seq_lens)
Lianmin Zheng's avatar
Lianmin Zheng committed
1273

1274
1275
        if self.return_logprob:
            self.top_logprobs_nums = [r.top_logprobs_num for r in reqs]
1276
            self.token_ids_logprobs = [r.token_ids_logprob for r in reqs]
Lianmin Zheng's avatar
Lianmin Zheng committed
1277

1278
        self.extend_logprob_start_lens = [r.extend_logprob_start_len for r in reqs]
Lianmin Zheng's avatar
Lianmin Zheng committed
1279
1280
1281
        self.extend_num_tokens = extend_num_tokens
        self.prefix_lens = prefix_lens
        self.extend_lens = extend_lens
1282
        self.extend_input_logprob_token_ids = extend_input_logprob_token_ids
Lianmin Zheng's avatar
Lianmin Zheng committed
1283

1284
        # Write to req_to_token_pool
1285
        if support_triton(global_server_args_dict.get("attention_backend")):
Lianmin Zheng's avatar
Lianmin Zheng committed
1286
1287
            # TODO: some tensors can be reused for ForwardBatchInfo (e.g., extend_lens, cumsum_start)

1288
1289
            write_req_to_token_pool_triton[(bs,)](
                self.req_to_token_pool.req_to_token,
Lianmin Zheng's avatar
Lianmin Zheng committed
1290
1291
1292
1293
1294
                req_pool_indices_tensor,
                prefix_lens_tensor,
                seq_lens_tensor,
                extend_lens_tensor,
                out_cache_loc,
1295
1296
1297
1298
1299
1300
                self.req_to_token_pool.req_to_token.shape[1],
            )
        else:
            pt = 0
            for i in range(bs):
                self.req_to_token_pool.write(
Lianmin Zheng's avatar
Lianmin Zheng committed
1301
1302
                    (req_pool_indices[i], slice(prefix_lens[i], seq_lens[i])),
                    out_cache_loc[pt : pt + extend_lens[i]],
1303
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
1304
                pt += extend_lens[i]
1305

1306
1307
1308
        if self.model_config.is_encoder_decoder:
            self.prepare_encoder_info_extend(input_ids, seq_lens)

1309
        # Build sampling info
1310
        self.sampling_info = SamplingBatchInfo.from_schedule_batch(
1311
1312
            self,
            self.model_config.vocab_size,
1313
        )
1314

1315
1316
1317
1318
1319
    def prepare_for_split_prefill(self):
        self.prepare_for_extend()
        # For split prefill, we need to set the forward mode to SPLIT_PREFILL
        self.forward_mode = ForwardMode.SPLIT_PREFILL

1320
    def mix_with_running(self, running_batch: "ScheduleBatch"):
1321
        self.forward_mode = ForwardMode.MIXED
1322
        running_bs = running_batch.batch_size()
1323
1324
1325
1326
1327

        for req in running_batch.reqs:
            req.fill_ids = req.origin_input_ids + req.output_ids
            req.extend_input_len = 1

1328
        input_ids = torch.cat([self.input_ids, running_batch.input_ids])
1329
        out_cache_loc = torch.cat([self.out_cache_loc, running_batch.out_cache_loc])
1330

1331
        self.merge_batch(running_batch)
1332
1333
        self.input_ids = input_ids
        self.out_cache_loc = out_cache_loc
1334

1335
1336
1337
        # For overlap scheduler, the output_ids has one step delay
        delta = 0 if self.enable_overlap else -1

1338
        # NOTE: prefix_indices is what has been cached, but we don't cache each decode step
1339
        self.prefix_lens.extend(
1340
            [
1341
                len(r.origin_input_ids) + len(r.output_ids) + delta
1342
1343
1344
                for r in running_batch.reqs
            ]
        )
1345
        self.extend_lens.extend([1] * running_bs)
Lianmin Zheng's avatar
Lianmin Zheng committed
1346
1347
        self.extend_num_tokens += running_bs
        # TODO (lianmin): Revisit this. It should be seq_len - 1
1348
        self.extend_logprob_start_lens.extend([0] * running_bs)
1349

1350
1351
1352
1353
    def new_page_count_next_decode(self):
        page_size = self.token_to_kv_pool_allocator.page_size
        if page_size == 1:
            return len(self.reqs)
1354
1355
        # In the decoding phase, the length of a request's KV cache should be
        # the total length of the request minus 1
pansicheng's avatar
pansicheng committed
1356
1357
1358
1359
1360
        return (
            sum(1 for req in self.reqs if req.seqlen % page_size == 0)
            if self.enable_overlap
            else sum(1 for req in self.reqs if (req.seqlen - 1) % page_size == 0)
        )
1361

1362
    def check_decode_mem(self, buf_multiplier=1):
Hanming Lu's avatar
Hanming Lu committed
1363
        num_tokens = (
1364
1365
1366
1367
1368
            self.new_page_count_next_decode()
            * buf_multiplier
            * self.token_to_kv_pool_allocator.page_size
        )

Hanming Lu's avatar
Hanming Lu committed
1369
1370
        self._evict_tree_cache_if_needed(num_tokens)
        return self._is_available_size_sufficient(num_tokens)
1371

1372
    def retract_decode(self, server_args: ServerArgs):
1373
        """Retract the decoding requests when there is not enough memory."""
1374
        sorted_indices = list(range(len(self.reqs)))
Liangsheng Yin's avatar
Liangsheng Yin committed
1375
1376

        # TODO(lsyin): improve retraction policy for radix cache
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
        # For spec decoding, filter_batch API can only filter
        # requests from the back, so we can only retract from the back.
        # TODO(sang): Clean up finish path and support better retract
        # policy.
        if not server_args.speculative_algorithm:
            sorted_indices.sort(
                key=lambda i: (
                    len(self.reqs[i].output_ids),
                    -len(self.reqs[i].origin_input_ids),
                ),
                reverse=True,
            )

        def get_required_tokens(num_reqs: int):
            headroom_for_spec_decode = 0
            if server_args.speculative_algorithm:
                headroom_for_spec_decode += (
                    num_reqs
                    * server_args.speculative_eagle_topk
                    * server_args.speculative_num_steps
                    + num_reqs * server_args.speculative_num_draft_tokens
                )
            return (
                num_reqs * global_config.retract_decode_steps + headroom_for_spec_decode
            )
1402

Hanming Lu's avatar
Hanming Lu committed
1403
1404
1405
1406
1407
1408
1409
1410
1411
        def _get_available_size():
            if self.is_hybrid:
                return min(
                    self.token_to_kv_pool_allocator.full_available_size(),
                    self.token_to_kv_pool_allocator.swa_available_size(),
                )
            else:
                return self.token_to_kv_pool_allocator.available_size()

Lianmin Zheng's avatar
Lianmin Zheng committed
1412
1413
1414
        retracted_reqs = []
        seq_lens_cpu = self.seq_lens.cpu().numpy()
        first_iter = True
Liangsheng Yin's avatar
Liangsheng Yin committed
1415
        while (
Hanming Lu's avatar
Hanming Lu committed
1416
            _get_available_size() < get_required_tokens(len(sorted_indices))
1417
            or first_iter
Liangsheng Yin's avatar
Liangsheng Yin committed
1418
1419
1420
        ):
            if len(sorted_indices) == 1:
                # Corner case: only one request left
Hanming Lu's avatar
Hanming Lu committed
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
                if self.is_hybrid:
                    full_available_size = (
                        self.token_to_kv_pool_allocator.full_available_size()
                    )
                    swa_available_size = (
                        self.token_to_kv_pool_allocator.swa_available_size()
                    )
                    assert (
                        full_available_size > 0 and swa_available_size > 0
                    ), f"No space left for only one request in SWA mode {full_available_size=}, {swa_available_size=}"
                else:
                    assert (
                        self.token_to_kv_pool_allocator.available_size() > 0
                    ), f"No space left for only one request, {self.token_to_kv_pool_allocator.available_size()=}"
Liangsheng Yin's avatar
Liangsheng Yin committed
1435
1436
                break

1437
            first_iter = False
1438
1439
1440
1441
            idx = sorted_indices.pop()
            req = self.reqs[idx]
            retracted_reqs.append(req)

1442
1443
1444
1445
1446
            if server_args.disaggregation_mode == "decode":
                req.offload_kv_cache(
                    self.req_to_token_pool, self.token_to_kv_pool_allocator
                )

