"examples/community/pipeline_stable_diffusion_boxdiff.py" did not exist on "7caa3682e440ce506dc4674373052739f9d80303"
Unverified Commit 8f8f96a6 authored by Lianmin Zheng's avatar Lianmin Zheng Committed by GitHub
Browse files

Fix the perf regression due to additional_stop_token_ids (#1773)

parent 05b3bf5e
......@@ -164,7 +164,7 @@ def get_tokenizer(
"slowdown. Consider using a fast tokenizer instead."
)
handle_additional_stop_token_ids(tokenizer)
attach_additional_stop_token_ids(tokenizer)
return tokenizer
......@@ -184,11 +184,11 @@ def get_processor(
**kwargs,
)
handle_additional_stop_token_ids(processor.tokenizer)
attach_additional_stop_token_ids(processor.tokenizer)
return processor
def handle_additional_stop_token_ids(tokenizer):
def attach_additional_stop_token_ids(tokenizer):
# Special handling for stop token <|eom_id|> generated by llama 3 tool use.
if "<|eom_id|>" in tokenizer.get_added_vocab():
tokenizer.additional_stop_token_ids = set(
......
......@@ -42,11 +42,11 @@ class Sampler(nn.Module):
logits = logits.contiguous()
if self.use_nan_detectioin and torch.any(torch.isnan(logits)):
exit(1) if crash_on_warning else None
logger.warning("Detected errors during sampling! NaN in the logits.")
logits = torch.where(
torch.isnan(logits), torch.full_like(logits, -1e5), logits
)
exit(1) if crash_on_warning else None
if sampling_info.is_all_greedy:
# Use torch.argmax if all requests use greedy sampling
......
......@@ -334,15 +334,20 @@ class Req:
last_token_id = self.output_ids[-1]
matched_eos = last_token_id in self.sampling_params.stop_token_ids
matched_eos = False
# Check stop token ids
if self.sampling_params.stop_token_ids:
matched_eos = last_token_id in self.sampling_params.stop_token_ids
if self.tokenizer is not None:
matched_eos |= last_token_id == self.tokenizer.eos_token_id
if self.tokenizer.additional_stop_token_ids:
matched_eos |= last_token_id in self.tokenizer.additional_stop_token_ids
if matched_eos and not self.sampling_params.ignore_eos:
self.finished_reason = FINISH_MATCHED_TOKEN(matched=last_token_id)
return
# Check stop strings
if len(self.sampling_params.stop_strs) > 0:
tail_str = self.tokenizer.decode(
self.output_ids[-(self.sampling_params.stop_str_max_len + 1) :]
......
......@@ -31,9 +31,12 @@ class BatchedMinNewTokensPenalizer(_BatchedPenalizer):
padded_stop_token_ids = torch.nn.utils.rnn.pad_sequence(
sequences=[
torch.tensor(
data=list(
req.sampling_params.stop_token_ids
| {req.tokenizer.eos_token_id}
data=(
list(
(req.sampling_params.stop_token_ids or set())
| (req.tokenizer.additional_stop_token_ids or set())
| {req.tokenizer.eos_token_id}
)
),
dtype=torch.int64,
device=self.orchestrator.device,
......
......@@ -50,10 +50,10 @@ class SamplingParams:
self.presence_penalty = presence_penalty
self.repetition_penalty = repetition_penalty
self.stop_strs = stop
if stop_token_ids is None:
self.stop_token_ids = set()
else:
if stop_token_ids:
self.stop_token_ids = set(stop_token_ids)
else:
self.stop_token_ids = None
self.max_new_tokens = max_new_tokens
self.min_new_tokens = min_new_tokens
self.ignore_eos = ignore_eos
......@@ -134,10 +134,6 @@ class SamplingParams:
stop_str_max_len = max(stop_str_max_len, len(stop_str))
self.stop_str_max_len = stop_str_max_len
# Process stop token ids
if tokenizer and tokenizer.additional_stop_token_ids:
self.stop_token_ids.update(tokenizer.additional_stop_token_ids)
def to_srt_kwargs(self):
return {
"max_new_tokens": self.max_new_tokens,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment