schedule_batch.py 28.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

16
"""Meta data for requests and batches"""
Lianmin Zheng's avatar
Lianmin Zheng committed
17

Ying Sheng's avatar
Ying Sheng committed
18
import logging
19
import warnings
20
from dataclasses import dataclass
Mingyi's avatar
Mingyi committed
21
from typing import List, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
22
23
24

import numpy as np
import torch
25
from flashinfer.sampling import top_k_top_p_sampling_from_probs
Liangsheng Yin's avatar
Liangsheng Yin committed
26

Liangsheng Yin's avatar
Liangsheng Yin committed
27
from sglang.global_config import global_config
28
29
from sglang.srt.constrained import RegexGuide
from sglang.srt.constrained.jump_forward import JumpForwardMap
30
from sglang.srt.mem_cache.chunk_cache import ChunkCache
31
from sglang.srt.mem_cache.memory_pool import BaseTokenToKVPool, ReqToTokenPool
32
from sglang.srt.mem_cache.radix_cache import RadixCache
Liangsheng Yin's avatar
Liangsheng Yin committed
33
34

INIT_INCREMENTAL_DETOKENIZATION_OFFSET = 5
Lianmin Zheng's avatar
Lianmin Zheng committed
35

36
37
38
39
40
# Put some global args for easy access
global_server_args_dict = {
    "disable_flashinfer": False,
    "disable_flashinfer_sampling": False,
    "attention_reduce_in_fp32": False,
41
    "enable_mla": False,
42
43
}

Lianmin Zheng's avatar
Lianmin Zheng committed
44

Ying Sheng's avatar
Ying Sheng committed
45
46
47
logger = logging.getLogger(__name__)


48
49
50
class BaseFinishReason:
    def __init__(self, is_error: bool = False):
        self.is_error = is_error
Lianmin Zheng's avatar
Lianmin Zheng committed
51

52
53
54
55
56
    def __str__(self):
        raise NotImplementedError("Subclasses must implement this method")


class FINISH_MATCHED_TOKEN(BaseFinishReason):
Mingyi's avatar
Mingyi committed
57
    def __init__(self, matched: Union[int, List[int]]):
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        super().__init__()
        self.matched = matched

    def __str__(self) -> str:
        return f"FINISH_MATCHED_TOKEN: {self.matched}"


class FINISH_LENGTH(BaseFinishReason):
    def __init__(self, length: int):
        super().__init__()
        self.length = length

    def __str__(self) -> str:
        return f"FINISH_LENGTH: {self.length}"


class FINISH_MATCHED_STR(BaseFinishReason):
    def __init__(self, matched: str):
        super().__init__()
        self.matched = matched

    def __str__(self) -> str:
        return f"FINISH_MATCHED_STR: {self.matched}"


class FINISH_ABORT(BaseFinishReason):
    def __init__(self):
        super().__init__(is_error=True)

    def __str__(self) -> str:
        return "FINISH_ABORT"
89

Lianmin Zheng's avatar
Lianmin Zheng committed
90
91

class Req:
92
93
    """Store all inforamtion of a request."""

Liangsheng Yin's avatar
Liangsheng Yin committed
94
    def __init__(self, rid, origin_input_text, origin_input_ids):
95
        # Input and output info
Lianmin Zheng's avatar
Lianmin Zheng committed
96
        self.rid = rid
Liangsheng Yin's avatar
Liangsheng Yin committed
97
        self.origin_input_text = origin_input_text
Liangsheng Yin's avatar
Liangsheng Yin committed
98
        self.origin_input_ids_unpadded = origin_input_ids  # Before image padding
Liangsheng Yin's avatar
Liangsheng Yin committed
99
        self.origin_input_ids = origin_input_ids
Liangsheng Yin's avatar
Liangsheng Yin committed
100
101
102
        self.output_ids = []  # Each decode stage's output ids
        self.input_ids = None  # input_ids = origin_input_ids + output_ids

103
104
105
        # Memory info
        self.req_pool_idx = None

106
        # For incremental decoding
107
108
109
110
111
112
113
114
        # ----- | --------- read_ids -------|
        # ----- |   surr_ids  |
        # xxxxx | xxxxxxxxxxx | xxxxxxxxxxx |
        # ----- ^ ----------- ^ ----------- ^
        # ----- 1 ----------- 2 ----------- 3
        # 1: surr_offset
        # 2: read_offset
        # 3: last token
115
        self.vid = 0  # version id to sync decode status with in detokenizer_manager
Liangsheng Yin's avatar
Liangsheng Yin committed
116
117
118
        self.decoded_text = ""
        self.surr_offset = None  # Surrounding offset to defeat the cleanup algorithm
        self.read_offset = None
119

120
121
122
        # The number of decoded tokens for token usage report. Note that
        # this does not include the jump forward tokens.
        self.completion_tokens_wo_jump_forward = 0
123

124
        # For vision input
Lianmin Zheng's avatar
Lianmin Zheng committed
125
        self.pixel_values = None
shiyi.c_98's avatar
shiyi.c_98 committed
126
        self.image_size = None
127
        self.image_offset = None
128
        self.pad_value = None
129

130
131
132
133
134
        # Prefix info
        self.extend_input_len = 0
        self.prefix_indices = []
        self.last_node = None

135
        # Sampling parameters
Lianmin Zheng's avatar
Lianmin Zheng committed
136
137
138
        self.sampling_params = None
        self.stream = False

139
        # Check finish
140
        self.tokenizer = None
141
        self.finished_reason = None
Lianmin Zheng's avatar
Lianmin Zheng committed
142

143
144
145
146
147
        # Logprobs
        self.return_logprob = False
        self.logprob_start_len = 0
        self.top_logprobs_num = 0
        self.normalized_prompt_logprob = None
148
149
150
151
        self.input_token_logprobs = None
        self.input_top_logprobs = None
        self.output_token_logprobs = []
        self.output_top_logprobs = []
Liangsheng Yin's avatar
Liangsheng Yin committed
152
153
154
        # The tokens is prefilled but need to be considered as decode tokens
        # and should be updated for the decode logprobs
        self.last_update_decode_tokens = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
155

156
        # Constrained decoding
Liangsheng Yin's avatar
Liangsheng Yin committed
157
158
159
        self.regex_fsm: RegexGuide = None
        self.regex_fsm_state: int = 0
        self.jump_forward_map: JumpForwardMap = None
Liangsheng Yin's avatar
Liangsheng Yin committed
160

161
162
163
164
    # whether request reached finished condition
    def finished(self) -> bool:
        return self.finished_reason is not None

165
    def adjust_max_prefix_ids(self):
Liangsheng Yin's avatar
Liangsheng Yin committed
166
167
168
169
170
171
172
        input_len = len(self.input_ids)
        max_prefix_len = input_len

        if self.sampling_params.max_new_tokens > 0:
            # Need at least one token to compute logits
            max_prefix_len = min(max_prefix_len, input_len - 1)

173
        if self.return_logprob:
Liangsheng Yin's avatar
Liangsheng Yin committed
174
175
176
177
178
            max_prefix_len = min(max_prefix_len, self.logprob_start_len)

            if self.normalized_prompt_logprob is None:
                # Need at least two tokens to compute normalized logprob
                max_prefix_len = min(max_prefix_len, input_len - 2)
179

Liangsheng Yin's avatar
Liangsheng Yin committed
180
        return self.input_ids[:max_prefix_len]
181

Liangsheng Yin's avatar
Liangsheng Yin committed
182
    # Based on https://github.com/vllm-project/vllm/blob/7a64d24aad69e4d2548aa0bf528d9fe63428ab01/vllm/transformers_utils/detokenizer.py#L194-L313
183
    def init_incremental_detokenize(self):
Liangsheng Yin's avatar
Liangsheng Yin committed
184
185
186
187
188
189
190
191
192
        first_iter = self.surr_offset is None or self.read_offset is None

        if first_iter:
            self.read_offset = len(self.origin_input_ids_unpadded)
            self.surr_offset = max(
                self.read_offset - INIT_INCREMENTAL_DETOKENIZATION_OFFSET, 0
            )

        all_ids = self.origin_input_ids_unpadded + self.output_ids
193
        return all_ids[self.surr_offset :], self.read_offset - self.surr_offset
Liangsheng Yin's avatar
Liangsheng Yin committed
194

195
196
197
    def get_next_inc_detokenization(self):
        read_ids, read_offset = self.init_incremental_detokenize()
        surr_ids = read_ids[:read_offset]
Liangsheng Yin's avatar
Liangsheng Yin committed
198
199
200
201
202

        surr_text = self.tokenizer.decode(
            surr_ids,
            skip_special_tokens=self.sampling_params.skip_special_tokens,
            spaces_between_special_tokens=self.sampling_params.spaces_between_special_tokens,
Liangsheng Yin's avatar
Liangsheng Yin committed
203
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
204
205
206
207
208
209
210
        new_text = self.tokenizer.decode(
            read_ids,
            skip_special_tokens=self.sampling_params.skip_special_tokens,
            spaces_between_special_tokens=self.sampling_params.spaces_between_special_tokens,
        )

        if len(new_text) > len(surr_text) and not new_text.endswith("�"):
211
            return True, new_text[len(surr_text) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
212
213

        return False, ""
Lianmin Zheng's avatar
Lianmin Zheng committed
214

215
    def check_finished(self):
216
        if self.finished():
217
218
            return

