schedule_batch.py 47.6 KB
Newer Older
1
2
from __future__ import annotations

3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
16
17
18
19
20
21
22
23
24
25
"""
Store information about requests and batches.

The following is the flow of data structures for a batch:

ScheduleBatch -> ModelWorkerBatch -> ForwardBatch

- ScheduleBatch is managed by `scheduler.py::Scheduler`.
  It contains high-level scheduling data. Most of the data is on the CPU.
- ModelWorkerBatch is managed by `tp_worker.py::TpModelWorker`.
26
27
  It is a subset of `ScheduleBatch` that only contains data related to the model forward on GPU.
  It will be transformed from CPU scheduler to GPU model runner.
28
29
30
- ForwardBatch is managed by `model_runner.py::ModelRunner`.
  It contains low-level tensor data. Most of the data consists of GPU tensors.
"""
Lianmin Zheng's avatar
Lianmin Zheng committed
31

32
import dataclasses
Ying Sheng's avatar
Ying Sheng committed
33
import logging
34
from typing import TYPE_CHECKING, List, Optional, Set, Tuple, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
35

36
import numpy as np
Lianmin Zheng's avatar
Lianmin Zheng committed
37
import torch
38
39
import triton
import triton.language as tl
40

Liangsheng Yin's avatar
Liangsheng Yin committed
41
from sglang.global_config import global_config
42
from sglang.srt.configs.model_config import ModelConfig
43
from sglang.srt.constrained.base_grammar_backend import BaseGrammarObject
44
from sglang.srt.mem_cache.base_prefix_cache import BasePrefixCache
45
from sglang.srt.mem_cache.chunk_cache import ChunkCache
46
from sglang.srt.mem_cache.memory_pool import BaseTokenToKVPool, ReqToTokenPool
Lianmin Zheng's avatar
Lianmin Zheng committed
47
from sglang.srt.model_executor.forward_batch_info import CaptureHiddenMode, ForwardMode
48
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
49
from sglang.srt.sampling.sampling_params import SamplingParams
50
from sglang.srt.server_args import ServerArgs
Liangsheng Yin's avatar
Liangsheng Yin committed
51

52
53
54
if TYPE_CHECKING:
    from sglang.srt.speculative.spec_info import SpecInfo, SpeculativeAlgorithm

Liangsheng Yin's avatar
Liangsheng Yin committed
55
INIT_INCREMENTAL_DETOKENIZATION_OFFSET = 5
Lianmin Zheng's avatar
Lianmin Zheng committed
56

57
58
# Put some global args for easy access
global_server_args_dict = {
59
60
61
    "attention_backend": ServerArgs.attention_backend,
    "sampling_backend": ServerArgs.sampling_backend,
    "triton_attention_reduce_in_fp32": ServerArgs.triton_attention_reduce_in_fp32,
Ke Bao's avatar
Ke Bao committed
62
    "disable_mla": ServerArgs.disable_mla,
63
    "torchao_config": ServerArgs.torchao_config,
64
    "enable_nan_detection": ServerArgs.enable_nan_detection,
Ke Bao's avatar
Ke Bao committed
65
    "enable_dp_attention": ServerArgs.enable_dp_attention,
xiaobochen's avatar
xiaobochen committed
66
    "enable_ep_moe": ServerArgs.enable_ep_moe,
67
    "device": ServerArgs.device,
68
69
}

Ying Sheng's avatar
Ying Sheng committed
70
71
72
logger = logging.getLogger(__name__)


73
74
75
class BaseFinishReason:
    def __init__(self, is_error: bool = False):
        self.is_error = is_error
Lianmin Zheng's avatar
Lianmin Zheng committed
76

77
    def to_json(self):
78
        raise NotImplementedError()
79
80
81


class FINISH_MATCHED_TOKEN(BaseFinishReason):
Mingyi's avatar
Mingyi committed
82
    def __init__(self, matched: Union[int, List[int]]):
83
84
85
        super().__init__()
        self.matched = matched

86
87
88
89
90
    def to_json(self):
        return {
            "type": "stop",  # to match OpenAI API's return value
            "matched": self.matched,
        }
91
92


93
94
class FINISH_MATCHED_STR(BaseFinishReason):
    def __init__(self, matched: str):
95
        super().__init__()
96
        self.matched = matched
97

98
99
100
101
102
    def to_json(self):
        return {
            "type": "stop",  # to match OpenAI API's return value
            "matched": self.matched,
        }
103
104


105
106
class FINISH_LENGTH(BaseFinishReason):
    def __init__(self, length: int):
107
        super().__init__()
108
        self.length = length
109

110
111
112
113
114
    def to_json(self):
        return {
            "type": "length",  # to match OpenAI API's return value
            "length": self.length,
        }
115
116
117


class FINISH_ABORT(BaseFinishReason):
118
    def __init__(self, message="Unknown error", status_code=None, err_type=None):
119
        super().__init__(is_error=True)
Lianmin Zheng's avatar
Lianmin Zheng committed
120
        self.message = message
121
122
        self.status_code = status_code
        self.err_type = err_type
123

124
125
126
    def to_json(self):
        return {
            "type": "abort",
Lianmin Zheng's avatar
Lianmin Zheng committed
127
            "message": self.message,
128
129
            "status_code": self.status_code,
            "err_type": self.err_type,
130
        }
131

Lianmin Zheng's avatar
Lianmin Zheng committed
132

133
@dataclasses.dataclass
Liangsheng Yin's avatar
Liangsheng Yin committed
134
class ImageInputs:
135
136
    """The image related inputs."""

137
    pixel_values: Union[torch.Tensor, np.array]
138
    image_hashes: Optional[list] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
139
140
    image_sizes: Optional[list] = None
    image_offsets: Optional[list] = None
141
    image_pad_len: Optional[list] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
142
143
    pad_values: Optional[list] = None
    modalities: Optional[list] = None
144
    num_image_tokens: Optional[int] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
145

146
    # Llava related
Liangsheng Yin's avatar
Liangsheng Yin committed
147
148
    aspect_ratio_ids: Optional[List[torch.Tensor]] = None
    aspect_ratio_mask: Optional[List[torch.Tensor]] = None
149

Yineng Zhang's avatar
Yineng Zhang committed
150
151
    # QWen2-VL related
    image_grid_thws: List[Tuple[int, int, int]] = None
152
    mrope_position_delta: Optional[torch.Tensor] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
153

Mick's avatar
Mick committed
154
155
156
157
158
159
160
161
162
    # MiniCPMV related
    # All the images in the batch should share the same special image
    # bound token ids.
    im_start_id: Optional[torch.Tensor] = None
    im_end_id: Optional[torch.Tensor] = None
    slice_start_id: Optional[torch.Tensor] = None
    slice_end_id: Optional[torch.Tensor] = None
    tgt_sizes: Optional[list] = None

Liangsheng Yin's avatar
Liangsheng Yin committed
163
    @staticmethod
164
    def from_dict(obj: dict):
Liangsheng Yin's avatar
Liangsheng Yin committed
165
166
        ret = ImageInputs(
            pixel_values=obj["pixel_values"],
167
            image_hashes=obj["image_hashes"],
Liangsheng Yin's avatar
Liangsheng Yin committed
168
        )
169
170
171

