schedule_batch.py 31.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

16
17
18
19
20
21
22
23
24
25
26
27
28
"""
Store information about requests and batches.

The following is the flow of data structures for a batch:

ScheduleBatch -> ModelWorkerBatch -> ForwardBatch

- ScheduleBatch is managed by `scheduler.py::Scheduler`.
  It contains high-level scheduling data. Most of the data is on the CPU.
- ModelWorkerBatch is managed by `tp_worker.py::TpModelWorker`.
- ForwardBatch is managed by `model_runner.py::ModelRunner`.
  It contains low-level tensor data. Most of the data consists of GPU tensors.
"""
Lianmin Zheng's avatar
Lianmin Zheng committed
29

Ying Sheng's avatar
Ying Sheng committed
30
import logging
31
from dataclasses import dataclass
32
from typing import List, Optional, Tuple, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
33
34

import torch
35

Liangsheng Yin's avatar
Liangsheng Yin committed
36
from sglang.global_config import global_config
37
38
from sglang.srt.constrained import RegexGuide
from sglang.srt.constrained.jump_forward import JumpForwardMap
39
from sglang.srt.mem_cache.base_prefix_cache import BasePrefixCache
40
from sglang.srt.mem_cache.chunk_cache import ChunkCache
41
from sglang.srt.mem_cache.memory_pool import BaseTokenToKVPool, ReqToTokenPool
42
from sglang.srt.model_executor.forward_batch_info import ForwardMode
43
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
44
from sglang.srt.sampling.sampling_params import SamplingParams
45
from sglang.srt.server_args import ServerArgs
Liangsheng Yin's avatar
Liangsheng Yin committed
46
47

INIT_INCREMENTAL_DETOKENIZATION_OFFSET = 5
Lianmin Zheng's avatar
Lianmin Zheng committed
48

49
50
# Put some global args for easy access
global_server_args_dict = {
51
52
53
    "attention_backend": ServerArgs.attention_backend,
    "sampling_backend": ServerArgs.sampling_backend,
    "triton_attention_reduce_in_fp32": ServerArgs.triton_attention_reduce_in_fp32,
Ke Bao's avatar
Ke Bao committed
54
    "disable_mla": ServerArgs.disable_mla,
55
    "torchao_config": ServerArgs.torchao_config,
56
57
}

Lianmin Zheng's avatar
Lianmin Zheng committed
58

Ying Sheng's avatar
Ying Sheng committed
59
60
61
logger = logging.getLogger(__name__)


62
63
64
class BaseFinishReason:
    def __init__(self, is_error: bool = False):
        self.is_error = is_error
Lianmin Zheng's avatar
Lianmin Zheng committed
65

66
    def to_json(self):
67
        raise NotImplementedError()
68
69
70


class FINISH_MATCHED_TOKEN(BaseFinishReason):
Mingyi's avatar
Mingyi committed
71
    def __init__(self, matched: Union[int, List[int]]):
72
73
74
        super().__init__()
        self.matched = matched

75
76
77
78
79
    def to_json(self):
        return {
            "type": "stop",  # to match OpenAI API's return value
            "matched": self.matched,
        }
80
81


82
83
class FINISH_MATCHED_STR(BaseFinishReason):
    def __init__(self, matched: str):
84
        super().__init__()
85
        self.matched = matched
86

87
88
89
90
91
    def to_json(self):
        return {
            "type": "stop",  # to match OpenAI API's return value
            "matched": self.matched,
        }
92
93


94
95
class FINISH_LENGTH(BaseFinishReason):
    def __init__(self, length: int):
96
        super().__init__()
97
        self.length = length
98

99
100
101
102
103
    def to_json(self):
        return {
            "type": "length",  # to match OpenAI API's return value
            "length": self.length,
        }
104
105
106
107
108
109


class FINISH_ABORT(BaseFinishReason):
    def __init__(self):
        super().__init__(is_error=True)

110
111
112
113
    def to_json(self):
        return {
            "type": "abort",
        }
114

Lianmin Zheng's avatar
Lianmin Zheng committed
115

Liangsheng Yin's avatar
Liangsheng Yin committed
116
117
@dataclass
class ImageInputs:
118
119
    """The image related inputs."""

Liangsheng Yin's avatar
Liangsheng Yin committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    pixel_values: torch.Tensor
    image_hash: int
    image_sizes: Optional[list] = None
    image_offsets: Optional[list] = None
    pad_values: Optional[list] = None
    modalities: Optional[list] = None

    image_embeds: Optional[List[torch.Tensor]] = None
    aspect_ratio_ids: Optional[List[torch.Tensor]] = None
    aspect_ratio_mask: Optional[List[torch.Tensor]] = None