Liangsheng Yin's avatar
Liangsheng Yin committed
219
220
        if len(self.output_ids) >= self.sampling_params.max_new_tokens:
            self.finished_reason = FINISH_LENGTH(len(self.output_ids))
221
222
223
224
            return

        if (
            self.output_ids[-1] == self.tokenizer.eos_token_id
225
            and not self.sampling_params.ignore_eos
226
        ):
Liangsheng Yin's avatar
Liangsheng Yin committed
227
228
229
            self.finished_reason = FINISH_MATCHED_TOKEN(
                matched=self.tokenizer.eos_token_id
            )
230
231
232
233
234
235
236
237
            return

        if len(self.sampling_params.stop_strs) > 0:
            tail_str = self.tokenizer.decode(
                self.output_ids[-(self.sampling_params.stop_str_max_len + 1) :]
            )

            for stop_str in self.sampling_params.stop_strs:
Liangsheng Yin's avatar
Liangsheng Yin committed
238
                if stop_str in tail_str or stop_str in self.decoded_text:
239
                    self.finished_reason = FINISH_MATCHED_STR(matched=stop_str)
240
241
                    return

Liangsheng Yin's avatar
Liangsheng Yin committed
242
    def jump_forward_and_retokenize(self, jump_forward_str, next_state):
Liangsheng Yin's avatar
Liangsheng Yin committed
243
244
245
246
247
248
        if self.origin_input_text is None:
            # Recovering text can only use unpadded ids
            self.origin_input_text = self.tokenizer.decode(
                self.origin_input_ids_unpadded
            )

Liangsheng Yin's avatar
Liangsheng Yin committed
249
        all_text = self.origin_input_text + self.decoded_text + jump_forward_str
Liangsheng Yin's avatar
Liangsheng Yin committed
250
251
        all_ids = self.tokenizer.encode(all_text)
        prompt_tokens = len(self.origin_input_ids_unpadded)
Liangsheng Yin's avatar
Liangsheng Yin committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

        if all_ids[prompt_tokens - 1] != self.origin_input_ids_unpadded[-1]:
            # TODO(lsyin): fix token fusion
            warnings.warn(
                "Token fusion between input and output, try to avoid this by removing the space at the end of the input."
            )
            return False

        old_output_ids = self.output_ids
        self.output_ids = all_ids[prompt_tokens:]
        self.decoded_text = self.decoded_text + jump_forward_str
        self.surr_offset = prompt_tokens
        self.read_offset = len(all_ids)

        # NOTE: A trick to reduce the surrouding tokens decoding overhead
        for i in range(0, INIT_INCREMENTAL_DETOKENIZATION_OFFSET):
            surr_text_ = self.tokenizer.decode(
                all_ids[self.read_offset - i : self.read_offset]
            )
            if not surr_text_.endswith("�"):
                self.surr_offset = self.read_offset - i
                break
Liangsheng Yin's avatar
Liangsheng Yin committed
274
275
276
277
278
279

        self.regex_fsm_state = next_state

        if self.return_logprob:
            # For fast-forward part's logprobs
            k = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
280
281
            for i, old_id in enumerate(old_output_ids):
                if old_id == self.output_ids[i]:
Liangsheng Yin's avatar
Liangsheng Yin committed
282
283
284
                    k = k + 1
                else:
                    break
285
286
            self.output_token_logprobs = self.output_token_logprobs[:k]
            self.output_top_logprobs = self.output_top_logprobs[:k]
Liangsheng Yin's avatar
Liangsheng Yin committed
287
            self.logprob_start_len = prompt_tokens + k
Liangsheng Yin's avatar
Liangsheng Yin committed
288
            self.last_update_decode_tokens = len(self.output_ids) - k
289

Liangsheng Yin's avatar
Liangsheng Yin committed
290
        return True
Liangsheng Yin's avatar
Liangsheng Yin committed
291

Lianmin Zheng's avatar
Lianmin Zheng committed
292
    def __repr__(self):
Liangsheng Yin's avatar
Liangsheng Yin committed
293
        return f"rid(n={self.rid}, " f"input_ids={self.origin_input_ids}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
294
295


296
@dataclass
297
class ScheduleBatch:
298
299
    """Store all inforamtion of a batch."""