        # Use image hash as fake token_ids. We use this as the key for prefix matching in the radix cache.
        # Please note that if the `input_ids` is later used in the model forward,
172
173
        # you also need to clamp the values within the range of [0, vocab_size) to avoid out-of-bound
        # errors in cuda kernels. See also llava.py for example.
174
        ret.pad_values = [x % (1 << 30) for x in ret.image_hashes]
175
176
177
178
179
180
181

        optional_args = [
            "image_sizes",
            "modalities",
            "aspect_ratio_ids",
            "aspect_ratio_mask",
            "image_grid_thws",
Mick's avatar
Mick committed
182
183
184
185
186
            "im_start_id",
            "im_end_id",
            "slice_start_id",
            "slice_end_id",
            "tgt_sizes",
187
188
189
190
191
        ]
        for arg in optional_args:
            if arg in obj:
                setattr(ret, arg, obj[arg])

Liangsheng Yin's avatar
Liangsheng Yin committed
192
193
        return ret

194
    def merge(self, other):
195
196
197
        assert self.pixel_values.shape[1:] == other.pixel_values.shape[1:]
        self.pixel_values = np.concatenate([self.pixel_values, other.pixel_values])

198
199
        # Use image hash as fake token_ids. We use this as the key for prefix matching in the radix cache.
        # Please note that if the `input_ids` is later used in the model forward,
200
201
        # you also need to clamp the values within the range of [0, vocab_size) to avoid out-of-bound
        # errors in cuda kernels. See also llava.py for example.
202
203
        self.image_hashes += other.image_hashes
        self.pad_values = [x % (1 << 30) for x in self.image_hashes]
204
205
206
207

        optional_args = [
            "image_sizes",
            "image_offsets",
208
            "image_pad_len",
209
210
211
212
213
214
215
216
217
            # "modalities", # modalities should be ["multi-images"] (one entry) even for multiple images
            "aspect_ratio_ids",
            "aspect_ratio_mask",
            "image_grid_thws",
        ]
        for arg in optional_args:
            if getattr(self, arg, None) is not None:
                setattr(self, arg, getattr(self, arg) + getattr(other, arg))

Liangsheng Yin's avatar
Liangsheng Yin committed
218

Lianmin Zheng's avatar
Lianmin Zheng committed
219
class Req:
220
    """The input and output status of a request."""
221

222
223
224
225
226
    def __init__(
        self,
        rid: str,
        origin_input_text: str,
        origin_input_ids: Tuple[int],
227
        sampling_params: SamplingParams,
Lianmin Zheng's avatar
Lianmin Zheng committed
228
229
230
        return_logprob: bool = False,
        top_logprobs_num: int = 0,
        stream: bool = False,
231
        origin_input_ids_unpadded: Optional[Tuple[int]] = None,
232
        lora_path: Optional[str] = None,
Rin Intachuen's avatar
Rin Intachuen committed
233
        input_embeds: Optional[List[List[float]]] = None,
234
        session_id: Optional[str] = None,
235
        custom_logit_processor: Optional[str] = None,
236
        eos_token_ids: Optional[Set[int]] = None,
237
    ):
238
        # Input and output info
Lianmin Zheng's avatar
Lianmin Zheng committed
239
        self.rid = rid
Liangsheng Yin's avatar
Liangsheng Yin committed
240
        self.origin_input_text = origin_input_text
241
242
243
244
245
        self.origin_input_ids_unpadded = (
            origin_input_ids_unpadded
            if origin_input_ids_unpadded
            else origin_input_ids  # Before image padding
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
246
        self.origin_input_ids = origin_input_ids
247
248
249
        # Each decode stage's output ids
        self.output_ids = []
        # fill_ids = origin_input_ids + output_ids. Updated if chunked.
250
        self.fill_ids = None
251
        self.session_id = session_id
Lianmin Zheng's avatar
Lianmin Zheng committed
252
        self.input_embeds = input_embeds
253

Lianmin Zheng's avatar
Lianmin Zheng committed
254
        # Sampling info
255
        self.sampling_params = sampling_params
256
        self.custom_logit_processor = custom_logit_processor
Liangsheng Yin's avatar
Liangsheng Yin committed
257

258
        # Memory pool info
259
260
        self.req_pool_idx = None

261
262
263
        # Check finish
        self.tokenizer = None
        self.finished_reason = None
264
        self.to_abort = False
Lianmin Zheng's avatar
Lianmin Zheng committed
265
        self.stream = stream
266
        self.eos_token_ids = eos_token_ids
267

268
        # For incremental decoding
269
270
271
272
273
274
275
276
        # ----- | --------- read_ids -------|
        # ----- |   surr_ids  |
        # xxxxx | xxxxxxxxxxx | xxxxxxxxxxx |
        # ----- ^ ----------- ^ ----------- ^
        # ----- 1 ----------- 2 ----------- 3
        # 1: surr_offset
        # 2: read_offset
        # 3: last token
277
        self.vid = 0  # version id to sync decode status with in detokenizer_manager
Liangsheng Yin's avatar
Liangsheng Yin committed
278
279
        self.surr_offset = None  # Surrounding offset to defeat the cleanup algorithm
        self.read_offset = None
Lianmin Zheng's avatar
Lianmin Zheng committed
280
        self.decoded_text = ""
281

282
        # For multimodal inputs
Liangsheng Yin's avatar
Liangsheng Yin committed
283
        self.image_inputs: Optional[ImageInputs] = None
284

285
286
        # Prefix info
        self.prefix_indices = []
287
        # Tokens to run prefill. input_tokens - shared_prefix_tokens.
288
        # Updated if chunked.
289
        self.extend_input_len = 0
290
        self.last_node = None
Lianmin Zheng's avatar
Lianmin Zheng committed
291
292

        # Chunked prefill
293
        self.is_being_chunked = 0
294

295
296
297
        # For retraction
        self.is_retracted = False

298
        # Logprobs (arguments)
Lianmin Zheng's avatar
Lianmin Zheng committed
299
        self.return_logprob = return_logprob
300
        self.logprob_start_len = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
301
        self.top_logprobs_num = top_logprobs_num
302

303
        # Logprobs (return values)
304
305
306
307
        self.input_token_logprobs_val: Optional[List[float]] = None
        self.input_token_logprobs_idx: Optional[List[int]] = None
        self.input_top_logprobs_val: Optional[List[float]] = None
        self.input_top_logprobs_idx: Optional[List[int]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
308
309
310
311
312
313
314
315
316
317

        if return_logprob:
            self.output_token_logprobs_val = []
            self.output_token_logprobs_idx = []
            self.output_top_logprobs_val = []
            self.output_top_logprobs_idx = []
        else:
            self.output_token_logprobs_val = self.output_token_logprobs_idx = (
                self.output_top_logprobs_val
            ) = self.output_top_logprobs_idx = None
318
319

        # Logprobs (internal values)
Liangsheng Yin's avatar
Liangsheng Yin committed
320
321
322
        # The tokens is prefilled but need to be considered as decode tokens
        # and should be updated for the decode logprobs
        self.last_update_decode_tokens = 0
323
324
325
        # The relative logprob_start_len in an extend batch
        self.extend_logprob_start_len = 0

326
        # Embedding (return values)
327
        self.embedding = None
Lianmin Zheng's avatar
Lianmin Zheng committed
328

329
        # Constrained decoding
330
        self.grammar: Optional[BaseGrammarObject] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
331

332
        # The number of cached tokens that were already cached in the KV cache
333
        self.cached_tokens = 0
334
        self.already_computed = 0
335

336
337
338
339
340
        # The number of verification forward passes in the speculative decoding.
        # This is used to compute the average acceptance length per request.
        self.spec_verify_ct = 0
        self.lora_path = lora_path

341
    def extend_image_inputs(self, image_inputs):
342
343
344
        if self.image_inputs is None:
            self.image_inputs = image_inputs
        else:
345
            self.image_inputs.merge(image_inputs)
346