    @staticmethod
    def from_dict(obj, vocab_size):
        # Use image hash as fake token_ids, which is then used for prefix matching
        ret = ImageInputs(
            pixel_values=obj["pixel_values"],
            image_hash=hash(tuple(obj["image_hashes"])),
        )
        image_hash = ret.image_hash
        ret.pad_values = [
            (image_hash) % vocab_size,
            (image_hash >> 16) % vocab_size,
            (image_hash >> 32) % vocab_size,
            (image_hash >> 64) % vocab_size,
        ]
        ret.image_sizes = obj["image_sizes"]
        # Only when pixel values is not None we have modalities
147
        ret.modalities = obj["modalities"] or ["image"]
Liangsheng Yin's avatar
Liangsheng Yin committed
148
149
150
        return ret


Lianmin Zheng's avatar
Lianmin Zheng committed
151
class Req:
152
    """The input and output status of a request."""
153

154
155
156
157
158
    def __init__(
        self,
        rid: str,
        origin_input_text: str,
        origin_input_ids: Tuple[int],
159
        sampling_params: SamplingParams,
160
161
        lora_path: Optional[str] = None,
    ):
162
        # Input and output info
Lianmin Zheng's avatar
Lianmin Zheng committed
163
        self.rid = rid
Liangsheng Yin's avatar
Liangsheng Yin committed
164
        self.origin_input_text = origin_input_text
Liangsheng Yin's avatar
Liangsheng Yin committed
165
        self.origin_input_ids_unpadded = origin_input_ids  # Before image padding
Liangsheng Yin's avatar
Liangsheng Yin committed
166
        self.origin_input_ids = origin_input_ids
Liangsheng Yin's avatar
Liangsheng Yin committed
167
        self.output_ids = []  # Each decode stage's output ids
168
        self.fill_ids = None  # fill_ids = origin_input_ids + output_ids
169
170

        self.sampling_params = sampling_params
171
        self.lora_path = lora_path
Liangsheng Yin's avatar
Liangsheng Yin committed
172

173
174
175
        # Memory info
        self.req_pool_idx = None

176
177
178
        # Check finish
        self.tokenizer = None
        self.finished_reason = None
179
        self.stream = False
180

181
        # For incremental decoding
182
183
184
185
186
187
188
189
        # ----- | --------- read_ids -------|
        # ----- |   surr_ids  |
        # xxxxx | xxxxxxxxxxx | xxxxxxxxxxx |
        # ----- ^ ----------- ^ ----------- ^
        # ----- 1 ----------- 2 ----------- 3
        # 1: surr_offset
        # 2: read_offset
        # 3: last token
190
        self.vid = 0  # version id to sync decode status with in detokenizer_manager
Liangsheng Yin's avatar
Liangsheng Yin committed
191
192
193
        self.decoded_text = ""
        self.surr_offset = None  # Surrounding offset to defeat the cleanup algorithm
        self.read_offset = None
194

195
196
197
        # The number of decoded tokens for token usage report. Note that
        # this does not include the jump forward tokens.
        self.completion_tokens_wo_jump_forward = 0
198

199
        # For vision inputs
Liangsheng Yin's avatar
Liangsheng Yin committed
200
        self.image_inputs: Optional[ImageInputs] = None
201

202
203
        # Prefix info
        self.prefix_indices = []
204
        self.extend_input_len = 0
205
206
        self.last_node = None

207
        # Logprobs (arguments)
208
209
210
        self.return_logprob = False
        self.logprob_start_len = 0
        self.top_logprobs_num = 0
211
212

        # Logprobs (return value)
213
        self.normalized_prompt_logprob = None
214
215
216
217
        self.input_token_logprobs = None
        self.input_top_logprobs = None
        self.output_token_logprobs = []
        self.output_top_logprobs = []
218
219

        # Logprobs (internal values)
Liangsheng Yin's avatar
Liangsheng Yin committed
220
221
222
        # The tokens is prefilled but need to be considered as decode tokens
        # and should be updated for the decode logprobs
        self.last_update_decode_tokens = 0
223
224
225
226
227
        # The relative logprob_start_len in an extend batch
        self.extend_logprob_start_len = 0

        # Embedding
        self.embedding = None
Lianmin Zheng's avatar
Lianmin Zheng committed
228

229
        # Constrained decoding
Liangsheng Yin's avatar
Liangsheng Yin committed
230
231
232
        self.regex_fsm: RegexGuide = None
        self.regex_fsm_state: int = 0
        self.jump_forward_map: JumpForwardMap = None
Liangsheng Yin's avatar
Liangsheng Yin committed
233

234
235
236
237
    # whether request reached finished condition
    def finished(self) -> bool:
        return self.finished_reason is not None

238
    def init_next_round_input(self, tree_cache: Optional[BasePrefixCache] = None):
239
        self.fill_ids = self.origin_input_ids + self.output_ids
240
241
242
243
        if tree_cache is not None:
            self.prefix_indices, self.last_node = tree_cache.match_prefix(
                rid=self.rid, key=self.adjust_max_prefix_ids()
            )
244
        self.extend_input_len = len(self.fill_ids) - len(self.prefix_indices)
245

246
    def adjust_max_prefix_ids(self):
247
248
        self.fill_ids = self.origin_input_ids + self.output_ids
        input_len = len(self.fill_ids)
249
250
251
252

        # FIXME: To work around some bugs in logprob computation, we need to ensure each
        # request has at least one token. Later, we can relax this requirement and use `input_len`.
        max_prefix_len = input_len - 1
Liangsheng Yin's avatar
Liangsheng Yin committed
253
254
255
256
257

        if self.sampling_params.max_new_tokens > 0:
            # Need at least one token to compute logits
            max_prefix_len = min(max_prefix_len, input_len - 1)

258
        if self.return_logprob:
Liangsheng Yin's avatar
Liangsheng Yin committed
259
260
261
            if self.normalized_prompt_logprob is None:
                # Need at least two tokens to compute normalized logprob
                max_prefix_len = min(max_prefix_len, input_len - 2)
262
            max_prefix_len = min(max_prefix_len, self.logprob_start_len)
263

264
        max_prefix_len = max(max_prefix_len, 0)
265
        return self.fill_ids[:max_prefix_len]
266

Liangsheng Yin's avatar
Liangsheng Yin committed
267
    # Based on https://github.com/vllm-project/vllm/blob/7a64d24aad69e4d2548aa0bf528d9fe63428ab01/vllm/transformers_utils/detokenizer.py#L194-L313
268
    def init_incremental_detokenize(self):
Liangsheng Yin's avatar
Liangsheng Yin committed
269
270
271
272
273
274
275
276
277
        first_iter = self.surr_offset is None or self.read_offset is None

        if first_iter:
            self.read_offset = len(self.origin_input_ids_unpadded)
            self.surr_offset = max(
                self.read_offset - INIT_INCREMENTAL_DETOKENIZATION_OFFSET, 0
            )

        all_ids = self.origin_input_ids_unpadded + self.output_ids
278
        return all_ids[self.surr_offset :], self.read_offset - self.surr_offset
Liangsheng Yin's avatar
Liangsheng Yin committed
279

280
    def get_next_inc_detokenization(self):
281
282
        if self.tokenizer is None:
            return False, ""
283
284
        read_ids, read_offset = self.init_incremental_detokenize()
        surr_ids = read_ids[:read_offset]
Liangsheng Yin's avatar
Liangsheng Yin committed
285
286
287
288
289

        surr_text = self.tokenizer.decode(
            surr_ids,
            skip_special_tokens=self.sampling_params.skip_special_tokens,
            spaces_between_special_tokens=self.sampling_params.spaces_between_special_tokens,
Liangsheng Yin's avatar
Liangsheng Yin committed
290
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
291
292
293
294
295
296
297
        new_text = self.tokenizer.decode(
            read_ids,
            skip_special_tokens=self.sampling_params.skip_special_tokens,
            spaces_between_special_tokens=self.sampling_params.spaces_between_special_tokens,
        )

        if len(new_text) > len(surr_text) and not new_text.endswith("�"):
298
            return True, new_text[len(surr_text) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
299
300

        return False, ""
Lianmin Zheng's avatar
Lianmin Zheng committed
301

302
    def check_finished(self):
303
        if self.finished():
304
305
            return

Liangsheng Yin's avatar
Liangsheng Yin committed
306
        if len(self.output_ids) >= self.sampling_params.max_new_tokens:
307
308
309
            self.finished_reason = FINISH_LENGTH(
                length=self.sampling_params.max_new_tokens
            )
310
311
            return

312
        last_token_id = self.output_ids[-1]
313
314
315
316
317
318

        matched_eos = last_token_id in self.sampling_params.stop_token_ids

        if self.tokenizer is not None:
            matched_eos |= last_token_id == self.tokenizer.eos_token_id

319
        if matched_eos and not self.sampling_params.ignore_eos:
320
321
322
            self.finished_reason = FINISH_MATCHED_TOKEN(matched=last_token_id)
            return

323
324
325
326
327
328
        if len(self.sampling_params.stop_strs) > 0:
            tail_str = self.tokenizer.decode(
                self.output_ids[-(self.sampling_params.stop_str_max_len + 1) :]
            )

            for stop_str in self.sampling_params.stop_strs:
Liangsheng Yin's avatar
Liangsheng Yin committed
329
                if stop_str in tail_str or stop_str in self.decoded_text:
330
                    self.finished_reason = FINISH_MATCHED_STR(matched=stop_str)
331
332
                    return

Liangsheng Yin's avatar
Liangsheng Yin committed
333
    def jump_forward_and_retokenize(self, jump_forward_str, next_state):
Liangsheng Yin's avatar
Liangsheng Yin committed
334
335
336
337
338
339
        if self.origin_input_text is None:
            # Recovering text can only use unpadded ids
            self.origin_input_text = self.tokenizer.decode(
                self.origin_input_ids_unpadded
            )

Liangsheng Yin's avatar
Liangsheng Yin committed
340
        all_text = self.origin_input_text + self.decoded_text + jump_forward_str
Liangsheng Yin's avatar
Liangsheng Yin committed
341
        all_ids = self.tokenizer.encode(all_text)
342
        if not all_ids:
havetc's avatar
havetc committed
343
            logger.warning("Encoded all_text resulted in empty all_ids")
344
345
            return False

Liangsheng Yin's avatar
Liangsheng Yin committed
346
        prompt_tokens = len(self.origin_input_ids_unpadded)
347
        if prompt_tokens > len(all_ids):
havetc's avatar
havetc committed
348
            logger.warning("prompt_tokens is larger than encoded all_ids")
349
            return False
Liangsheng Yin's avatar
Liangsheng Yin committed
350
351
352

        if all_ids[prompt_tokens - 1] != self.origin_input_ids_unpadded[-1]:
            # TODO(lsyin): fix token fusion
353
            logger.warning(
Liangsheng Yin's avatar
Liangsheng Yin committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
                "Token fusion between input and output, try to avoid this by removing the space at the end of the input."
            )
            return False

        old_output_ids = self.output_ids
        self.output_ids = all_ids[prompt_tokens:]
        self.decoded_text = self.decoded_text + jump_forward_str
        self.surr_offset = prompt_tokens
        self.read_offset = len(all_ids)

        # NOTE: A trick to reduce the surrouding tokens decoding overhead
        for i in range(0, INIT_INCREMENTAL_DETOKENIZATION_OFFSET):
            surr_text_ = self.tokenizer.decode(
                all_ids[self.read_offset - i : self.read_offset]
            )
            if not surr_text_.endswith("�"):
                self.surr_offset = self.read_offset - i
                break
Liangsheng Yin's avatar
Liangsheng Yin committed
372
373
374
375
376
377

        self.regex_fsm_state = next_state

        if self.return_logprob:
            # For fast-forward part's logprobs
            k = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
378
379
            for i, old_id in enumerate(old_output_ids):
                if old_id == self.output_ids[i]:
Liangsheng Yin's avatar
Liangsheng Yin committed
380
381
382
                    k = k + 1
                else:
                    break
383
384
            self.output_token_logprobs = self.output_token_logprobs[:k]
            self.output_top_logprobs = self.output_top_logprobs[:k]
Liangsheng Yin's avatar
Liangsheng Yin committed
385
            self.logprob_start_len = prompt_tokens + k
Liangsheng Yin's avatar
Liangsheng Yin committed
386
            self.last_update_decode_tokens = len(self.output_ids) - k
387

Liangsheng Yin's avatar
Liangsheng Yin committed
388
        return True
Liangsheng Yin's avatar
Liangsheng Yin committed
389

Lianmin Zheng's avatar
Lianmin Zheng committed
390
    def __repr__(self):
Liangsheng Yin's avatar
Liangsheng Yin committed
391
        return f"rid(n={self.rid}, " f"input_ids={self.origin_input_ids}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
392
393


394
@dataclass
395
class ScheduleBatch:
396
397
    """Store all inforamtion of a batch."""

398
    # Request, memory pool, and cache
399
400
    reqs: List[Req]
    req_to_token_pool: ReqToTokenPool
401
    token_to_kv_pool: BaseTokenToKVPool
402
    tree_cache: BasePrefixCache
403

Liangsheng Yin's avatar
Liangsheng Yin committed
404
    forward_mode: ForwardMode = None
405
    sampling_info: SamplingBatchInfo = None
Liangsheng Yin's avatar
Liangsheng Yin committed
406

407
    # Batched arguments to model runner
408
409
410
    input_ids: torch.Tensor = None
    req_pool_indices: torch.Tensor = None
    seq_lens: torch.Tensor = None
411
    out_cache_loc: torch.Tensor = None
412

413
414
    output_ids: torch.Tensor = None

415
    # For processing logprobs
416
    return_logprob: bool = False
417
418
419
420
421
422
423
    top_logprobs_nums: Optional[List[int]] = None

    # For extend and mixed chunekd prefill
    prefix_lens: List[int] = None
    extend_lens: List[int] = None
    extend_num_tokens: int = None
    running_bs: int = None
424

425
426
427
    # Stream
    has_stream: bool = False

Zhang, Liangang's avatar
Zhang, Liangang committed
428
429
430
    # device
    device: str = "cuda"

431
432
433
    # Has regex
    has_regex: bool = False

434
435
    @classmethod
    def init_new(cls, reqs, req_to_token_pool, token_to_kv_pool, tree_cache):
436
        return_logprob = any(req.return_logprob for req in reqs)
437
        has_stream = any(req.stream for req in reqs)
438
        has_regex = any(req.regex_fsm for req in reqs)
439
440
441
442
443
444

        return cls(
            reqs=reqs,
            req_to_token_pool=req_to_token_pool,
            token_to_kv_pool=token_to_kv_pool,
            tree_cache=tree_cache,
445
            return_logprob=return_logprob,
446
            has_stream=has_stream,
Zhang, Liangang's avatar
Zhang, Liangang committed
447
            device=req_to_token_pool.device,
448
            has_regex=has_regex,
Lianmin Zheng's avatar
Lianmin Zheng committed
449
450
        )

451
    def batch_size(self):
452
        return len(self.reqs)
453

Lianmin Zheng's avatar
Lianmin Zheng committed
454
455
456
    def is_empty(self):
        return len(self.reqs) == 0

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    def alloc_req_slots(self, num_reqs):
        req_pool_indices = self.req_to_token_pool.alloc(num_reqs)
        if req_pool_indices is None:
            raise RuntimeError(
                "Out of memory. "
                "Please set a smaller number for `--max-running-requests`."
            )
        return req_pool_indices

    def alloc_token_slots(self, num_tokens: int):
        out_cache_loc = self.token_to_kv_pool.alloc(num_tokens)

        if out_cache_loc is None:
            if self.tree_cache is not None:
                self.tree_cache.evict(num_tokens, self.token_to_kv_pool.free)
                out_cache_loc = self.token_to_kv_pool.alloc(num_tokens)

            if out_cache_loc is None:
                logger.error("Prefill out of memory. Try to lower your batch size.")
                if self.tree_cache is not None:
                    self.tree_cache.pretty_print()
                exit(1)

        return out_cache_loc

482
    def prepare_for_extend(self, vocab_size: int):
Liangsheng Yin's avatar
Liangsheng Yin committed
483
484
        self.forward_mode = ForwardMode.EXTEND

485
        bs = len(self.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
486
        reqs = self.reqs
487
        input_ids = [r.fill_ids[len(r.prefix_indices) :] for r in reqs]
488
        extend_num_tokens = sum(len(ids) for ids in input_ids)
Lianmin Zheng's avatar
Lianmin Zheng committed
489
490
        seq_lens = []

491
        # Allocate memory
492
        req_pool_indices = self.alloc_req_slots(bs)
493
        out_cache_loc = self.alloc_token_slots(extend_num_tokens)
494

495
        pt = 0
496
        for i, req in enumerate(reqs):
497
            req.req_pool_idx = req_pool_indices[i]
498
            pre_len, seq_len = len(req.prefix_indices), len(req.fill_ids)
499
            seq_lens.append(seq_len)
500
            assert seq_len - pre_len == req.extend_input_len
Lianmin Zheng's avatar
Lianmin Zheng committed
501

502
            if pre_len > 0:
503
                self.req_to_token_pool.req_to_token[req.req_pool_idx][
504
505
                    :pre_len
                ] = req.prefix_indices
Lianmin Zheng's avatar
Lianmin Zheng committed
506

507
            self.req_to_token_pool.req_to_token[req.req_pool_idx][pre_len:seq_len] = (
508
                out_cache_loc[pt : pt + req.extend_input_len]
509
            )
510
511
512
513
514
515
516
517
518
519
520

            # Compute the relative logprob_start_len in an extend batch
            if req.logprob_start_len >= pre_len:
                extend_logprob_start_len = min(
                    req.logprob_start_len - pre_len, req.extend_input_len - 1
                )
            else:
                extend_logprob_start_len = req.extend_input_len - 1

            req.extend_logprob_start_len = extend_logprob_start_len
            pt += req.extend_input_len
Lianmin Zheng's avatar
Lianmin Zheng committed
521
522

        # Set fields
523
524
525
526
        with out_cache_loc.device:
            self.input_ids = torch.tensor(sum(input_ids, []), dtype=torch.int32)
            self.req_pool_indices = torch.tensor(req_pool_indices)
            self.seq_lens = torch.tensor(seq_lens)
527

Lianmin Zheng's avatar
Lianmin Zheng committed
528
529
        self.extend_num_tokens = extend_num_tokens
        self.out_cache_loc = out_cache_loc
530
531
532
533
534
        if self.return_logprob:
            self.top_logprobs_nums = [r.top_logprobs_num for r in reqs]
        self.prefix_lens = [len(r.prefix_indices) for r in reqs]
        self.extend_lens = [r.extend_input_len for r in reqs]
        self.extend_logprob_start_lens = [r.extend_logprob_start_len for r in reqs]
Lianmin Zheng's avatar
Lianmin Zheng committed
535

536
537
538
        self.sampling_info = SamplingBatchInfo.from_schedule_batch(
            self, vocab_size, global_server_args_dict["disable_penalizer"]
        )
539

540
    def mix_with_running(self, running_batch: "ScheduleBatch"):
541
        self.forward_mode = ForwardMode.MIXED
542
        running_bs = running_batch.batch_size()
543
544
545
546
547

        for req in running_batch.reqs:
            req.fill_ids = req.origin_input_ids + req.output_ids
            req.extend_input_len = 1

548
        input_ids = torch.cat([self.input_ids, running_batch.input_ids])
549
        out_cache_loc = torch.cat([self.out_cache_loc, running_batch.out_cache_loc])
550
551
        extend_num_tokens = self.extend_num_tokens + running_bs

552
        self.merge_batch(running_batch)
553
554
555
        self.input_ids = input_ids
        self.out_cache_loc = out_cache_loc
        self.extend_num_tokens = extend_num_tokens
556
557

        # NOTE: prefix_indices is what has been cached, but we don't cache each decode step
558
        self.prefix_lens.extend(
559
560
561
562
563
            [
                len(r.origin_input_ids) + len(r.output_ids) - 1
                for r in running_batch.reqs
            ]
        )
564
565
        self.extend_lens.extend([1] * running_bs)
        self.extend_logprob_start_lens.extend([0] * running_bs)
566

567
    def check_decode_mem(self):
568
        bs = len(self.reqs)
Ying Sheng's avatar
Ying Sheng committed
569
        if self.token_to_kv_pool.available_size() >= bs:
570
571
            return True

Mingyi's avatar
Mingyi committed
572
        self.tree_cache.evict(bs, self.token_to_kv_pool.free)
573

574
575
576
577
578
579
580
        if self.token_to_kv_pool.available_size() >= bs:
            return True

        return False

    def retract_decode(self):
        sorted_indices = [i for i in range(len(self.reqs))]
Liangsheng Yin's avatar
Liangsheng Yin committed
581
582

        # TODO(lsyin): improve retraction policy for radix cache
583
        sorted_indices.sort(
Liangsheng Yin's avatar
Liangsheng Yin committed
584
585
586
587
            key=lambda i: (
                len(self.reqs[i].output_ids),
                -len(self.reqs[i].origin_input_ids),
            ),
588
589
590
591
            reverse=True,
        )

        retracted_reqs = []
592
        seq_lens_cpu = self.seq_lens.cpu().numpy()
593
        first_iter = True
Liangsheng Yin's avatar
Liangsheng Yin committed
594
595
596
        while (
            self.token_to_kv_pool.available_size()
            < len(sorted_indices) * global_config.retract_decode_steps
597
            or first_iter
Liangsheng Yin's avatar
Liangsheng Yin committed
598
599
600
601
602
603
604
605
        ):
            if len(sorted_indices) == 1:
                # Corner case: only one request left
                assert (
                    self.token_to_kv_pool.available_size() > 0
                ), "No space left for only one request"
                break

606
            first_iter = False
607
608
609
610
            idx = sorted_indices.pop()
            req = self.reqs[idx]
            retracted_reqs.append(req)

611
612
            if isinstance(self.tree_cache, ChunkCache):
                # ChunkCache does not have eviction
613
614
615
                token_indices = self.req_to_token_pool.req_to_token[req.req_pool_idx][
                    : seq_lens_cpu[idx]
                ]
616
                self.token_to_kv_pool.free(token_indices)
617
                self.req_to_token_pool.free(req.req_pool_idx)
618
619
620
621
                del self.tree_cache.entries[req.rid]
            else:
                # TODO: apply more fine-grained retraction
                last_uncached_pos = len(req.prefix_indices)
622
623
624
                token_indices = self.req_to_token_pool.req_to_token[req.req_pool_idx][
                    last_uncached_pos : seq_lens_cpu[idx]
                ]
625
                self.token_to_kv_pool.free(token_indices)
626
                self.req_to_token_pool.free(req.req_pool_idx)
627
628
629
630
631
632
633
634
635
636
637

                # release the last node
                self.tree_cache.dec_lock_ref(req.last_node)

                # NOTE(lsyin): we should use the newly evictable memory instantly.
                residual_size = (
                    len(sorted_indices) * global_config.retract_decode_steps
                    - self.token_to_kv_pool.available_size()
                )
                residual_size = max(0, residual_size)
                self.tree_cache.evict(residual_size, self.token_to_kv_pool.free)
Liangsheng Yin's avatar
Liangsheng Yin committed
638

639
            req.prefix_indices = []
640
            req.last_node = None
641
            req.extend_input_len = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
642
643
644
645

            # For incremental logprobs
            req.last_update_decode_tokens = 0
            req.logprob_start_len = 10**9
Liangsheng Yin's avatar
Liangsheng Yin committed
646

647
648
        self.filter_batch(sorted_indices)

Liangsheng Yin's avatar
Liangsheng Yin committed
649
650
651
652
653
654
655
656
657
658
        # Reqs in batch are filtered
        total_decoded_tokens = sum(len(r.output_ids) for r in self.reqs)
        total_max_new_tokens = sum(r.sampling_params.max_new_tokens for r in self.reqs)

        new_estimate_ratio = (
            total_decoded_tokens + global_config.retract_decode_steps * len(self.reqs)
        ) / total_max_new_tokens
        new_estimate_ratio = min(1.0, new_estimate_ratio)

        return retracted_reqs, new_estimate_ratio
659

660
    def check_for_jump_forward(self, pad_input_ids_func):
Liangsheng Yin's avatar
Liangsheng Yin committed
661
        jump_forward_reqs = []
Liangsheng Yin's avatar
Liangsheng Yin committed
662
663
664
        filter_indices = [i for i in range(len(self.reqs))]

        for i, req in enumerate(self.reqs):
Liangsheng Yin's avatar
Liangsheng Yin committed
665
            if req.jump_forward_map is not None:
Liangsheng Yin's avatar
Liangsheng Yin committed
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
                jump_forward_bytes = req.jump_forward_map.jump_forward_byte(
                    req.regex_fsm_state
                )
                if jump_forward_bytes is not None and len(jump_forward_bytes) > 1:
                    suffix_bytes = []
                    continuation_range = range(0x80, 0xC0)
                    cur_state = req.regex_fsm_state
                    while (
                        len(jump_forward_bytes)
                        and jump_forward_bytes[0][0] in continuation_range
                    ):
                        # continuation bytes
                        byte_edge = jump_forward_bytes.pop(0)
                        suffix_bytes.append(byte_edge[0])
                        cur_state = byte_edge[1]

                    suffix_tokens = [f"<0x{hex(b)[2:].upper()}>" for b in suffix_bytes]
                    suffix_ids = req.tokenizer.convert_tokens_to_ids(suffix_tokens)

                    # Current ids, for cache and revert
                    cur_all_ids = tuple(req.origin_input_ids + req.output_ids)[:-1]
                    cur_output_ids = req.output_ids

                    req.output_ids.extend(suffix_ids)
690
                    decode_res, new_text = req.get_next_inc_detokenization()
Liangsheng Yin's avatar
Liangsheng Yin committed
691
692
                    if not decode_res:
                        req.output_ids = cur_output_ids
Liangsheng Yin's avatar
Liangsheng Yin committed
693
694
                        continue

sglang's avatar
sglang committed
695
696
697
698
                    (
                        jump_forward_str,
                        next_state,
                    ) = req.jump_forward_map.jump_forward_symbol(cur_state)
Liangsheng Yin's avatar
Liangsheng Yin committed
699
700
701
702
703
704
705
706
707

                    # Make the incrementally decoded text part of jump_forward_str
                    # so that the UTF-8 will not corrupt
                    jump_forward_str = new_text + jump_forward_str
                    if not req.jump_forward_and_retokenize(
                        jump_forward_str, next_state
                    ):
                        req.output_ids = cur_output_ids
                        continue
Liangsheng Yin's avatar
Liangsheng Yin committed
708

709
710
711
                    # The decode status has diverged from detokenizer_manager
                    req.vid += 1

Liangsheng Yin's avatar
Liangsheng Yin committed
712
                    # insert the old request into tree_cache
713
                    self.tree_cache.cache_finished_req(req, cur_all_ids)
Liangsheng Yin's avatar
Liangsheng Yin committed
714

Liangsheng Yin's avatar
Liangsheng Yin committed
715
                    # re-applying image padding
Liangsheng Yin's avatar
Liangsheng Yin committed
716
                    if req.image_inputs is not None:
717
                        req.origin_input_ids = pad_input_ids_func(
Liangsheng Yin's avatar
Liangsheng Yin committed
718
                            req.origin_input_ids_unpadded, req.image_inputs
Liangsheng Yin's avatar
Liangsheng Yin committed
719
720
                        )

Liangsheng Yin's avatar
Liangsheng Yin committed
721
                    jump_forward_reqs.append(req)
Liangsheng Yin's avatar
Liangsheng Yin committed
722
723
                    filter_indices.remove(i)

724
        self.filter_batch(filter_indices)
Liangsheng Yin's avatar
Liangsheng Yin committed
725

Liangsheng Yin's avatar
Liangsheng Yin committed
726
        return jump_forward_reqs
Liangsheng Yin's avatar
Liangsheng Yin committed
727

728
    def prepare_for_decode(self):
Liangsheng Yin's avatar
Liangsheng Yin committed
729
730
        self.forward_mode = ForwardMode.DECODE

731
        self.input_ids = self.output_ids
Lianmin Zheng's avatar
Lianmin Zheng committed
732
        self.seq_lens.add_(1)
733
        self.output_ids = None
Lianmin Zheng's avatar
Lianmin Zheng committed
734
735

        # Alloc mem
736
        bs = len(self.reqs)
737
        self.out_cache_loc = self.alloc_token_slots(bs)
Lianmin Zheng's avatar
Lianmin Zheng committed
738
739
740
741
742
743

        self.req_to_token_pool.req_to_token[
            self.req_pool_indices, self.seq_lens - 1
        ] = self.out_cache_loc

    def filter_batch(self, unfinished_indices: List[int]):
744
745
746
747
748
749
750
751
752
        if unfinished_indices is None or len(unfinished_indices) == 0:
            # Filter out all requests
            self.reqs = []
            return

        if len(unfinished_indices) == len(self.reqs):
            # No need to filter
            return

Lianmin Zheng's avatar
Lianmin Zheng committed
753
        self.reqs = [self.reqs[i] for i in unfinished_indices]
754
755
756
        new_indices = torch.tensor(
            unfinished_indices, dtype=torch.int32, device=self.seq_lens.device
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
757
        self.req_pool_indices = self.req_pool_indices[new_indices]
758
        self.seq_lens = self.seq_lens[new_indices]
759
        self.out_cache_loc = None
760
        self.output_ids = self.output_ids[new_indices]
761
        self.return_logprob = any(req.return_logprob for req in self.reqs)
762
763
764
765
        if self.return_logprob:
            self.top_logprobs_nums = [
                self.top_logprobs_nums[i] for i in unfinished_indices
            ]
766
767
        else:
            self.top_logprobs_nums = None
768

769
        self.has_stream = any(req.stream for req in self.reqs)
770
        self.has_regex = any(req.regex_fsm for req in self.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
771

772
        self.sampling_info.filter_batch(unfinished_indices, new_indices)
Lianmin Zheng's avatar
Lianmin Zheng committed
773

774
    def merge_batch(self, other: "ScheduleBatch"):
775
776
777
        # Penalizer orchestrator must be merged before Batch.reqs is merged. This is because
        # orchestrator.merge() depends on Batch.reqs during preparation of each penalizers, so it
        # needs to be called with pre-merged Batch.reqs.
778
        self.sampling_info.merge_batch(other.sampling_info)
779

Lianmin Zheng's avatar
Lianmin Zheng committed
780
781
782
783
        self.req_pool_indices = torch.concat(
            [self.req_pool_indices, other.req_pool_indices]
        )
        self.seq_lens = torch.concat([self.seq_lens, other.seq_lens])
784
        self.out_cache_loc = None
785
786
        if self.output_ids is not None:
            self.output_ids = torch.concat([self.output_ids, other.output_ids])
787
788
789
790
791
792
        if self.return_logprob and other.return_logprob:
            self.top_logprobs_nums.extend(other.top_logprobs_nums)
        elif self.return_logprob:
            self.top_logprobs_nums.extend([0] * len(other.reqs))
        elif other.return_logprob:
            self.top_logprobs_nums = [0] * len(self.reqs) + other.top_logprobs_nums
793
        self.reqs.extend(other.reqs)
794

795
        self.return_logprob = self.return_logprob or other.return_logprob
796
797
        self.has_stream = self.has_stream or other.has_stream
        self.has_regex = self.has_regex or other.has_regex
798
799
800
801
802
803
804
805
806
807
808
809
810

    def get_model_worker_batch(self):
        if self.forward_mode.is_decode():
            extend_seq_lens = extend_prefix_lens = extend_logprob_start_lens = (
                image_inputs
            ) = None
        else:
            extend_seq_lens = self.extend_lens
            extend_prefix_lens = self.prefix_lens
            extend_logprob_start_lens = self.extend_logprob_start_lens
            image_inputs = [r.image_inputs for r in self.reqs]

        lora_paths = [req.lora_path for req in self.reqs]
811
812
813
814
815
        if self.has_regex:
            self.sampling_info.regex_fsms = [req.regex_fsm for req in self.reqs]
            self.sampling_info.regex_fsm_states = [
                req.regex_fsm_state for req in self.reqs
            ]
816
817
        else:
            self.sampling_info.regex_fsms = None
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

        return ModelWorkerBatch(
            forward_mode=self.forward_mode,
            input_ids=self.input_ids,
            req_pool_indices=self.req_pool_indices,
            seq_lens=self.seq_lens,
            out_cache_loc=self.out_cache_loc,
            return_logprob=self.return_logprob,
            top_logprobs_nums=self.top_logprobs_nums,
            extend_seq_lens=extend_seq_lens,
            extend_prefix_lens=extend_prefix_lens,
            extend_logprob_start_lens=extend_logprob_start_lens,
            image_inputs=image_inputs,
            lora_paths=lora_paths,
            sampling_info=self.sampling_info,
        )

835
836
837
838
839
840
841
    def copy(self):
        return ScheduleBatch(
            reqs=self.reqs,
            req_to_token_pool=self.req_to_token_pool,
            token_to_kv_pool=self.token_to_kv_pool,
            tree_cache=self.tree_cache,
            forward_mode=self.forward_mode,
842
843
844
            output_ids=self.output_ids,
            sampling_info=self.sampling_info,
            decoding_reqs=self.decoding_reqs,
845
846
847
848
849
850
851
852
        )

    def __str__(self):
        return (
            f"ScheduleBatch(forward_mode={self.forward_mode.name}, "
            f"#req={(len(self.reqs))})"
        )

853
854
855
856
857
858

@dataclass
class ModelWorkerBatch:
    # The forward mode
    forward_mode: ForwardMode
    # The input ids
859
    input_ids: torch.Tensor
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
    # The indices of requests in the req_to_token_pool
    req_pool_indices: torch.Tensor
    # The sequence length
    seq_lens: torch.Tensor
    # The indices of output tokens in the token_to_kv_pool
    out_cache_loc: torch.Tensor

    # For logprob
    return_logprob: bool
    top_logprobs_nums: Optional[List[int]]

    # For extend
    extend_seq_lens: Optional[List[int]]
    extend_prefix_lens: Optional[List[int]]
    extend_logprob_start_lens: Optional[List[int]]

    # For multimodal
    image_inputs: Optional[List[ImageInputs]]

    # For LoRA
    lora_paths: Optional[List[str]]

    # Sampling info
    sampling_info: SamplingBatchInfo