300
    # Request, memory pool, and cache
301
302
    reqs: List[Req]
    req_to_token_pool: ReqToTokenPool
303
    token_to_kv_pool: BaseTokenToKVPool
304
305
    tree_cache: RadixCache

306
    # Batched arguments to model runner
307
308
309
310
311
    input_ids: torch.Tensor = None
    req_pool_indices: torch.Tensor = None
    seq_lens: torch.Tensor = None
    position_ids_offsets: torch.Tensor = None
    out_cache_loc: torch.Tensor = None
312
    extend_num_tokens: int = None
Liangsheng Yin's avatar
Liangsheng Yin committed
313

314
    # For processing logprobs
315
    return_logprob: bool = False
316
    top_logprobs_nums: List[int] = None
317

318
    # Batched sampling params
319
320
321
322
323
324
325
326
327
    temperatures: torch.Tensor = None
    top_ps: torch.Tensor = None
    top_ks: torch.Tensor = None
    frequency_penalties: torch.Tensor = None
    presence_penalties: torch.Tensor = None
    logit_bias: torch.Tensor = None

    @classmethod
    def init_new(cls, reqs, req_to_token_pool, token_to_kv_pool, tree_cache):
328
        return_logprob = any(req.return_logprob for req in reqs)
329
330
331
332
333
334

        return cls(
            reqs=reqs,
            req_to_token_pool=req_to_token_pool,
            token_to_kv_pool=token_to_kv_pool,
            tree_cache=tree_cache,
335
            return_logprob=return_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
336
337
        )

338
339
340
    def batch_size(self):
        return len(self.reqs) if self.reqs is not None else 0

Lianmin Zheng's avatar
Lianmin Zheng committed
341
342
343
    def is_empty(self):
        return len(self.reqs) == 0

344
    def has_stream(self) -> bool:
345
        # Return whether batch has at least 1 streaming request
346
347
        return any(r.stream for r in self.reqs)

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    def alloc_req_slots(self, num_reqs):
        req_pool_indices = self.req_to_token_pool.alloc(num_reqs)
        if req_pool_indices is None:
            raise RuntimeError(
                "Out of memory. "
                "Please set a smaller number for `--max-running-requests`."
            )
        return req_pool_indices

    def alloc_token_slots(self, num_tokens: int):
        out_cache_loc = self.token_to_kv_pool.alloc(num_tokens)

        if out_cache_loc is None:
            if self.tree_cache is not None:
                self.tree_cache.evict(num_tokens, self.token_to_kv_pool.free)
                out_cache_loc = self.token_to_kv_pool.alloc(num_tokens)

            if out_cache_loc is None:
                logger.error("Prefill out of memory. Try to lower your batch size.")
                if self.tree_cache is not None:
                    self.tree_cache.pretty_print()
                exit(1)

        return out_cache_loc

    def batch_sampling_params(self, vocab_size, int_token_logit_bias):
        device = "cuda"
        bs, reqs = self.batch_size(), self.reqs
        self.temperatures = torch.tensor(
            [r.sampling_params.temperature for r in reqs],
            dtype=torch.float,
            device=device,
        ).view(-1, 1)
        self.top_ps = torch.tensor(
            [r.sampling_params.top_p for r in reqs], dtype=torch.float, device=device
        )
        self.top_ks = torch.tensor(
            [r.sampling_params.top_k for r in reqs], dtype=torch.int, device=device
        )
        self.frequency_penalties = torch.tensor(
            [r.sampling_params.frequency_penalty for r in reqs],
            dtype=torch.float,
            device=device,
        )
        self.presence_penalties = torch.tensor(
            [r.sampling_params.presence_penalty for r in reqs],
            dtype=torch.float,
            device=device,
        )

        # Handle logit bias but only allocate when needed
        self.logit_bias = None
        for i in range(bs):
            if reqs[i].sampling_params.dtype == "int":
                if self.logit_bias is None:
                    self.logit_bias = torch.zeros(
                        (bs, vocab_size), dtype=torch.float32, device=device
                    )
                self.logit_bias[i][: len(int_token_logit_bias)] = int_token_logit_bias

408
    def prepare_for_extend(self, vocab_size: int, int_token_logit_bias: torch.Tensor):
409
        bs = self.batch_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
410
411
        reqs = self.reqs
        input_ids = [r.input_ids[len(r.prefix_indices) :] for r in reqs]
412
        extend_num_tokens = sum(len(ids) for ids in input_ids)
Lianmin Zheng's avatar
Lianmin Zheng committed
413
414
        seq_lens = []

415
        # Allocate memory
416
        req_pool_indices_cpu = self.alloc_req_slots(bs)
417
        out_cache_loc = self.alloc_token_slots(extend_num_tokens)
418