347
    def finished(self) -> bool:
Lianmin Zheng's avatar
Lianmin Zheng committed
348
        # Whether request reached finished condition
349
350
        return self.finished_reason is not None

351
    def init_next_round_input(self, tree_cache: Optional[BasePrefixCache] = None):
352
        self.fill_ids = self.origin_input_ids + self.output_ids
353
        if tree_cache is not None:
354
            # tree cache is None if the prefix is not computed with tree cache.
355
356
357
            self.prefix_indices, self.last_node = tree_cache.match_prefix(
                rid=self.rid, key=self.adjust_max_prefix_ids()
            )
358
        self.extend_input_len = len(self.fill_ids) - len(self.prefix_indices)
359

360
    def adjust_max_prefix_ids(self):
361
362
        self.fill_ids = self.origin_input_ids + self.output_ids
        input_len = len(self.fill_ids)
363
364
365
366

        # FIXME: To work around some bugs in logprob computation, we need to ensure each
        # request has at least one token. Later, we can relax this requirement and use `input_len`.
        max_prefix_len = input_len - 1
Liangsheng Yin's avatar
Liangsheng Yin committed
367
368
369
370
371

        if self.sampling_params.max_new_tokens > 0:
            # Need at least one token to compute logits
            max_prefix_len = min(max_prefix_len, input_len - 1)

372
        if self.return_logprob:
373
            max_prefix_len = min(max_prefix_len, self.logprob_start_len)
374

375
        max_prefix_len = max(max_prefix_len, 0)
376
        return self.fill_ids[:max_prefix_len]
377

Liangsheng Yin's avatar
Liangsheng Yin committed
378
    # Based on https://github.com/vllm-project/vllm/blob/7a64d24aad69e4d2548aa0bf528d9fe63428ab01/vllm/transformers_utils/detokenizer.py#L194-L313
379
    def init_incremental_detokenize(self):
Liangsheng Yin's avatar
Liangsheng Yin committed
380
381
382
383
384
385
386
387
388
        first_iter = self.surr_offset is None or self.read_offset is None

        if first_iter:
            self.read_offset = len(self.origin_input_ids_unpadded)
            self.surr_offset = max(
                self.read_offset - INIT_INCREMENTAL_DETOKENIZATION_OFFSET, 0
            )

        all_ids = self.origin_input_ids_unpadded + self.output_ids
389
        return all_ids[self.surr_offset :], self.read_offset - self.surr_offset
Liangsheng Yin's avatar
Liangsheng Yin committed
390

391
    def get_next_inc_detokenization(self):
392
393
        if self.tokenizer is None:
            return False, ""
394
395
        read_ids, read_offset = self.init_incremental_detokenize()
        surr_ids = read_ids[:read_offset]
Liangsheng Yin's avatar
Liangsheng Yin committed
396
397
398
399
400

        surr_text = self.tokenizer.decode(
            surr_ids,
            skip_special_tokens=self.sampling_params.skip_special_tokens,
            spaces_between_special_tokens=self.sampling_params.spaces_between_special_tokens,
Liangsheng Yin's avatar
Liangsheng Yin committed
401
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
402
403
404
405
406
407
408
        new_text = self.tokenizer.decode(
            read_ids,
            skip_special_tokens=self.sampling_params.skip_special_tokens,
            spaces_between_special_tokens=self.sampling_params.spaces_between_special_tokens,
        )

        if len(new_text) > len(surr_text) and not new_text.endswith("�"):
409
            return True, new_text[len(surr_text) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
410
411

        return False, ""
Lianmin Zheng's avatar
Lianmin Zheng committed
412

413
    def check_finished(self):
414
        if self.finished():
415
416
            return

417
418
419
420
        if self.to_abort:
            self.finished_reason = FINISH_ABORT()
            return

Liangsheng Yin's avatar
Liangsheng Yin committed
421
        if len(self.output_ids) >= self.sampling_params.max_new_tokens:
422
423
424
            self.finished_reason = FINISH_LENGTH(
                length=self.sampling_params.max_new_tokens
            )
425
426
            return

427
        last_token_id = self.output_ids[-1]
428

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
        if not self.sampling_params.ignore_eos:
            matched_eos = False

            # Check stop token ids
            if self.sampling_params.stop_token_ids:
                matched_eos = last_token_id in self.sampling_params.stop_token_ids
            if self.eos_token_ids:
                matched_eos |= last_token_id in self.eos_token_ids
            if self.tokenizer is not None:
                matched_eos |= last_token_id == self.tokenizer.eos_token_id
                if self.tokenizer.additional_stop_token_ids:
                    matched_eos |= (
                        last_token_id in self.tokenizer.additional_stop_token_ids
                    )
            if matched_eos:
                self.finished_reason = FINISH_MATCHED_TOKEN(matched=last_token_id)
                return
446

447
        # Check stop strings
448
449
450
451
452
453
        if len(self.sampling_params.stop_strs) > 0:
            tail_str = self.tokenizer.decode(
                self.output_ids[-(self.sampling_params.stop_str_max_len + 1) :]
            )

            for stop_str in self.sampling_params.stop_strs:
Liangsheng Yin's avatar
Liangsheng Yin committed
454
                if stop_str in tail_str or stop_str in self.decoded_text:
455
                    self.finished_reason = FINISH_MATCHED_STR(matched=stop_str)
456
457
                    return

Liangsheng Yin's avatar
Liangsheng Yin committed
458
    def jump_forward_and_retokenize(self, jump_forward_str, next_state):
Liangsheng Yin's avatar
Liangsheng Yin committed
459
460
461
462
463
464
        if self.origin_input_text is None:
            # Recovering text can only use unpadded ids
            self.origin_input_text = self.tokenizer.decode(
                self.origin_input_ids_unpadded
            )

Liangsheng Yin's avatar
Liangsheng Yin committed
465
        all_text = self.origin_input_text + self.decoded_text + jump_forward_str
Liangsheng Yin's avatar
Liangsheng Yin committed
466
        all_ids = self.tokenizer.encode(all_text)
467
        if not all_ids:
havetc's avatar
havetc committed
468
            logger.warning("Encoded all_text resulted in empty all_ids")
469
470
            return False

Liangsheng Yin's avatar
Liangsheng Yin committed
471
        prompt_tokens = len(self.origin_input_ids_unpadded)
472
        if prompt_tokens > len(all_ids):
havetc's avatar
havetc committed
473
            logger.warning("prompt_tokens is larger than encoded all_ids")
474
            return False
Liangsheng Yin's avatar
Liangsheng Yin committed
475
476
477

        if all_ids[prompt_tokens - 1] != self.origin_input_ids_unpadded[-1]:
            # TODO(lsyin): fix token fusion
478
            logger.warning(
Liangsheng Yin's avatar
Liangsheng Yin committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
                "Token fusion between input and output, try to avoid this by removing the space at the end of the input."
            )
            return False

        old_output_ids = self.output_ids
        self.output_ids = all_ids[prompt_tokens:]
        self.decoded_text = self.decoded_text + jump_forward_str
        self.surr_offset = prompt_tokens
        self.read_offset = len(all_ids)

        # NOTE: A trick to reduce the surrouding tokens decoding overhead
        for i in range(0, INIT_INCREMENTAL_DETOKENIZATION_OFFSET):
            surr_text_ = self.tokenizer.decode(
                all_ids[self.read_offset - i : self.read_offset]
            )
            if not surr_text_.endswith("�"):
                self.surr_offset = self.read_offset - i
                break
Liangsheng Yin's avatar
Liangsheng Yin committed
497

498
499
        # update the inner state of the grammar
        self.grammar.jump_and_retokenize(old_output_ids, self.output_ids, next_state)
Liangsheng Yin's avatar
Liangsheng Yin committed
500
501
502
503

        if self.return_logprob:
            # For fast-forward part's logprobs
            k = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
504
505
            for i, old_id in enumerate(old_output_ids):
                if old_id == self.output_ids[i]:
Liangsheng Yin's avatar
Liangsheng Yin committed
506
507
508
                    k = k + 1
                else:
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
509
510
511
512
            self.output_token_logprobs_val = self.output_token_logprobs_val[:k]
            self.output_token_logprobs_idx = self.output_token_logprobs_idx[:k]
            self.output_top_logprobs_val = self.output_top_logprobs_val[:k]
            self.output_top_logprobs_idx = self.output_top_logprobs_idx[:k]
Liangsheng Yin's avatar
Liangsheng Yin committed
513
            self.logprob_start_len = prompt_tokens + k
Liangsheng Yin's avatar
Liangsheng Yin committed
514
            self.last_update_decode_tokens = len(self.output_ids) - k
515

Liangsheng Yin's avatar
Liangsheng Yin committed
516
        return True
Liangsheng Yin's avatar
Liangsheng Yin committed
517

518
519
520
521
522
523
524
525
526
527
528
    def reset_for_retract(self):
        self.prefix_indices = []
        self.last_node = None
        self.extend_input_len = 0
        self.is_retracted = True

        # For incremental logprobs
        # TODO: Fix the `logprob_start_len`
        self.last_update_decode_tokens = 0
        self.logprob_start_len = 10**9

Lianmin Zheng's avatar
Lianmin Zheng committed
529
    def __repr__(self):
530
531
532
533
        return (
            f"rid(n={self.rid}, "
            f"input_ids={self.origin_input_ids}, output_ids={self.output_ids}"
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
534
535


536
537
538
bid = 0


539
@dataclasses.dataclass
540
class ScheduleBatch:
541
    """Store all information of a batch on the scheduler."""
542

543
    # Request, memory pool, and cache
544
    reqs: List[Req]
545
546
547
    req_to_token_pool: ReqToTokenPool = None
    token_to_kv_pool: BaseTokenToKVPool = None
    tree_cache: BasePrefixCache = None
548

549
    # Batch configs
550
    model_config: ModelConfig = None
Liangsheng Yin's avatar
Liangsheng Yin committed
551
    forward_mode: ForwardMode = None
552
553
554
    enable_overlap: bool = False

    # Sampling info
555
    sampling_info: SamplingBatchInfo = None
556
    next_batch_sampling_info: SamplingBatchInfo = None
Liangsheng Yin's avatar
Liangsheng Yin committed
557

558
    # Batched arguments to model runner
559
560
561
562
    input_ids: torch.Tensor = None  # shape: [b], int32
    input_embeds: torch.Tensor = None  # shape: [b, hidden_size], float32
    req_pool_indices: torch.Tensor = None  # shape: [b], int32
    seq_lens: torch.Tensor = None  # shape: [b], int64
563
    # The output locations of the KV cache
564
565
    out_cache_loc: torch.Tensor = None  # shape: [b], int32
    output_ids: torch.Tensor = None  # shape: [b], int32
566

567
568
569
    # The sum of all sequence lengths
    seq_lens_sum: int = None

Ke Bao's avatar
Ke Bao committed
570
571
    # For DP attention
    global_num_tokens: Optional[List[int]] = None
572
    can_run_dp_cuda_graph: bool = False
Ke Bao's avatar
Ke Bao committed
573

574
    # For processing logprobs
575
    return_logprob: bool = False
576
577
578
579
580
581
    top_logprobs_nums: Optional[List[int]] = None

    # For extend and mixed chunekd prefill
    prefix_lens: List[int] = None
    extend_lens: List[int] = None
    extend_num_tokens: int = None
582
    decoding_reqs: List[Req] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
583
    extend_logprob_start_lens: List[int] = None
584

585
586
587
588
589
590
    # For encoder-decoder
    encoder_cached: Optional[List[bool]] = None
    encoder_lens: Optional[torch.Tensor] = None
    encoder_lens_cpu: Optional[List[int]] = None
    encoder_out_cache_loc: Optional[torch.Tensor] = None

591
592
593
    # Stream
    has_stream: bool = False

594
595
    # Has grammar
    has_grammar: bool = False
596

597
    # Device
598
599
    device: str = "cuda"

600
    # Speculative decoding
601
    spec_algorithm: SpeculativeAlgorithm = None
602
603
    spec_info: Optional[SpecInfo] = None

604
605
606
    # Enable custom logit processor
    enable_custom_logit_processor: bool = False

607
    @classmethod
608
609
    def init_new(
        cls,
610
        reqs: List[Req],
611
612
613
614
615
        req_to_token_pool: ReqToTokenPool,
        token_to_kv_pool: ReqToTokenPool,
        tree_cache: BasePrefixCache,
        model_config: ModelConfig,
        enable_overlap: bool,
616
        spec_algorithm: SpeculativeAlgorithm,
617
        enable_custom_logit_processor: bool,
618
    ):
619
620
621
622
623
        return cls(
            reqs=reqs,
            req_to_token_pool=req_to_token_pool,
            token_to_kv_pool=token_to_kv_pool,
            tree_cache=tree_cache,
624
            model_config=model_config,
625
            enable_overlap=enable_overlap,
626
627
            return_logprob=any(req.return_logprob for req in reqs),
            has_stream=any(req.stream for req in reqs),
628
            has_grammar=any(req.grammar for req in reqs),
Zhang, Liangang's avatar
Zhang, Liangang committed
629
            device=req_to_token_pool.device,
630
            spec_algorithm=spec_algorithm,
631
            enable_custom_logit_processor=enable_custom_logit_processor,
Lianmin Zheng's avatar
Lianmin Zheng committed
632
633
        )

634
    def batch_size(self):
635
        return len(self.reqs)
636

Lianmin Zheng's avatar
Lianmin Zheng committed
637
638
639
    def is_empty(self):
        return len(self.reqs) == 0

640
    def alloc_req_slots(self, num_reqs: int):
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
        req_pool_indices = self.req_to_token_pool.alloc(num_reqs)
        if req_pool_indices is None:
            raise RuntimeError(
                "Out of memory. "
                "Please set a smaller number for `--max-running-requests`."
            )
        return req_pool_indices

    def alloc_token_slots(self, num_tokens: int):
        out_cache_loc = self.token_to_kv_pool.alloc(num_tokens)

        if out_cache_loc is None:
            if self.tree_cache is not None:
                self.tree_cache.evict(num_tokens, self.token_to_kv_pool.free)
                out_cache_loc = self.token_to_kv_pool.alloc(num_tokens)

            if out_cache_loc is None:
658
659
660
661
662
663
                phase_str = "Prefill" if self.forward_mode.is_extend() else "Decode"
                logger.error(
                    f"{phase_str} out of memory. Try to lower your batch size.\n"
                    f"Try to allocate {num_tokens} tokens.\n"
                    f"Avaliable tokens: {self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size()}\n"
                )
664
665
666
667
668
669
                if self.tree_cache is not None:
                    self.tree_cache.pretty_print()
                exit(1)

        return out_cache_loc

670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
    def prepare_encoder_info_extend(self, input_ids: List[int], seq_lens: List[int]):
        self.encoder_lens_cpu = []
        self.encoder_cached = []

        for req in self.reqs:
            im = req.image_inputs
            if im is None or im.num_image_tokens is None:
                # No image input
                self.encoder_lens_cpu.append(0)
                self.encoder_cached.append(True)
            else:
                self.encoder_lens_cpu.append(im.num_image_tokens)
                self.encoder_cached.append(
                    self.forward_mode.is_decode()
                    or len(req.prefix_indices) >= im.num_image_tokens
                )

687
        self.encoder_lens = torch.tensor(self.encoder_lens_cpu, dtype=torch.int64).to(
688
689
690
691
692
693
694
695
696
697
698
699
            self.device, non_blocking=True
        )

        # Strip encoder infos
        pt = 0
        decoder_out_cache_loc = []
        encoder_out_cache_loc = []
        for i, req in enumerate(self.reqs):
            encoder_len = self.encoder_lens_cpu[i]
            seq_lens[i] -= encoder_len

            if len(req.prefix_indices) < encoder_len:
700
                # NOTE: the encoder part should be considered as a whole
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
                assert len(req.prefix_indices) == 0
                input_ids[i] = input_ids[i][encoder_len:]
                encoder_out_cache_loc.append(self.out_cache_loc[pt : pt + encoder_len])
                decoder_out_cache_loc.append(
                    self.out_cache_loc[pt + encoder_len : pt + req.extend_input_len]
                )
                self.extend_lens[i] -= encoder_len
                self.extend_num_tokens -= encoder_len
            else:
                decoder_out_cache_loc.append(
                    self.out_cache_loc[pt : pt + req.extend_input_len]
                )
                self.prefix_lens[i] -= encoder_len

            pt += req.extend_input_len

        # Reassign
        self.input_ids = torch.tensor(sum(input_ids, []), dtype=torch.int32).to(
            self.device, non_blocking=True
        )
721
        self.seq_lens = torch.tensor(seq_lens, dtype=torch.int64).to(
722
723
724
725
            self.device, non_blocking=True
        )

        if not decoder_out_cache_loc:
726
            self.out_cache_loc = torch.zeros(0, dtype=torch.int32).to(
727
728
729
730
731
732
                self.device, non_blocking=True
            )
        else:
            self.out_cache_loc = torch.cat(decoder_out_cache_loc)

        if not encoder_out_cache_loc:
733
            self.encoder_out_cache_loc = torch.zeros(0, dtype=torch.int32).to(
734
735
736
737
738
739
740
                self.device, non_blocking=True
            )
        else:
            self.encoder_out_cache_loc = torch.cat(encoder_out_cache_loc)

        assert len(self.out_cache_loc) == self.extend_num_tokens

741
    def prepare_for_extend(self):
Liangsheng Yin's avatar
Liangsheng Yin committed
742
743
        self.forward_mode = ForwardMode.EXTEND

744
        bs = len(self.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
745
        reqs = self.reqs
746
        input_ids = [r.fill_ids[len(r.prefix_indices) :] for r in reqs]
747
        extend_num_tokens = sum(len(ids) for ids in input_ids)
Lianmin Zheng's avatar
Lianmin Zheng committed
748
        seq_lens = []
749
        pre_lens = []
Lianmin Zheng's avatar
Lianmin Zheng committed
750

751
        # Allocate memory
752
        req_pool_indices = self.alloc_req_slots(bs)
753
        out_cache_loc = self.alloc_token_slots(extend_num_tokens)
754

Rin Intachuen's avatar
Rin Intachuen committed
755
756
757
        input_embeds = []

        pt = 0
758
        for i, req in enumerate(reqs):
759
            req.req_pool_idx = req_pool_indices[i]
760
            pre_len, seq_len = len(req.prefix_indices), len(req.fill_ids)
761
            seq_lens.append(seq_len)
762
            assert seq_len - pre_len == req.extend_input_len
Lianmin Zheng's avatar
Lianmin Zheng committed
763

764
            if pre_len > 0:
765
766
                self.req_to_token_pool.write(
                    (req.req_pool_idx, slice(0, pre_len)), req.prefix_indices
767
                )
768

Rin Intachuen's avatar
Rin Intachuen committed
769
770
771
772
773
            # If input_embeds are available, store them
            if req.input_embeds is not None:
                # If req.input_embeds is already a list, append its content directly
                input_embeds.extend(req.input_embeds)  # Use extend to avoid nesting

774
775
776
777
778
779
780
781
782
783
784
            if req.return_logprob:
                # Compute the relative logprob_start_len in an extend batch
                if req.logprob_start_len >= pre_len:
                    extend_logprob_start_len = min(
                        req.logprob_start_len - pre_len, req.extend_input_len - 1
                    )
                else:
                    raise RuntimeError(
                        f"This should never happen. {req.logprob_start_len=}, {pre_len=}"
                    )
                req.extend_logprob_start_len = extend_logprob_start_len
785

786
787
            req.cached_tokens += pre_len - req.already_computed
            req.already_computed = seq_len
788
            req.is_retracted = False
789
            pre_lens.append(pre_len)
Lianmin Zheng's avatar
Lianmin Zheng committed
790
791

        # Set fields
792
793
794
        self.input_ids = torch.tensor(sum(input_ids, []), dtype=torch.int32).to(
            self.device, non_blocking=True
        )
795
        self.req_pool_indices = torch.tensor(req_pool_indices, dtype=torch.int64).to(
796
797
            self.device, non_blocking=True
        )
798
        self.seq_lens = torch.tensor(seq_lens, dtype=torch.int64).to(
799
800
            self.device, non_blocking=True
        )
Rin Intachuen's avatar
Rin Intachuen committed
801
802
803
804
805
806
        self.input_embeds = (
            torch.tensor(input_embeds).to(self.device, non_blocking=True)
            if input_embeds
            else None
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
807
        self.out_cache_loc = out_cache_loc
808
809

        self.seq_lens_sum = sum(seq_lens)
810
811
        if self.return_logprob:
            self.top_logprobs_nums = [r.top_logprobs_num for r in reqs]
812
        self.extend_num_tokens = extend_num_tokens
813
814
815
        self.prefix_lens = [len(r.prefix_indices) for r in reqs]
        self.extend_lens = [r.extend_input_len for r in reqs]
        self.extend_logprob_start_lens = [r.extend_logprob_start_len for r in reqs]
Lianmin Zheng's avatar
Lianmin Zheng committed
816

817
818
819
820
821
822
823
        # Write to req_to_token_pool
        pre_lens = torch.tensor(pre_lens, dtype=torch.int32).to(
            self.device, non_blocking=True
        )
        extend_lens = torch.tensor(self.extend_lens, dtype=torch.int32).to(
            self.device, non_blocking=True
        )
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
        if global_server_args_dict["attention_backend"] != "torch_native":
            write_req_to_token_pool_triton[(bs,)](
                self.req_to_token_pool.req_to_token,
                self.req_pool_indices,
                pre_lens,
                self.seq_lens,
                extend_lens,
                self.out_cache_loc,
                self.req_to_token_pool.req_to_token.shape[1],
            )
        else:
            pt = 0
            for i in range(bs):
                self.req_to_token_pool.write(
                    (self.req_pool_indices[i], slice(pre_lens[i], self.seq_lens[i])),
                    self.out_cache_loc[pt : pt + self.extend_lens[i]],
                )
                pt += self.extend_lens[i]
842
843
        # TODO: some tensors can be reused for ForwardBatchInfo (e.g., extend_lens, cumsum_start)

844
845
846
        if self.model_config.is_encoder_decoder:
            self.prepare_encoder_info_extend(input_ids, seq_lens)

847
        # Build sampling info
848
        self.sampling_info = SamplingBatchInfo.from_schedule_batch(
849
850
            self,
            self.model_config.vocab_size,
851
            enable_overlap_schedule=self.enable_overlap,
852
        )
853

854
    def mix_with_running(self, running_batch: "ScheduleBatch"):
855
        self.forward_mode = ForwardMode.MIXED
856
        running_bs = running_batch.batch_size()
857
858
859
860
861

        for req in running_batch.reqs:
            req.fill_ids = req.origin_input_ids + req.output_ids
            req.extend_input_len = 1

862
        input_ids = torch.cat([self.input_ids, running_batch.input_ids])
863
        out_cache_loc = torch.cat([self.out_cache_loc, running_batch.out_cache_loc])
864

865
        self.merge_batch(running_batch)
866
867
        self.input_ids = input_ids
        self.out_cache_loc = out_cache_loc
868

869
870
871
        # For overlap scheduler, the output_ids has one step delay
        delta = 0 if self.enable_overlap else -1

872
        # NOTE: prefix_indices is what has been cached, but we don't cache each decode step
873
        self.prefix_lens.extend(
874
            [
875
                len(r.origin_input_ids) + len(r.output_ids) + delta
876
877
878
                for r in running_batch.reqs
            ]
        )
879
        self.extend_lens.extend([1] * running_bs)
Lianmin Zheng's avatar
Lianmin Zheng committed
880
881
        self.extend_num_tokens += running_bs
        # TODO (lianmin): Revisit this. It should be seq_len - 1
882
        self.extend_logprob_start_lens.extend([0] * running_bs)
883

884
885
    def check_decode_mem(self, buf_multiplier=1):
        bs = len(self.reqs) * buf_multiplier
Ying Sheng's avatar
Ying Sheng committed
886
        if self.token_to_kv_pool.available_size() >= bs:
887
888
            return True

Mingyi's avatar
Mingyi committed
889
        self.tree_cache.evict(bs, self.token_to_kv_pool.free)
890

891
892
893
894
895
896
        if self.token_to_kv_pool.available_size() >= bs:
            return True

        return False

    def retract_decode(self):
897
        """Retract the decoding requests when there is not enough memory."""
898
        sorted_indices = [i for i in range(len(self.reqs))]
Liangsheng Yin's avatar
Liangsheng Yin committed
899
900

        # TODO(lsyin): improve retraction policy for radix cache
901
        sorted_indices.sort(
Liangsheng Yin's avatar
Liangsheng Yin committed
902
903
904
905
            key=lambda i: (
                len(self.reqs[i].output_ids),
                -len(self.reqs[i].origin_input_ids),
            ),
906
907
908
909
            reverse=True,
        )

        retracted_reqs = []
910
        seq_lens_cpu = self.seq_lens.cpu().numpy()
911
        first_iter = True
Liangsheng Yin's avatar
Liangsheng Yin committed
912
913
914
        while (
            self.token_to_kv_pool.available_size()
            < len(sorted_indices) * global_config.retract_decode_steps
915
            or first_iter
Liangsheng Yin's avatar
Liangsheng Yin committed
916
917
918
919
920
921
922
923
        ):
            if len(sorted_indices) == 1:
                # Corner case: only one request left
                assert (
                    self.token_to_kv_pool.available_size() > 0
                ), "No space left for only one request"
                break

924
            first_iter = False
925
926
927
928
            idx = sorted_indices.pop()
            req = self.reqs[idx]
            retracted_reqs.append(req)

929
930
            if isinstance(self.tree_cache, ChunkCache):
                # ChunkCache does not have eviction
931
932
                token_indices = self.req_to_token_pool.req_to_token[
                    req.req_pool_idx, : seq_lens_cpu[idx]
933
                ]
934
                self.token_to_kv_pool.free(token_indices)
935
                self.req_to_token_pool.free(req.req_pool_idx)
936
937
938
939
                del self.tree_cache.entries[req.rid]
            else:
                # TODO: apply more fine-grained retraction
                last_uncached_pos = len(req.prefix_indices)
940
941
                token_indices = self.req_to_token_pool.req_to_token[
                    req.req_pool_idx, last_uncached_pos : seq_lens_cpu[idx]
942
                ]
943
                self.token_to_kv_pool.free(token_indices)
944
                self.req_to_token_pool.free(req.req_pool_idx)
945
946
947
948
949
950
951
952
953
954
955

                # release the last node
                self.tree_cache.dec_lock_ref(req.last_node)

                # NOTE(lsyin): we should use the newly evictable memory instantly.
                residual_size = (
                    len(sorted_indices) * global_config.retract_decode_steps
                    - self.token_to_kv_pool.available_size()
                )
                residual_size = max(0, residual_size)
                self.tree_cache.evict(residual_size, self.token_to_kv_pool.free)
956
            req.reset_for_retract()
Liangsheng Yin's avatar
Liangsheng Yin committed
957

958
        self.filter_batch(keep_indices=sorted_indices)
959

Liangsheng Yin's avatar
Liangsheng Yin committed
960
961
962
963
964
965
966
967
968
969
        # Reqs in batch are filtered
        total_decoded_tokens = sum(len(r.output_ids) for r in self.reqs)
        total_max_new_tokens = sum(r.sampling_params.max_new_tokens for r in self.reqs)

        new_estimate_ratio = (
            total_decoded_tokens + global_config.retract_decode_steps * len(self.reqs)
        ) / total_max_new_tokens
        new_estimate_ratio = min(1.0, new_estimate_ratio)

        return retracted_reqs, new_estimate_ratio
970

971
    def check_for_jump_forward(self, pad_input_ids_func):
Liangsheng Yin's avatar
Liangsheng Yin committed
972
        jump_forward_reqs = []
973
        keep_indices = set(i for i in range(len(self.reqs)))
Liangsheng Yin's avatar
Liangsheng Yin committed
974
975

        for i, req in enumerate(self.reqs):
976
            if req.grammar is not None:
Lianmin Zheng's avatar
Lianmin Zheng committed
977
978
979
980
                jump_helper = req.grammar.try_jump_forward(req.tokenizer)
                if jump_helper:
                    suffix_ids, _ = jump_helper

Liangsheng Yin's avatar
Liangsheng Yin committed
981
982
983
984
985
                    # Current ids, for cache and revert
                    cur_all_ids = tuple(req.origin_input_ids + req.output_ids)[:-1]
                    cur_output_ids = req.output_ids

                    req.output_ids.extend(suffix_ids)
986
                    decode_res, new_text = req.get_next_inc_detokenization()
Liangsheng Yin's avatar
Liangsheng Yin committed
987
988
                    if not decode_res:
                        req.output_ids = cur_output_ids
Liangsheng Yin's avatar
Liangsheng Yin committed
989
990
                        continue

sglang's avatar
sglang committed
991
992
993
                    (
                        jump_forward_str,
                        next_state,
994
                    ) = req.grammar.jump_forward_str_state(jump_helper)
Liangsheng Yin's avatar
Liangsheng Yin committed
995

Lianmin Zheng's avatar
Lianmin Zheng committed
996
997
                    # Make the incrementally decoded text part of jump_forward_str
                    # so that the UTF-8 will not corrupt
Liangsheng Yin's avatar
Liangsheng Yin committed
998
999
1000
1001
1002
1003
                    jump_forward_str = new_text + jump_forward_str
                    if not req.jump_forward_and_retokenize(
                        jump_forward_str, next_state
                    ):
                        req.output_ids = cur_output_ids
                        continue
Liangsheng Yin's avatar
Liangsheng Yin committed
1004

1005
1006
1007
                    # The decode status has diverged from detokenizer_manager
                    req.vid += 1

Liangsheng Yin's avatar
Liangsheng Yin committed
1008
                    # insert the old request into tree_cache
1009
                    self.tree_cache.cache_finished_req(req, cur_all_ids)
Liangsheng Yin's avatar
Liangsheng Yin committed
1010

Liangsheng Yin's avatar
Liangsheng Yin committed
1011
                    # re-applying image padding
Liangsheng Yin's avatar
Liangsheng Yin committed
1012
                    if req.image_inputs is not None:
1013
                        req.origin_input_ids = pad_input_ids_func(
Liangsheng Yin's avatar
Liangsheng Yin committed
1014
                            req.origin_input_ids_unpadded, req.image_inputs
Liangsheng Yin's avatar
Liangsheng Yin committed
1015
1016
                        )

Liangsheng Yin's avatar
Liangsheng Yin committed
1017
                    jump_forward_reqs.append(req)
1018
                    keep_indices.remove(i)
Liangsheng Yin's avatar
Liangsheng Yin committed
1019

1020
        self.filter_batch(keep_indices=list(keep_indices))
Liangsheng Yin's avatar
Liangsheng Yin committed
1021

Liangsheng Yin's avatar
Liangsheng Yin committed
1022
        return jump_forward_reqs
Liangsheng Yin's avatar
Liangsheng Yin committed
1023

1024
1025
1026
1027
    def prepare_encoder_info_decode(self):
        # Reset the encoder cached status
        self.encoder_cached = [True] * len(self.reqs)

Ke Bao's avatar
Ke Bao committed
1028
1029
    def prepare_for_idle(self):
        self.forward_mode = ForwardMode.IDLE
1030
        self.input_ids = torch.empty(0, dtype=torch.int32, device=self.device)
1031
        self.seq_lens = torch.empty(0, dtype=torch.int64, device=self.device)
1032
        self.out_cache_loc = torch.empty(0, dtype=torch.int32, device=self.device)
1033
        self.req_pool_indices = torch.empty(0, dtype=torch.int32, device=self.device)
1034
        self.seq_lens_sum = 0
Ke Bao's avatar
Ke Bao committed
1035
        self.extend_num_tokens = 0
1036
1037
1038
1039
1040
        self.sampling_info = SamplingBatchInfo.from_schedule_batch(
            self,
            self.model_config.vocab_size,
            enable_overlap_schedule=self.enable_overlap,
        )
Ke Bao's avatar
Ke Bao committed
1041

1042
    def prepare_for_decode(self):
Liangsheng Yin's avatar
Liangsheng Yin committed
1043
        self.forward_mode = ForwardMode.DECODE
1044
1045
        if self.spec_algorithm.is_eagle():
            return
Liangsheng Yin's avatar
Liangsheng Yin committed
1046

1047
1048
        self.input_ids = self.output_ids
        self.output_ids = None
1049
        self.sampling_info.penalizer_orchestrator.cumulate_output_tokens(self.input_ids)
Lianmin Zheng's avatar
Lianmin Zheng committed
1050
1051

        # Alloc mem
1052
        bs = len(self.reqs)
1053
        self.out_cache_loc = self.alloc_token_slots(bs)
1054

1055
1056
1057
1058
1059
1060
        if self.model_config.is_encoder_decoder:
            locs = self.encoder_lens + self.seq_lens
            self.prepare_encoder_info_decode()
        else:
            locs = self.seq_lens

1061
        if self.enable_overlap:
1062
1063
            # Do not use in-place operations in the overlap mode
            self.req_to_token_pool.write(
1064
                (self.req_pool_indices, locs), self.out_cache_loc
1065
1066
1067
1068
1069
            )
            self.seq_lens = self.seq_lens + 1
        else:
            # A faster in-place version
            self.req_to_token_pool.write(
1070
                (self.req_pool_indices, locs), self.out_cache_loc
1071
1072
            )
            self.seq_lens.add_(1)
1073
        self.seq_lens_sum += bs
Lianmin Zheng's avatar
Lianmin Zheng committed
1074

1075
1076
    def filter_batch(
        self,
1077
        being_chunked_req: Optional[Req] = None,
1078
1079
1080
1081
1082
1083
        keep_indices: Optional[List[int]] = None,
    ):
        if keep_indices is None:
            keep_indices = [
                i
                for i in range(len(self.reqs))
Chayenne's avatar
Chayenne committed
1084
                if not self.reqs[i].finished() and self.reqs[i] is not being_chunked_req
1085
1086
1087
            ]

        if keep_indices is None or len(keep_indices) == 0:
1088
1089
1090
1091
            # Filter out all requests
            self.reqs = []
            return

1092
        if len(keep_indices) == len(self.reqs):
1093
1094
1095
            # No need to filter
            return

1096
1097
1098
1099
        if self.model_config.is_encoder_decoder:
            self.encoder_lens = self.encoder_lens[keep_indices]
            self.encoder_lens_cpu = [self.encoder_lens_cpu[i] for i in keep_indices]

1100
        self.reqs = [self.reqs[i] for i in keep_indices]
1101
        new_indices = torch.tensor(keep_indices, dtype=torch.int64).to(
1102
            self.device, non_blocking=True
1103
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1104
        self.req_pool_indices = self.req_pool_indices[new_indices]
1105
        self.seq_lens = self.seq_lens[new_indices]
1106
        self.out_cache_loc = None
1107
        self.seq_lens_sum = self.seq_lens.sum().item()
1108
        self.output_ids = self.output_ids[new_indices]
1109
        self.return_logprob = any(req.return_logprob for req in self.reqs)
1110
        if self.return_logprob:
1111
            self.top_logprobs_nums = [self.top_logprobs_nums[i] for i in keep_indices]
1112
1113
        else:
            self.top_logprobs_nums = None
1114

1115
        self.has_stream = any(req.stream for req in self.reqs)
1116
        self.has_grammar = any(req.grammar for req in self.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
1117

1118
        self.sampling_info.filter_batch(keep_indices, new_indices)
1119
1120
        if self.spec_info:
            self.spec_info.filter_batch(new_indices)
Lianmin Zheng's avatar
Lianmin Zheng committed
1121

1122
    def merge_batch(self, other: "ScheduleBatch"):
1123
1124
1125
        # Penalizer orchestrator must be merged before Batch.reqs is merged. This is because
        # orchestrator.merge() depends on Batch.reqs during preparation of each penalizers, so it
        # needs to be called with pre-merged Batch.reqs.
1126
        self.sampling_info.merge_batch(other.sampling_info)
1127

1128
1129
1130
1131
1132
        # Encoder-decoder infos
        if self.model_config.is_encoder_decoder:
            self.encoder_lens = torch.cat([self.encoder_lens, other.encoder_lens])
            self.encoder_lens_cpu.extend(other.encoder_lens_cpu)

Lianmin Zheng's avatar
Lianmin Zheng committed
1133
1134
1135
1136
        self.req_pool_indices = torch.concat(
            [self.req_pool_indices, other.req_pool_indices]
        )
        self.seq_lens = torch.concat([self.seq_lens, other.seq_lens])
1137
        self.out_cache_loc = None
1138
        self.seq_lens_sum += other.seq_lens_sum
1139
1140
        if self.output_ids is not None:
            self.output_ids = torch.concat([self.output_ids, other.output_ids])
1141
1142
1143
1144
1145
1146
        if self.return_logprob and other.return_logprob:
            self.top_logprobs_nums.extend(other.top_logprobs_nums)
        elif self.return_logprob:
            self.top_logprobs_nums.extend([0] * len(other.reqs))
        elif other.return_logprob:
            self.top_logprobs_nums = [0] * len(self.reqs) + other.top_logprobs_nums
1147
        self.reqs.extend(other.reqs)
1148

1149
1150
1151
        self.return_logprob |= other.return_logprob
        self.has_stream |= other.has_stream
        self.has_grammar |= other.has_grammar
1152

1153
1154
1155
        if self.spec_info:
            self.spec_info.merge_batch(other.spec_info)

1156
    def get_model_worker_batch(self):
1157
        if self.forward_mode.is_decode_or_idle():
1158
            extend_seq_lens = extend_prefix_lens = extend_logprob_start_lens = None
1159
1160
1161
1162
1163
        else:
            extend_seq_lens = self.extend_lens
            extend_prefix_lens = self.prefix_lens
            extend_logprob_start_lens = self.extend_logprob_start_lens

1164
        if self.sampling_info:
Ke Bao's avatar
Ke Bao committed
1165
1166
1167
1168
            if self.has_grammar:
                self.sampling_info.grammars = [req.grammar for req in self.reqs]
            else:
                self.sampling_info.grammars = None
1169

1170
1171
        global bid
        bid += 1
1172
        return ModelWorkerBatch(
1173
            bid=bid,
1174
1175
1176
1177
1178
            forward_mode=self.forward_mode,
            input_ids=self.input_ids,
            req_pool_indices=self.req_pool_indices,
            seq_lens=self.seq_lens,
            out_cache_loc=self.out_cache_loc,
1179
            seq_lens_sum=self.seq_lens_sum,
1180
1181
            return_logprob=self.return_logprob,
            top_logprobs_nums=self.top_logprobs_nums,
Ke Bao's avatar
Ke Bao committed
1182
            global_num_tokens=self.global_num_tokens,
1183
            can_run_dp_cuda_graph=self.can_run_dp_cuda_graph,
1184
            extend_num_tokens=self.extend_num_tokens,
1185
1186
1187
            extend_seq_lens=extend_seq_lens,
            extend_prefix_lens=extend_prefix_lens,
            extend_logprob_start_lens=extend_logprob_start_lens,
1188
1189
1190
1191
1192
            image_inputs=[r.image_inputs for r in self.reqs],
            encoder_cached=self.encoder_cached,
            encoder_lens=self.encoder_lens,
            encoder_lens_cpu=self.encoder_lens_cpu,
            encoder_out_cache_loc=self.encoder_out_cache_loc,
1193
            lora_paths=[req.lora_path for req in self.reqs],
1194
            sampling_info=self.sampling_info,
Rin Intachuen's avatar
Rin Intachuen committed
1195
            input_embeds=self.input_embeds,
1196
1197
            spec_algorithm=self.spec_algorithm,
            spec_info=self.spec_info,
Lianmin Zheng's avatar
Lianmin Zheng committed
1198
1199
1200
1201
1202
            capture_hidden_mode=(
                getattr(self.spec_info, "capture_hidden_mode", CaptureHiddenMode.NULL)
                if self.spec_info
                else CaptureHiddenMode.NULL
            ),
1203
1204
        )

1205
    def copy(self):
1206
        # Only contain fields that will be used by process_batch_result
1207
1208
        return ScheduleBatch(
            reqs=self.reqs,
1209
            model_config=self.model_config,
1210
            forward_mode=self.forward_mode,
1211
1212
            out_cache_loc=self.out_cache_loc,
            return_logprob=self.return_logprob,
1213
            decoding_reqs=self.decoding_reqs,
1214
            spec_algorithm=self.spec_algorithm,
1215
            enable_custom_logit_processor=self.enable_custom_logit_processor,
1216
1217
1218
1219
1220
1221
1222
1223
        )

    def __str__(self):
        return (
            f"ScheduleBatch(forward_mode={self.forward_mode.name}, "
            f"#req={(len(self.reqs))})"
        )

Chayenne's avatar
Chayenne committed
1224

1225
@dataclasses.dataclass
1226
class ModelWorkerBatch:
1227
1228
    # The batch id
    bid: int
1229
1230
1231
    # The forward mode
    forward_mode: ForwardMode
    # The input ids
1232
    input_ids: torch.Tensor
1233
1234
1235
1236
1237
1238
1239
    # The indices of requests in the req_to_token_pool
    req_pool_indices: torch.Tensor
    # The sequence length
    seq_lens: torch.Tensor
    # The indices of output tokens in the token_to_kv_pool
    out_cache_loc: torch.Tensor

1240
1241
1242
    # The sum of all sequence lengths
    seq_lens_sum: int

1243
1244
1245
1246
    # For logprob
    return_logprob: bool
    top_logprobs_nums: Optional[List[int]]

Ke Bao's avatar
Ke Bao committed
1247
1248
    # For DP attention
    global_num_tokens: Optional[List[int]]
1249
    can_run_dp_cuda_graph: bool
Ke Bao's avatar
Ke Bao committed
1250

1251
    # For extend
1252
    extend_num_tokens: Optional[int]
1253
1254
1255
1256
1257
1258
1259
    extend_seq_lens: Optional[List[int]]
    extend_prefix_lens: Optional[List[int]]
    extend_logprob_start_lens: Optional[List[int]]

    # For multimodal
    image_inputs: Optional[List[ImageInputs]]

1260
1261
1262
1263
1264
1265
    # For encoder-decoder
    encoder_cached: Optional[List[bool]]
    encoder_lens: Optional[torch.Tensor]
    encoder_lens_cpu: Optional[List[int]]
    encoder_out_cache_loc: Optional[torch.Tensor]

1266
1267
1268
1269
1270
    # For LoRA
    lora_paths: Optional[List[str]]

    # Sampling info
    sampling_info: SamplingBatchInfo
1271

Rin Intachuen's avatar
Rin Intachuen committed
1272
1273
1274
    # The input Embeds
    input_embeds: Optional[torch.tensor] = None

1275
    # Speculative decoding
1276
    spec_algorithm: SpeculativeAlgorithm = None
1277
    spec_info: Optional[SpecInfo] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1278
    capture_hidden_mode: CaptureHiddenMode = None
1279

1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

@triton.jit
def write_req_to_token_pool_triton(
    req_to_token_ptr,  # [max_batch, max_context_len]
    req_pool_indices,
    pre_lens,
    seq_lens,
    extend_lens,
    out_cache_loc,
    req_to_token_ptr_stride: tl.constexpr,
):
    BLOCK_SIZE: tl.constexpr = 512
    pid = tl.program_id(0)

    req_pool_index = tl.load(req_pool_indices + pid)
    pre_len = tl.load(pre_lens + pid)
    seq_len = tl.load(seq_lens + pid)

    # TODO: optimize this?
    cumsum_start = 0
    for i in range(pid):
        cumsum_start += tl.load(extend_lens + i)

    num_loop = tl.cdiv(seq_len - pre_len, BLOCK_SIZE)
    for i in range(num_loop):
        offset = tl.arange(0, BLOCK_SIZE) + i * BLOCK_SIZE
        mask = offset < (seq_len - pre_len)
        value = tl.load(out_cache_loc + cumsum_start + offset, mask=mask)
        tl.store(
            req_to_token_ptr
            + req_pool_index * req_to_token_ptr_stride
            + offset
            + pre_len,
            value,
            mask=mask,
        )