1447
1448
            if isinstance(self.tree_cache, ChunkCache):
                # ChunkCache does not have eviction
1449
1450
                token_indices = self.req_to_token_pool.req_to_token[
                    req.req_pool_idx, : seq_lens_cpu[idx]
1451
                ]
1452
                self.token_to_kv_pool_allocator.free(token_indices)
1453
                self.req_to_token_pool.free(req.req_pool_idx)
1454
1455
            else:
                # TODO: apply more fine-grained retraction
1456
                last_uncached_pos = (
1457
1458
                    len(req.prefix_indices) // server_args.page_size
                ) * server_args.page_size
1459
1460
                token_indices = self.req_to_token_pool.req_to_token[
                    req.req_pool_idx, last_uncached_pos : seq_lens_cpu[idx]
1461
                ]
1462
                self.token_to_kv_pool_allocator.free(token_indices)
1463
                self.req_to_token_pool.free(req.req_pool_idx)
1464
1465

                # release the last node
Hanming Lu's avatar
Hanming Lu committed
1466
1467
1468
1469
                if self.is_hybrid:
                    self.tree_cache.dec_lock_ref(req.last_node, req.swa_uuid_for_lock)
                else:
                    self.tree_cache.dec_lock_ref(req.last_node)
1470
1471

                # NOTE(lsyin): we should use the newly evictable memory instantly.
Hanming Lu's avatar
Hanming Lu committed
1472
1473
                num_tokens = len(sorted_indices) * global_config.retract_decode_steps
                self._evict_tree_cache_if_needed(num_tokens)
1474

1475
            req.reset_for_retract()
Liangsheng Yin's avatar
Liangsheng Yin committed
1476

1477
1478
1479
1480
1481
1482
            if len(retracted_reqs) == 0:
                # Corner case: only one request left
                raise ValueError(
                    "Failed to retract any request. No space left for only one request."
                )

1483
        self.filter_batch(keep_indices=sorted_indices)
1484

Liangsheng Yin's avatar
Liangsheng Yin committed
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
        # Reqs in batch are filtered
        total_decoded_tokens = sum(len(r.output_ids) for r in self.reqs)
        total_max_new_tokens = sum(r.sampling_params.max_new_tokens for r in self.reqs)

        new_estimate_ratio = (
            total_decoded_tokens + global_config.retract_decode_steps * len(self.reqs)
        ) / total_max_new_tokens
        new_estimate_ratio = min(1.0, new_estimate_ratio)

        return retracted_reqs, new_estimate_ratio
1495

1496
1497
1498
1499
    def prepare_encoder_info_decode(self):
        # Reset the encoder cached status
        self.encoder_cached = [True] * len(self.reqs)

Ke Bao's avatar
Ke Bao committed
1500
1501
    def prepare_for_idle(self):
        self.forward_mode = ForwardMode.IDLE
Lianmin Zheng's avatar
Lianmin Zheng committed
1502
        self.input_ids = torch.empty(0, dtype=torch.int64, device=self.device)
1503
        self.seq_lens = torch.empty(0, dtype=torch.int64, device=self.device)
Lianmin Zheng's avatar
Lianmin Zheng committed
1504
        self.out_cache_loc = torch.empty(0, dtype=torch.int64, device=self.device)
1505
        self.req_pool_indices = torch.empty(0, dtype=torch.int32, device=self.device)
1506
        self.seq_lens_sum = 0
Ke Bao's avatar
Ke Bao committed
1507
        self.extend_num_tokens = 0
1508
1509
1510
1511
        self.sampling_info = SamplingBatchInfo.from_schedule_batch(
            self,
            self.model_config.vocab_size,
        )
Ke Bao's avatar
Ke Bao committed
1512

1513
    def prepare_for_decode(self):
Liangsheng Yin's avatar
Liangsheng Yin committed
1514
        self.forward_mode = ForwardMode.DECODE
Lianmin Zheng's avatar
Lianmin Zheng committed
1515
1516
        bs = len(self.reqs)

1517
        if self.spec_algorithm.is_eagle():
1518
1519
            # if spec decoding is used, the decode batch is prepared inside
            # `forward_batch_speculative_generation` after running draft models.
1520
            return
Liangsheng Yin's avatar
Liangsheng Yin committed
1521

1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
        if self.sampling_info.penalizer_orchestrator.is_required:
            if self.enable_overlap:
                # TODO: this can be slow, optimize this.
                delayed_output_ids = torch.tensor(
                    [
                        (
                            req.output_ids[-1]
                            if len(req.output_ids)
                            else req.origin_input_ids[-1]
                        )
                        for req in self.reqs
                    ],
                    dtype=torch.int64,
                    device=self.device,
                )
                self.sampling_info.penalizer_orchestrator.cumulate_output_tokens(
                    delayed_output_ids
                )
            else:
                self.sampling_info.penalizer_orchestrator.cumulate_output_tokens(
                    self.output_ids.to(torch.int64)
                )

Lianmin Zheng's avatar
Lianmin Zheng committed
1545
        # Update fields
1546
1547
        self.input_ids = self.output_ids
        self.output_ids = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1548

1549
1550
1551
1552
        if self.model_config.is_encoder_decoder:
            locs = self.encoder_lens + self.seq_lens
            self.prepare_encoder_info_decode()
        else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1553
            locs = self.seq_lens.clone()
1554

1555
        if self.enable_overlap:
1556
1557
1558
1559
1560
            # Do not use in-place operations in the overlap mode
            self.seq_lens = self.seq_lens + 1
        else:
            # A faster in-place version
            self.seq_lens.add_(1)
1561
        self.seq_lens_sum += bs
Lianmin Zheng's avatar
Lianmin Zheng committed
1562

tarinkk's avatar
tarinkk committed
1563
1564
1565
        # free memory
        if isinstance(self.tree_cache, SWAChunkCache):
            for req in self.reqs:
Hanming Lu's avatar
Hanming Lu committed
1566
                self.tree_cache.evict_swa(
tarinkk's avatar
tarinkk committed
1567
1568
1569
                    req, req.seqlen - 1, self.model_config.attention_chunk_size
                )

Lianmin Zheng's avatar
Lianmin Zheng committed
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
        # Allocate memory
        if self.token_to_kv_pool_allocator.page_size == 1:
            self.out_cache_loc = self.alloc_token_slots(bs)
        else:
            last_loc = self.req_to_token_pool.req_to_token[
                self.req_pool_indices, self.seq_lens - 2
            ]
            self.out_cache_loc = self.alloc_paged_token_slots_decode(
                self.seq_lens, last_loc
            )

        self.req_to_token_pool.write(
            (self.req_pool_indices, locs), self.out_cache_loc.to(torch.int32)
        )

1585
1586
    def filter_batch(
        self,
1587
        chunked_req_to_exclude: Optional[Union[Req, List[Req]]] = None,
1588
1589
1590
        keep_indices: Optional[List[int]] = None,
    ):
        if keep_indices is None:
1591
1592
1593
1594
            if isinstance(chunked_req_to_exclude, Req):
                chunked_req_to_exclude = [chunked_req_to_exclude]
            elif chunked_req_to_exclude is None:
                chunked_req_to_exclude = []
1595
1596
1597
            keep_indices = [
                i
                for i in range(len(self.reqs))
1598
                if not self.reqs[i].finished()
Lianmin Zheng's avatar
Lianmin Zheng committed
1599
                and self.reqs[i] not in chunked_req_to_exclude
1600
1601
1602
            ]

        if keep_indices is None or len(keep_indices) == 0:
1603
1604
1605
1606
            # Filter out all requests
            self.reqs = []
            return

1607
        if len(keep_indices) == len(self.reqs):
1608
1609
1610
            # No need to filter
            return

1611
1612
1613
1614
        keep_indices_device = torch.tensor(keep_indices, dtype=torch.int64).to(
            self.device, non_blocking=True
        )

1615
        if self.model_config.is_encoder_decoder:
1616
            self.encoder_lens = self.encoder_lens[keep_indices_device]
1617
1618
            self.encoder_lens_cpu = [self.encoder_lens_cpu[i] for i in keep_indices]

1619
        self.reqs = [self.reqs[i] for i in keep_indices]
1620
1621
        if self.multimodal_inputs is not None:
            self.multimodal_inputs = [self.multimodal_inputs[i] for i in keep_indices]
1622
1623
        self.req_pool_indices = self.req_pool_indices[keep_indices_device]
        self.seq_lens = self.seq_lens[keep_indices_device]
1624
        self.out_cache_loc = None
1625
        self.seq_lens_sum = self.seq_lens.sum().item()
1626
        self.output_ids = self.output_ids[keep_indices_device]
1627
        self.return_logprob = any(req.return_logprob for req in self.reqs)
1628
        if self.return_logprob:
1629
            self.top_logprobs_nums = [self.top_logprobs_nums[i] for i in keep_indices]
1630
            self.token_ids_logprobs = [self.token_ids_logprobs[i] for i in keep_indices]
1631
1632
        else:
            self.top_logprobs_nums = None
1633
            self.token_ids_logprobs = None
1634

1635
        self.has_stream = any(req.stream for req in self.reqs)
1636
        self.has_grammar = any(req.grammar for req in self.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
1637

1638
        self.sampling_info.filter_batch(keep_indices, keep_indices_device)
1639
        if self.spec_info:
1640
            self.spec_info.filter_batch(keep_indices_device)
Lianmin Zheng's avatar
Lianmin Zheng committed
1641

1642
    def merge_batch(self, other: "ScheduleBatch"):
1643
1644
1645
        # Penalizer orchestrator must be merged before Batch.reqs is merged. This is because
        # orchestrator.merge() depends on Batch.reqs during preparation of each penalizers, so it
        # needs to be called with pre-merged Batch.reqs.
1646
        self.sampling_info.merge_batch(other.sampling_info)
1647

1648
1649
1650
1651
        # Encoder-decoder infos
        if self.model_config.is_encoder_decoder:
            self.encoder_lens = torch.cat([self.encoder_lens, other.encoder_lens])
            self.encoder_lens_cpu.extend(other.encoder_lens_cpu)
1652
        self.req_pool_indices = torch.cat(
Lianmin Zheng's avatar
Lianmin Zheng committed
1653
1654
            [self.req_pool_indices, other.req_pool_indices]
        )
1655
        self.seq_lens = torch.cat([self.seq_lens, other.seq_lens])
1656
        self.out_cache_loc = None
1657
        self.seq_lens_sum += other.seq_lens_sum
1658
        if self.output_ids is not None:
1659
            self.output_ids = torch.cat([self.output_ids, other.output_ids])
1660
1661
        if self.return_logprob and other.return_logprob:
            self.top_logprobs_nums.extend(other.top_logprobs_nums)
1662
            self.token_ids_logprobs.extend(other.token_ids_logprobs)
1663
1664
        elif self.return_logprob:
            self.top_logprobs_nums.extend([0] * len(other.reqs))
1665
            self.token_ids_logprobs.extend([None] * len(other.reqs))
1666
1667
        elif other.return_logprob:
            self.top_logprobs_nums = [0] * len(self.reqs) + other.top_logprobs_nums
1668
            self.token_ids_logprobs = [None] * len(self.reqs) + other.token_ids_logprobs
1669
        self.reqs.extend(other.reqs)
1670
1671
        if self.multimodal_inputs is not None:
            self.multimodal_inputs.extend(other.multimodal_inputs)
1672

1673
1674
1675
        self.return_logprob |= other.return_logprob
        self.has_stream |= other.has_stream
        self.has_grammar |= other.has_grammar
1676
        self.return_hidden_states |= other.return_hidden_states
1677

1678
1679
1680
        if self.spec_info:
            self.spec_info.merge_batch(other.spec_info)

1681
1682
1683
    def get_model_worker_batch(
        self, seq_lens_cpu_cache: Optional[torch.Tensor] = None
    ) -> ModelWorkerBatch:
1684
        if self.forward_mode.is_decode_or_idle():
1685
            extend_seq_lens = extend_prefix_lens = extend_logprob_start_lens = None
1686
1687
1688
1689
1690
        else:
            extend_seq_lens = self.extend_lens
            extend_prefix_lens = self.prefix_lens
            extend_logprob_start_lens = self.extend_logprob_start_lens

1691
1692
        # Create seq_lens_cpu when needed
        if (
1693
1694
            global_server_args_dict["attention_backend"] == "fa3"
            or (
1695
1696
1697
                global_server_args_dict["use_mla_backend"]
                and global_server_args_dict["attention_backend"] == "flashinfer"
            )
1698
            or global_server_args_dict["attention_backend"] == "flashmla"
1699
            or global_server_args_dict["attention_backend"] == "cutlass_mla"
1700
            or global_server_args_dict["attention_backend"] == "ascend"
1701
            or global_server_args_dict["enable_two_batch_overlap"]
1702
        ):
1703
1704
1705
1706
1707
            seq_lens_cpu = (
                seq_lens_cpu_cache
                if seq_lens_cpu_cache is not None
                else self.seq_lens.cpu()
            )
1708
1709
1710
        else:
            seq_lens_cpu = None

1711
        if self.sampling_info:
Ke Bao's avatar
Ke Bao committed
1712
1713
1714
1715
            if self.has_grammar:
                self.sampling_info.grammars = [req.grammar for req in self.reqs]
            else:
                self.sampling_info.grammars = None
1716

1717
1718
        global bid
        bid += 1
1719
        return ModelWorkerBatch(
1720
            bid=bid,
1721
1722
1723
1724
1725
            forward_mode=self.forward_mode,
            input_ids=self.input_ids,
            req_pool_indices=self.req_pool_indices,
            seq_lens=self.seq_lens,
            out_cache_loc=self.out_cache_loc,
1726
            seq_lens_cpu=seq_lens_cpu,
1727
            seq_lens_sum=self.seq_lens_sum,
1728
1729
            return_logprob=self.return_logprob,
            top_logprobs_nums=self.top_logprobs_nums,
1730
            token_ids_logprobs=self.token_ids_logprobs,
Ke Bao's avatar
Ke Bao committed
1731
            global_num_tokens=self.global_num_tokens,
1732
            global_num_tokens_for_logprob=self.global_num_tokens_for_logprob,
1733
            is_extend_in_batch=self.is_extend_in_batch,
1734
            can_run_dp_cuda_graph=self.can_run_dp_cuda_graph,
1735
1736
            tbo_split_seq_index=self.tbo_split_seq_index,
            global_forward_mode=self.global_forward_mode,
1737
            extend_num_tokens=self.extend_num_tokens,
1738
1739
1740
            extend_seq_lens=extend_seq_lens,
            extend_prefix_lens=extend_prefix_lens,
            extend_logprob_start_lens=extend_logprob_start_lens,
1741
            multimodal_inputs=self.multimodal_inputs,
1742
1743
1744
1745
            encoder_cached=self.encoder_cached,
            encoder_lens=self.encoder_lens,
            encoder_lens_cpu=self.encoder_lens_cpu,
            encoder_out_cache_loc=self.encoder_out_cache_loc,
1746
            lora_paths=[req.lora_path for req in self.reqs],
1747
            sampling_info=self.sampling_info,
Rin Intachuen's avatar
Rin Intachuen committed
1748
            input_embeds=self.input_embeds,
woodx's avatar
woodx committed
1749
            token_type_ids=self.token_type_ids,
1750
1751
            spec_algorithm=self.spec_algorithm,
            spec_info=self.spec_info,
1752
            hicache_consumer_index=self.hicache_consumer_index,
Lianmin Zheng's avatar
Lianmin Zheng committed
1753
            capture_hidden_mode=(
1754
                CaptureHiddenMode.FULL
1755
                if self.return_hidden_states
1756
1757
1758
1759
1760
1761
1762
                else (
                    getattr(
                        self.spec_info, "capture_hidden_mode", CaptureHiddenMode.NULL
                    )
                    if self.spec_info
                    else CaptureHiddenMode.NULL
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
1763
            ),
1764
            extend_input_logprob_token_ids=self.extend_input_logprob_token_ids,
1765
            launch_done=self.launch_done,
1766
1767
        )

1768
    def copy(self):
1769
        # Only contain fields that will be used by process_batch_result
1770
1771
        return ScheduleBatch(
            reqs=self.reqs,
1772
            model_config=self.model_config,
1773
            forward_mode=self.forward_mode,
1774
1775
            out_cache_loc=self.out_cache_loc,
            return_logprob=self.return_logprob,
1776
            decoding_reqs=self.decoding_reqs,
1777
            spec_algorithm=self.spec_algorithm,
1778
            enable_custom_logit_processor=self.enable_custom_logit_processor,
1779
1780
1781
1782
            global_num_tokens=self.global_num_tokens,
            global_num_tokens_for_logprob=self.global_num_tokens_for_logprob,
            can_run_dp_cuda_graph=self.can_run_dp_cuda_graph,
            is_extend_in_batch=self.is_extend_in_batch,
1783
1784
        )

Hanming Lu's avatar
Hanming Lu committed
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
    def _evict_tree_cache_if_needed(
        self,
        num_tokens: int,
    ) -> None:
        if isinstance(self.tree_cache, SWAChunkCache):
            return

        if self.is_hybrid:
            full_available_size = self.token_to_kv_pool_allocator.full_available_size()
            swa_available_size = self.token_to_kv_pool_allocator.swa_available_size()

            if full_available_size < num_tokens or swa_available_size < num_tokens:
                if self.tree_cache is not None:
                    full_num_tokens = max(0, num_tokens - full_available_size)
                    swa_num_tokens = max(0, num_tokens - swa_available_size)
                    self.tree_cache.evict(full_num_tokens, swa_num_tokens)
        else:
            if self.token_to_kv_pool_allocator.available_size() < num_tokens:
                if self.tree_cache is not None:
                    self.tree_cache.evict(num_tokens)

    def _is_available_size_sufficient(self, num_tokens: int) -> bool:
        if self.is_hybrid:
            return (
                self.token_to_kv_pool_allocator.full_available_size() >= num_tokens
                and self.token_to_kv_pool_allocator.swa_available_size() >= num_tokens
            )
        else:
            return self.token_to_kv_pool_allocator.available_size() >= num_tokens

    def _available_and_evictable_str(self) -> str:
        if self.is_hybrid:
            full_available_size = self.token_to_kv_pool_allocator.full_available_size()
            swa_available_size = self.token_to_kv_pool_allocator.swa_available_size()
            full_evictable_size = self.tree_cache.full_evictable_size()
            swa_evictable_size = self.tree_cache.swa_evictable_size()
            return (
                f"Available full tokens: {full_available_size + full_evictable_size} ({full_available_size=} + {full_evictable_size=})\n"
                f"Available swa tokens: {swa_available_size + swa_evictable_size} ({swa_available_size=} + {swa_evictable_size=})\n"
                f"Full LRU list evictable size: {self.tree_cache.full_lru_list_evictable_size()}\n"
                f"SWA LRU list evictable size: {self.tree_cache.swa_lru_list_evictable_size()}\n"
            )
        else:
            available_size = self.token_to_kv_pool_allocator.available_size()
            evictable_size = self.tree_cache.evictable_size()
            return f"Available tokens: {available_size + evictable_size} ({available_size=} + {evictable_size=})\n"

1832
1833
    def __str__(self):
        return (
1834
            f"ScheduleBatch(forward_mode={self.forward_mode.name if self.forward_mode else 'None'}, "
1835
1836
1837
            f"#req={(len(self.reqs))})"
        )

Chayenne's avatar
Chayenne committed
1838

1839
@dataclasses.dataclass
1840
class ModelWorkerBatch:
1841
1842
    # The batch id
    bid: int
1843
1844
1845
    # The forward mode
    forward_mode: ForwardMode
    # The input ids
1846
    input_ids: torch.Tensor
1847
1848
1849
1850
    # The indices of requests in the req_to_token_pool
    req_pool_indices: torch.Tensor
    # The sequence length
    seq_lens: torch.Tensor
1851
    # The indices of output tokens in the token_to_kv_pool_allocator
1852
    out_cache_loc: torch.Tensor
1853
1854
    # The sequence length tensor on CPU
    seq_lens_cpu: Optional[torch.Tensor]
1855
1856
    seq_lens_sum: int

1857
1858
1859
    # For logprob
    return_logprob: bool
    top_logprobs_nums: Optional[List[int]]
1860
    token_ids_logprobs: Optional[List[List[int]]]
1861

Ke Bao's avatar
Ke Bao committed
1862
1863
    # For DP attention
    global_num_tokens: Optional[List[int]]
1864
    global_num_tokens_for_logprob: Optional[List[int]]
1865
    is_extend_in_batch: bool
1866
    can_run_dp_cuda_graph: bool
1867
1868
    tbo_split_seq_index: Optional[int]
    global_forward_mode: Optional[ForwardMode]
Ke Bao's avatar
Ke Bao committed
1869

1870
    # For extend
1871
    extend_num_tokens: Optional[int]
1872
1873
1874
    extend_seq_lens: Optional[List[int]]
    extend_prefix_lens: Optional[List[int]]
    extend_logprob_start_lens: Optional[List[int]]
1875
    extend_input_logprob_token_ids: Optional[torch.Tensor]
1876
1877

    # For multimodal
Mick's avatar
Mick committed
1878
    multimodal_inputs: Optional[List[MultimodalInputs]]
1879

1880
1881
1882
1883
1884
1885
    # For encoder-decoder
    encoder_cached: Optional[List[bool]]
    encoder_lens: Optional[torch.Tensor]
    encoder_lens_cpu: Optional[List[int]]
    encoder_out_cache_loc: Optional[torch.Tensor]

1886
1887
1888
1889
1890
    # For LoRA
    lora_paths: Optional[List[str]]

    # Sampling info
    sampling_info: SamplingBatchInfo
1891

Rin Intachuen's avatar
Rin Intachuen committed
1892
    # The input Embeds
Cheng Wan's avatar
Cheng Wan committed
1893
    input_embeds: Optional[torch.Tensor] = None
Rin Intachuen's avatar
Rin Intachuen committed
1894

woodx's avatar
woodx committed
1895
1896
1897
    # For corss-encoder model
    token_type_ids: Optional[torch.Tensor] = None

1898
    # Speculative decoding
1899
    spec_algorithm: SpeculativeAlgorithm = None
1900
1901
    spec_info: Optional[Union[EagleVerifyInput, EagleDraftInput]] = None
    # If set, the output of the batch contains the hidden states of the run.
Lianmin Zheng's avatar
Lianmin Zheng committed
1902
    capture_hidden_mode: CaptureHiddenMode = None
1903
    hicache_consumer_index: int = 0
1904

1905
1906
1907
    # Overlap event
    launch_done: Optional[threading.Event] = None

1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925

@triton.jit
def write_req_to_token_pool_triton(
    req_to_token_ptr,  # [max_batch, max_context_len]
    req_pool_indices,
    pre_lens,
    seq_lens,
    extend_lens,
    out_cache_loc,
    req_to_token_ptr_stride: tl.constexpr,
):
    BLOCK_SIZE: tl.constexpr = 512
    pid = tl.program_id(0)

    req_pool_index = tl.load(req_pool_indices + pid)
    pre_len = tl.load(pre_lens + pid)
    seq_len = tl.load(seq_lens + pid)

Lianmin Zheng's avatar
Lianmin Zheng committed
1926
1927
    # NOTE: This can be slow for large bs
    cumsum_start = tl.cast(0, tl.int64)
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
    for i in range(pid):
        cumsum_start += tl.load(extend_lens + i)

    num_loop = tl.cdiv(seq_len - pre_len, BLOCK_SIZE)
    for i in range(num_loop):
        offset = tl.arange(0, BLOCK_SIZE) + i * BLOCK_SIZE
        mask = offset < (seq_len - pre_len)
        value = tl.load(out_cache_loc + cumsum_start + offset, mask=mask)
        tl.store(
            req_to_token_ptr
            + req_pool_index * req_to_token_ptr_stride
            + offset
            + pre_len,
            value,
            mask=mask,
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1944
1945


1946
1947
1948
1949
1950
def get_last_loc(
    req_to_token: torch.Tensor,
    req_pool_indices_tensor: torch.Tensor,
    prefix_lens_tensor: torch.Tensor,
) -> torch.Tensor:
1951
1952
1953
1954
    if (
        global_server_args_dict["attention_backend"] != "ascend"
        and global_server_args_dict["attention_backend"] != "torch_native"
    ):
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
        impl = get_last_loc_triton
    else:
        impl = get_last_loc_torch

    return impl(req_to_token, req_pool_indices_tensor, prefix_lens_tensor)


def get_last_loc_torch(
    req_to_token: torch.Tensor,
    req_pool_indices_tensor: torch.Tensor,
    prefix_lens_tensor: torch.Tensor,
) -> torch.Tensor:
Lianmin Zheng's avatar
Lianmin Zheng committed
1967
1968
1969
1970
1971
    return torch.where(
        prefix_lens_tensor > 0,
        req_to_token[req_pool_indices_tensor, prefix_lens_tensor - 1],
        torch.full_like(prefix_lens_tensor, -1),
    )
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017


@triton.jit
def get_last_loc_kernel(
    req_to_token,
    req_pool_indices_tensor,
    prefix_lens_tensor,
    result,
    num_tokens,
    req_to_token_stride,
    BLOCK_SIZE: tl.constexpr,
):
    pid = tl.program_id(0)
    offset = tl.arange(0, BLOCK_SIZE) + pid * BLOCK_SIZE
    mask = offset < num_tokens

    prefix_lens = tl.load(prefix_lens_tensor + offset, mask=mask, other=0)
    req_pool_indices = tl.load(req_pool_indices_tensor + offset, mask=mask, other=0)

    token_mask = prefix_lens > 0
    token_index = req_pool_indices * req_to_token_stride + (prefix_lens - 1)
    tokens = tl.load(req_to_token + token_index, mask=token_mask, other=-1)

    tl.store(result + offset, tokens, mask=mask)


def get_last_loc_triton(
    req_to_token: torch.Tensor,
    req_pool_indices_tensor: torch.Tensor,
    prefix_lens_tensor: torch.Tensor,
) -> torch.Tensor:
    BLOCK_SIZE = 256
    num_tokens = prefix_lens_tensor.shape[0]
    result = torch.empty_like(prefix_lens_tensor)
    grid = (triton.cdiv(num_tokens, BLOCK_SIZE),)

    get_last_loc_kernel[grid](
        req_to_token,
        req_pool_indices_tensor,
        prefix_lens_tensor,
        result,
        num_tokens,
        req_to_token.stride(0),
        BLOCK_SIZE,
    )
    return result