419
        pt = 0
420
421
        for i, req in enumerate(reqs):
            req.req_pool_idx = req_pool_indices_cpu[i]
422
423
424
            pre_len, seq_len = len(req.prefix_indices), len(req.input_ids)
            ext_len = seq_len - pre_len
            seq_lens.append(seq_len)
Lianmin Zheng's avatar
Lianmin Zheng committed
425

426
            if pre_len > 0:
427
                self.req_to_token_pool.req_to_token[req.req_pool_idx][
428
429
                    :pre_len
                ] = req.prefix_indices
Lianmin Zheng's avatar
Lianmin Zheng committed
430

431
432
433
434
            self.req_to_token_pool.req_to_token[req.req_pool_idx][pre_len:seq_len] = (
                out_cache_loc[pt : pt + ext_len]
            )
            pt += ext_len
Lianmin Zheng's avatar
Lianmin Zheng committed
435
436

        # Set fields
437
438
439
440
        with torch.device("cuda"):
            self.input_ids = torch.tensor(sum(input_ids, []), dtype=torch.int32)
            self.req_pool_indices = torch.tensor(req_pool_indices_cpu)
            self.seq_lens = torch.tensor(seq_lens, dtype=torch.int32)
441
442
            self.position_ids_offsets = torch.zeros((bs,), dtype=torch.int64)

Lianmin Zheng's avatar
Lianmin Zheng committed
443
444
        self.extend_num_tokens = extend_num_tokens
        self.out_cache_loc = out_cache_loc
Liangsheng Yin's avatar
Liangsheng Yin committed
445
        self.top_logprobs_nums = [r.top_logprobs_num for r in reqs]
Lianmin Zheng's avatar
Lianmin Zheng committed
446

447
        self.batch_sampling_params(vocab_size, int_token_logit_bias)
Lianmin Zheng's avatar
Lianmin Zheng committed
448

449
    def check_decode_mem(self):
450
        bs = self.batch_size()
Ying Sheng's avatar
Ying Sheng committed
451
        if self.token_to_kv_pool.available_size() >= bs:
452
453
            return True

Mingyi's avatar
Mingyi committed
454
        self.tree_cache.evict(bs, self.token_to_kv_pool.free)
455

456
457
458
459
460
461
462
        if self.token_to_kv_pool.available_size() >= bs:
            return True

        return False

    def retract_decode(self):
        sorted_indices = [i for i in range(len(self.reqs))]
Liangsheng Yin's avatar
Liangsheng Yin committed
463
464

        # TODO(lsyin): improve retraction policy for radix cache
465
        sorted_indices.sort(
Liangsheng Yin's avatar
Liangsheng Yin committed
466
467
468
469
            key=lambda i: (
                len(self.reqs[i].output_ids),
                -len(self.reqs[i].origin_input_ids),
            ),
470
471
472
473
            reverse=True,
        )

        retracted_reqs = []
474
        seq_lens_cpu = self.seq_lens.cpu().numpy()
Liangsheng Yin's avatar
Liangsheng Yin committed
475
476
477
478
479
480
481
482
483
484
485
        while (
            self.token_to_kv_pool.available_size()
            < len(sorted_indices) * global_config.retract_decode_steps
        ):
            if len(sorted_indices) == 1:
                # Corner case: only one request left
                assert (
                    self.token_to_kv_pool.available_size() > 0
                ), "No space left for only one request"
                break

486
487
488
489
            idx = sorted_indices.pop()
            req = self.reqs[idx]
            retracted_reqs.append(req)

490
491
            if isinstance(self.tree_cache, ChunkCache):
                # ChunkCache does not have eviction
492
493
494
                token_indices = self.req_to_token_pool.req_to_token[req.req_pool_idx][
                    : seq_lens_cpu[idx]
                ]
495
                self.token_to_kv_pool.free(token_indices)
496
                self.req_to_token_pool.free(req.req_pool_idx)
497
498
499
500
                del self.tree_cache.entries[req.rid]
            else:
                # TODO: apply more fine-grained retraction
                last_uncached_pos = len(req.prefix_indices)
501
502
503
                token_indices = self.req_to_token_pool.req_to_token[req.req_pool_idx][
                    last_uncached_pos : seq_lens_cpu[idx]
                ]
504
                self.token_to_kv_pool.free(token_indices)
505
                self.req_to_token_pool.free(req.req_pool_idx)
506
507
508
509
510
511
512
513
514
515
516

                # release the last node
                self.tree_cache.dec_lock_ref(req.last_node)

                # NOTE(lsyin): we should use the newly evictable memory instantly.
                residual_size = (
                    len(sorted_indices) * global_config.retract_decode_steps
                    - self.token_to_kv_pool.available_size()
                )
                residual_size = max(0, residual_size)
                self.tree_cache.evict(residual_size, self.token_to_kv_pool.free)
Liangsheng Yin's avatar
Liangsheng Yin committed
517

518
519
            req.prefix_indices = None
            req.last_node = None
520
            req.extend_input_len = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
521
522
523
524

            # For incremental logprobs
            req.last_update_decode_tokens = 0
            req.logprob_start_len = 10**9
Liangsheng Yin's avatar
Liangsheng Yin committed
525

526
527
        self.filter_batch(sorted_indices)

Liangsheng Yin's avatar
Liangsheng Yin committed
528
529
530
531
532
533
534
535
536
537
        # Reqs in batch are filtered
        total_decoded_tokens = sum(len(r.output_ids) for r in self.reqs)
        total_max_new_tokens = sum(r.sampling_params.max_new_tokens for r in self.reqs)

        new_estimate_ratio = (
            total_decoded_tokens + global_config.retract_decode_steps * len(self.reqs)
        ) / total_max_new_tokens
        new_estimate_ratio = min(1.0, new_estimate_ratio)

        return retracted_reqs, new_estimate_ratio
538

Liangsheng Yin's avatar
Liangsheng Yin committed
539
    def check_for_jump_forward(self, model_runner):
Liangsheng Yin's avatar
Liangsheng Yin committed
540
        jump_forward_reqs = []
Liangsheng Yin's avatar
Liangsheng Yin committed
541
542
543
        filter_indices = [i for i in range(len(self.reqs))]

        for i, req in enumerate(self.reqs):
Liangsheng Yin's avatar
Liangsheng Yin committed
544
            if req.jump_forward_map is not None:
Liangsheng Yin's avatar
Liangsheng Yin committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
                jump_forward_bytes = req.jump_forward_map.jump_forward_byte(
                    req.regex_fsm_state
                )
                if jump_forward_bytes is not None and len(jump_forward_bytes) > 1:
                    suffix_bytes = []
                    continuation_range = range(0x80, 0xC0)
                    cur_state = req.regex_fsm_state
                    while (
                        len(jump_forward_bytes)
                        and jump_forward_bytes[0][0] in continuation_range
                    ):
                        # continuation bytes
                        byte_edge = jump_forward_bytes.pop(0)
                        suffix_bytes.append(byte_edge[0])
                        cur_state = byte_edge[1]

                    suffix_tokens = [f"<0x{hex(b)[2:].upper()}>" for b in suffix_bytes]
                    suffix_ids = req.tokenizer.convert_tokens_to_ids(suffix_tokens)

                    # Current ids, for cache and revert
                    cur_all_ids = tuple(req.origin_input_ids + req.output_ids)[:-1]
                    cur_output_ids = req.output_ids

                    req.output_ids.extend(suffix_ids)
569
                    decode_res, new_text = req.get_next_inc_detokenization()
Liangsheng Yin's avatar
Liangsheng Yin committed
570
571
                    if not decode_res:
                        req.output_ids = cur_output_ids
Liangsheng Yin's avatar
Liangsheng Yin committed
572
573
                        continue

sglang's avatar
sglang committed
574
575
576
577
                    (
                        jump_forward_str,
                        next_state,
                    ) = req.jump_forward_map.jump_forward_symbol(cur_state)
Liangsheng Yin's avatar
Liangsheng Yin committed
578
579
580
581
582
583
584
585
586

                    # Make the incrementally decoded text part of jump_forward_str
                    # so that the UTF-8 will not corrupt
                    jump_forward_str = new_text + jump_forward_str
                    if not req.jump_forward_and_retokenize(
                        jump_forward_str, next_state
                    ):
                        req.output_ids = cur_output_ids
                        continue
Liangsheng Yin's avatar
Liangsheng Yin committed
587

588
589
590
                    # The decode status has diverged from detokenizer_manager
                    req.vid += 1

Liangsheng Yin's avatar
Liangsheng Yin committed
591
                    # insert the old request into tree_cache
592
                    self.tree_cache.cache_finished_req(req, cur_all_ids)
Liangsheng Yin's avatar
Liangsheng Yin committed
593

Liangsheng Yin's avatar
Liangsheng Yin committed
594
595
596
597
598
599
600
601
602
603
604
605
                    # re-applying image padding
                    if req.pixel_values is not None:
                        (
                            req.origin_input_ids,
                            req.image_offset,
                        ) = model_runner.model.pad_input_ids(
                            req.origin_input_ids_unpadded,
                            req.pad_value,
                            req.pixel_values.shape,
                            req.image_size,
                        )

Liangsheng Yin's avatar
Liangsheng Yin committed
606
                    jump_forward_reqs.append(req)
Liangsheng Yin's avatar
Liangsheng Yin committed
607
608
                    filter_indices.remove(i)

609
        self.filter_batch(filter_indices)
Liangsheng Yin's avatar
Liangsheng Yin committed
610

Liangsheng Yin's avatar
Liangsheng Yin committed
611
        return jump_forward_reqs
Liangsheng Yin's avatar
Liangsheng Yin committed
612

613
    def prepare_for_decode(self, input_ids=None):
Lianmin Zheng's avatar
Lianmin Zheng committed
614
615
616
617
618
619
620
621
        if input_ids is None:
            input_ids = [
                r.output_ids[-1] if r.output_ids else r.input_ids[-1] for r in self.reqs
            ]
        self.input_ids = torch.tensor(input_ids, dtype=torch.int32, device="cuda")
        self.seq_lens.add_(1)

        # Alloc mem
622
623
        bs = self.batch_size()
        self.out_cache_loc = self.alloc_token_slots(bs)
Lianmin Zheng's avatar
Lianmin Zheng committed
624
625
626
627
628
629

        self.req_to_token_pool.req_to_token[
            self.req_pool_indices, self.seq_lens - 1
        ] = self.out_cache_loc

    def filter_batch(self, unfinished_indices: List[int]):
630
631
632
633
634
635
636
637
638
        if unfinished_indices is None or len(unfinished_indices) == 0:
            # Filter out all requests
            self.reqs = []
            return

        if len(unfinished_indices) == len(self.reqs):
            # No need to filter
            return

Lianmin Zheng's avatar
Lianmin Zheng committed
639
640
641
642
643
644
        self.reqs = [self.reqs[i] for i in unfinished_indices]
        new_indices = torch.tensor(unfinished_indices, dtype=torch.int32, device="cuda")
        self.seq_lens = self.seq_lens[new_indices]
        self.input_ids = None
        self.req_pool_indices = self.req_pool_indices[new_indices]
        self.position_ids_offsets = self.position_ids_offsets[new_indices]
645
        self.out_cache_loc = None
Liangsheng Yin's avatar
Liangsheng Yin committed
646
        self.top_logprobs_nums = [self.top_logprobs_nums[i] for i in unfinished_indices]
647
        self.return_logprob = any(req.return_logprob for req in self.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
648
649
650
651
652
653
654
655
656

        for item in [
            "temperatures",
            "top_ps",
            "top_ks",
            "frequency_penalties",
            "presence_penalties",
            "logit_bias",
        ]:
657
            self_val = getattr(self, item, None)
Mingyi's avatar
Mingyi committed
658
            if self_val is not None:  # logit_bias can be None
659
                setattr(self, item, self_val[new_indices])
Lianmin Zheng's avatar
Lianmin Zheng committed
660

661
    def merge(self, other: "ScheduleBatch"):
Lianmin Zheng's avatar
Lianmin Zheng committed
662
663
664
665
666
667
668
669
670
        self.reqs.extend(other.reqs)

        self.req_pool_indices = torch.concat(
            [self.req_pool_indices, other.req_pool_indices]
        )
        self.seq_lens = torch.concat([self.seq_lens, other.seq_lens])
        self.position_ids_offsets = torch.concat(
            [self.position_ids_offsets, other.position_ids_offsets]
        )
671
        self.out_cache_loc = None
Liangsheng Yin's avatar
Liangsheng Yin committed
672
        self.top_logprobs_nums.extend(other.top_logprobs_nums)
673
        self.return_logprob = any(req.return_logprob for req in self.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
674
675
676
677
678
679
680
681

        for item in [
            "temperatures",
            "top_ps",
            "top_ks",
            "frequency_penalties",
            "presence_penalties",
        ]:
682
683
684
685
686
687
688
689
690
691
            self_val = getattr(self, item, None)
            other_val = getattr(other, item, None)
            setattr(self, item, torch.concat([self_val, other_val]))

        # logit_bias can be None
        if self.logit_bias is not None or other.logit_bias is not None:
            vocab_size = (
                self.logit_bias.shape[1]
                if self.logit_bias is not None
                else other.logit_bias.shape[1]
Lianmin Zheng's avatar
Lianmin Zheng committed
692
            )
693
694
695
696
697
698
699
700
701
            if self.logit_bias is None:
                self.logit_bias = torch.zeros(
                    (len(self.reqs), vocab_size), dtype=torch.float32, device="cuda"
                )
            if other.logit_bias is None:
                other.logit_bias = torch.zeros(
                    (len(other.reqs), vocab_size), dtype=torch.float32, device="cuda"
                )
            self.logit_bias = torch.concat([self.logit_bias, other.logit_bias])
Lianmin Zheng's avatar
Lianmin Zheng committed
702
703

    def sample(self, logits: torch.Tensor):
704
        # TODO(lsyin): move this into a part of layer and run with CUDA Graph
Lianmin Zheng's avatar
Lianmin Zheng committed
705
706
707
        # Post process logits
        logits = logits.contiguous()
        logits.div_(self.temperatures)
708
709
        if self.logit_bias is not None:
            logits.add_(self.logit_bias)
Lianmin Zheng's avatar
Lianmin Zheng committed
710
711
712
713
714
715
716
717

        has_regex = any(req.regex_fsm is not None for req in self.reqs)
        if has_regex:
            allowed_mask = torch.empty_like(logits[0], dtype=torch.bool)
            for i, req in enumerate(self.reqs):
                if req.regex_fsm is not None:
                    allowed_mask.zero_()
                    allowed_mask[
Liangsheng Yin's avatar
Liangsheng Yin committed
718
                        req.regex_fsm.get_next_instruction(req.regex_fsm_state).tokens
Lianmin Zheng's avatar
Lianmin Zheng committed
719
720
721
722
723
                    ] = 1
                    logits[i].masked_fill_(~allowed_mask, float("-inf"))

        # TODO(lmzheng): apply penalty
        probs = torch.softmax(logits, dim=-1)
724

725
        if not global_server_args_dict["disable_flashinfer_sampling"]:
726
727
728
729
730
731
732
733
734
735
736
737
            max_top_k_round, batch_size = 32, probs.shape[0]
            uniform_samples = torch.rand(
                (max_top_k_round, batch_size), device=probs.device
            )
            batch_next_token_ids, success = top_k_top_p_sampling_from_probs(
                probs, uniform_samples, self.top_ks, self.top_ps
            )
        else:
            # Here we provide a slower fallback implementation.
            batch_next_token_ids, success = top_k_top_p_sampling_from_probs_torch(
                probs, self.top_ks, self.top_ps
            )
738

739
        if not torch.all(success):
Ke Bao's avatar
Ke Bao committed
740
            warnings.warn("Sampling failed, fallback to top_k=1 strategy")
741
            probs = probs.masked_fill(torch.isnan(probs), 0.0)
Ke Bao's avatar
Ke Bao committed
742
743
744
745
            argmax_ids = torch.argmax(probs, dim=-1)
            batch_next_token_ids = torch.where(
                success, batch_next_token_ids, argmax_ids
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
746
747
748
749
750

        if has_regex:
            batch_next_token_ids_cpu = batch_next_token_ids.cpu().numpy()
            for i, req in enumerate(self.reqs):
                if req.regex_fsm is not None:
Liangsheng Yin's avatar
Liangsheng Yin committed
751
                    req.regex_fsm_state = req.regex_fsm.get_next_state(
Lianmin Zheng's avatar
Lianmin Zheng committed
752
753
754
                        req.regex_fsm_state, batch_next_token_ids_cpu[i]
                    )

755
        return batch_next_token_ids
756
757


758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
def top_k_top_p_sampling_from_probs_torch(
    probs: torch.Tensor, top_ks: torch.Tensor, top_ps: torch.Tensor
):
    """A top-k and top-k sampling implementation with native pytorch operations."""
    probs_sort, probs_idx = probs.sort(dim=-1, descending=True)
    probs_sum = torch.cumsum(probs_sort, dim=-1)
    probs_sort[(probs_sum - probs_sort) > top_ps.view(-1, 1)] = 0.0
    probs_sort[
        torch.arange(0, probs.shape[-1], device=probs.device).view(1, -1)
        >= top_ks.view(-1, 1)
    ] = 0.0
    probs_sort.div_(probs_sort.max(dim=-1, keepdim=True)[0])
    try:
        sampled_index = torch.multinomial(probs_sort, num_samples=1)
    except RuntimeError:
        batch_next_token_ids = torch.zeros(
774
            (probs_sort.shape[0],), dtype=torch.int32, device=probs.device
775
776
777
778
779
780
781
        )
        success = torch.zeros(probs.shape[0], dtype=torch.bool, device=probs.device)
        return batch_next_token_ids, success

    batch_next_token_ids = torch.gather(probs_idx, dim=1, index=sampled_index).view(-1)
    success = torch.ones(probs.shape[0], dtype=torch.bool, device=probs.device)
    return batch_next_token_ids, success