schedule_batch.py 29.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

16
"""Meta data for requests and batches"""
Lianmin Zheng's avatar
Lianmin Zheng committed
17

Ying Sheng's avatar
Ying Sheng committed
18
import logging
19
import warnings
20
from dataclasses import dataclass
21
from typing import List, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
22
23

import torch
24
from flashinfer.sampling import top_k_top_p_sampling_from_probs
Liangsheng Yin's avatar
Liangsheng Yin committed
25

26
import sglang.srt.sampling.penaltylib as penaltylib
Liangsheng Yin's avatar
Liangsheng Yin committed
27
from sglang.global_config import global_config
28
29
from sglang.srt.constrained import RegexGuide
from sglang.srt.constrained.jump_forward import JumpForwardMap
30
from sglang.srt.mem_cache.base_prefix_cache import BasePrefixCache
31
from sglang.srt.mem_cache.chunk_cache import ChunkCache
32
from sglang.srt.mem_cache.memory_pool import BaseTokenToKVPool, ReqToTokenPool
Liangsheng Yin's avatar
Liangsheng Yin committed
33
34

INIT_INCREMENTAL_DETOKENIZATION_OFFSET = 5
Lianmin Zheng's avatar
Lianmin Zheng committed
35

36
37
38
39
40
# Put some global args for easy access
global_server_args_dict = {
    "disable_flashinfer": False,
    "disable_flashinfer_sampling": False,
    "attention_reduce_in_fp32": False,
41
    "enable_mla": False,
42
43
}

Lianmin Zheng's avatar
Lianmin Zheng committed
44

Ying Sheng's avatar
Ying Sheng committed
45
46
47
logger = logging.getLogger(__name__)


48
49
50
class BaseFinishReason:
    def __init__(self, is_error: bool = False):
        self.is_error = is_error
Lianmin Zheng's avatar
Lianmin Zheng committed
51

52
53
54
55
56
    def __str__(self):
        raise NotImplementedError("Subclasses must implement this method")


class FINISH_MATCHED_TOKEN(BaseFinishReason):
Mingyi's avatar
Mingyi committed
57
    def __init__(self, matched: Union[int, List[int]]):
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        super().__init__()
        self.matched = matched

    def __str__(self) -> str:
        return f"FINISH_MATCHED_TOKEN: {self.matched}"


class FINISH_LENGTH(BaseFinishReason):
    def __init__(self, length: int):
        super().__init__()
        self.length = length

    def __str__(self) -> str:
        return f"FINISH_LENGTH: {self.length}"


class FINISH_MATCHED_STR(BaseFinishReason):
    def __init__(self, matched: str):
        super().__init__()
        self.matched = matched

    def __str__(self) -> str:
        return f"FINISH_MATCHED_STR: {self.matched}"


class FINISH_ABORT(BaseFinishReason):
    def __init__(self):
        super().__init__(is_error=True)

    def __str__(self) -> str:
        return "FINISH_ABORT"
89

Lianmin Zheng's avatar
Lianmin Zheng committed
90
91

class Req:
92
93
    """Store all inforamtion of a request."""

Liangsheng Yin's avatar
Liangsheng Yin committed
94
    def __init__(self, rid, origin_input_text, origin_input_ids):
95
        # Input and output info
Lianmin Zheng's avatar
Lianmin Zheng committed
96
        self.rid = rid
Liangsheng Yin's avatar
Liangsheng Yin committed
97
        self.origin_input_text = origin_input_text
Liangsheng Yin's avatar
Liangsheng Yin committed
98
        self.origin_input_ids_unpadded = origin_input_ids  # Before image padding
Liangsheng Yin's avatar
Liangsheng Yin committed
99
        self.origin_input_ids = origin_input_ids
Liangsheng Yin's avatar
Liangsheng Yin committed
100
        self.output_ids = []  # Each decode stage's output ids
101
        self.fill_ids = None  # fill_ids = origin_input_ids + output_ids
Liangsheng Yin's avatar
Liangsheng Yin committed
102

103
104
105
        # Memory info
        self.req_pool_idx = None

106
        # For incremental decoding
107
108
109
110
111
112
113
114
        # ----- | --------- read_ids -------|
        # ----- |   surr_ids  |
        # xxxxx | xxxxxxxxxxx | xxxxxxxxxxx |
        # ----- ^ ----------- ^ ----------- ^
        # ----- 1 ----------- 2 ----------- 3
        # 1: surr_offset
        # 2: read_offset
        # 3: last token
115
        self.vid = 0  # version id to sync decode status with in detokenizer_manager
Liangsheng Yin's avatar
Liangsheng Yin committed
116
117
118
        self.decoded_text = ""
        self.surr_offset = None  # Surrounding offset to defeat the cleanup algorithm
        self.read_offset = None
119

120
121
122
        # The number of decoded tokens for token usage report. Note that
        # this does not include the jump forward tokens.
        self.completion_tokens_wo_jump_forward = 0
123

124
        # For vision input
Lianmin Zheng's avatar
Lianmin Zheng committed
125
        self.pixel_values = None
shiyi.c_98's avatar
shiyi.c_98 committed
126
        self.image_size = None
127
        self.image_offset = None
128
        self.pad_value = None
129

130
131
132
133
134
        # Prefix info
        self.extend_input_len = 0
        self.prefix_indices = []
        self.last_node = None

135
        # Sampling parameters
Lianmin Zheng's avatar
Lianmin Zheng committed
136
137
138
        self.sampling_params = None
        self.stream = False

139
        # Check finish
140
        self.tokenizer = None
141
        self.finished_reason = None
Lianmin Zheng's avatar
Lianmin Zheng committed
142

143
144
        # Logprobs
        self.return_logprob = False
145
        self.embedding = None
146
147
148
        self.logprob_start_len = 0
        self.top_logprobs_num = 0
        self.normalized_prompt_logprob = None
149
150
151
152
        self.input_token_logprobs = None
        self.input_top_logprobs = None
        self.output_token_logprobs = []
        self.output_top_logprobs = []
Liangsheng Yin's avatar
Liangsheng Yin committed
153
154
155
        # The tokens is prefilled but need to be considered as decode tokens
        # and should be updated for the decode logprobs
        self.last_update_decode_tokens = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
156

157
        # Constrained decoding
Liangsheng Yin's avatar
Liangsheng Yin committed
158
159
160
        self.regex_fsm: RegexGuide = None
        self.regex_fsm_state: int = 0
        self.jump_forward_map: JumpForwardMap = None
Liangsheng Yin's avatar
Liangsheng Yin committed
161

162
163
164
165
    # whether request reached finished condition
    def finished(self) -> bool:
        return self.finished_reason is not None

166
    def init_next_round_input(self, tree_cache: Optional[BasePrefixCache] = None):
167
        self.fill_ids = self.origin_input_ids + self.output_ids
168
169
170
171
        if tree_cache is not None:
            self.prefix_indices, self.last_node = tree_cache.match_prefix(
                rid=self.rid, key=self.adjust_max_prefix_ids()
            )
172
        self.extend_input_len = len(self.fill_ids) - len(self.prefix_indices)
173

174
    def adjust_max_prefix_ids(self):
175
176
        self.fill_ids = self.origin_input_ids + self.output_ids
        input_len = len(self.fill_ids)
Liangsheng Yin's avatar
Liangsheng Yin committed
177
178
179
180
181
182
        max_prefix_len = input_len

        if self.sampling_params.max_new_tokens > 0:
            # Need at least one token to compute logits
            max_prefix_len = min(max_prefix_len, input_len - 1)

183
        if self.return_logprob:
Liangsheng Yin's avatar
Liangsheng Yin committed
184
185
186
187
188
            max_prefix_len = min(max_prefix_len, self.logprob_start_len)

            if self.normalized_prompt_logprob is None:
                # Need at least two tokens to compute normalized logprob
                max_prefix_len = min(max_prefix_len, input_len - 2)
189

190
        return self.fill_ids[:max_prefix_len]
191

Liangsheng Yin's avatar
Liangsheng Yin committed
192
    # Based on https://github.com/vllm-project/vllm/blob/7a64d24aad69e4d2548aa0bf528d9fe63428ab01/vllm/transformers_utils/detokenizer.py#L194-L313
193
    def init_incremental_detokenize(self):
Liangsheng Yin's avatar
Liangsheng Yin committed
194
195
196
197
198
199
200
201
202
        first_iter = self.surr_offset is None or self.read_offset is None

        if first_iter:
            self.read_offset = len(self.origin_input_ids_unpadded)
            self.surr_offset = max(
                self.read_offset - INIT_INCREMENTAL_DETOKENIZATION_OFFSET, 0
            )

        all_ids = self.origin_input_ids_unpadded + self.output_ids
203
        return all_ids[self.surr_offset :], self.read_offset - self.surr_offset
Liangsheng Yin's avatar
Liangsheng Yin committed
204

205
    def get_next_inc_detokenization(self):
206
207
        if self.tokenizer is None:
            return False, ""
208
209
        read_ids, read_offset = self.init_incremental_detokenize()
        surr_ids = read_ids[:read_offset]
Liangsheng Yin's avatar
Liangsheng Yin committed
210
211
212
213
214

        surr_text = self.tokenizer.decode(
            surr_ids,
            skip_special_tokens=self.sampling_params.skip_special_tokens,
            spaces_between_special_tokens=self.sampling_params.spaces_between_special_tokens,
Liangsheng Yin's avatar
Liangsheng Yin committed
215
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
216
217
218
219
220
221
222
        new_text = self.tokenizer.decode(
            read_ids,
            skip_special_tokens=self.sampling_params.skip_special_tokens,
            spaces_between_special_tokens=self.sampling_params.spaces_between_special_tokens,
        )

        if len(new_text) > len(surr_text) and not new_text.endswith("�"):
223
            return True, new_text[len(surr_text) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
224
225

        return False, ""
Lianmin Zheng's avatar
Lianmin Zheng committed
226

227
    def check_finished(self):
228
        if self.finished():
229
230
            return

Liangsheng Yin's avatar
Liangsheng Yin committed
231
        if len(self.output_ids) >= self.sampling_params.max_new_tokens:
232
233
234
            self.finished_reason = FINISH_LENGTH(
                length=self.sampling_params.max_new_tokens
            )
235
236
            return

237
        last_token_id = self.output_ids[-1]
238
239
240
241
242
        if self.tokenizer is None:
            matched_eos = last_token_id in self.sampling_params.stop_token_ids
        else:
            matched_eos = last_token_id == self.tokenizer.eos_token_id
        if matched_eos and not self.sampling_params.ignore_eos:
243
244
245
            self.finished_reason = FINISH_MATCHED_TOKEN(matched=last_token_id)
            return

246
247
248
249
250
251
        if len(self.sampling_params.stop_strs) > 0:
            tail_str = self.tokenizer.decode(
                self.output_ids[-(self.sampling_params.stop_str_max_len + 1) :]
            )

            for stop_str in self.sampling_params.stop_strs:
Liangsheng Yin's avatar
Liangsheng Yin committed
252
                if stop_str in tail_str or stop_str in self.decoded_text:
253
                    self.finished_reason = FINISH_MATCHED_STR(matched=stop_str)
254
255
                    return

Liangsheng Yin's avatar
Liangsheng Yin committed
256
    def jump_forward_and_retokenize(self, jump_forward_str, next_state):
Liangsheng Yin's avatar
Liangsheng Yin committed
257
258
259
260
261
262
        if self.origin_input_text is None:
            # Recovering text can only use unpadded ids
            self.origin_input_text = self.tokenizer.decode(
                self.origin_input_ids_unpadded
            )

Liangsheng Yin's avatar
Liangsheng Yin committed
263
        all_text = self.origin_input_text + self.decoded_text + jump_forward_str
Liangsheng Yin's avatar
Liangsheng Yin committed
264
265
        all_ids = self.tokenizer.encode(all_text)
        prompt_tokens = len(self.origin_input_ids_unpadded)
Liangsheng Yin's avatar
Liangsheng Yin committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

        if all_ids[prompt_tokens - 1] != self.origin_input_ids_unpadded[-1]:
            # TODO(lsyin): fix token fusion
            warnings.warn(
                "Token fusion between input and output, try to avoid this by removing the space at the end of the input."
            )
            return False

        old_output_ids = self.output_ids
        self.output_ids = all_ids[prompt_tokens:]
        self.decoded_text = self.decoded_text + jump_forward_str
        self.surr_offset = prompt_tokens
        self.read_offset = len(all_ids)

        # NOTE: A trick to reduce the surrouding tokens decoding overhead
        for i in range(0, INIT_INCREMENTAL_DETOKENIZATION_OFFSET):
            surr_text_ = self.tokenizer.decode(
                all_ids[self.read_offset - i : self.read_offset]
            )
            if not surr_text_.endswith("�"):
                self.surr_offset = self.read_offset - i
                break
Liangsheng Yin's avatar
Liangsheng Yin committed
288
289
290
291
292
293

        self.regex_fsm_state = next_state

        if self.return_logprob:
            # For fast-forward part's logprobs
            k = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
294
295
            for i, old_id in enumerate(old_output_ids):
                if old_id == self.output_ids[i]:
Liangsheng Yin's avatar
Liangsheng Yin committed
296
297
298
                    k = k + 1
                else:
                    break
299
300
            self.output_token_logprobs = self.output_token_logprobs[:k]
            self.output_top_logprobs = self.output_top_logprobs[:k]
Liangsheng Yin's avatar
Liangsheng Yin committed
301
            self.logprob_start_len = prompt_tokens + k
Liangsheng Yin's avatar
Liangsheng Yin committed
302
            self.last_update_decode_tokens = len(self.output_ids) - k
303

Liangsheng Yin's avatar
Liangsheng Yin committed
304
        return True
Liangsheng Yin's avatar
Liangsheng Yin committed
305

Lianmin Zheng's avatar
Lianmin Zheng committed
306
    def __repr__(self):
Liangsheng Yin's avatar
Liangsheng Yin committed
307
        return f"rid(n={self.rid}, " f"input_ids={self.origin_input_ids}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
308
309


310
@dataclass
311
class ScheduleBatch:
312
313
    """Store all inforamtion of a batch."""

314
    # Request, memory pool, and cache
315
316
    reqs: List[Req]
    req_to_token_pool: ReqToTokenPool
317
    token_to_kv_pool: BaseTokenToKVPool
318
    tree_cache: BasePrefixCache
319

320
    # Batched arguments to model runner
321
322
323
324
325
    input_ids: torch.Tensor = None
    req_pool_indices: torch.Tensor = None
    seq_lens: torch.Tensor = None
    position_ids_offsets: torch.Tensor = None
    out_cache_loc: torch.Tensor = None
326
    extend_num_tokens: int = None
Liangsheng Yin's avatar
Liangsheng Yin committed
327

328
    # For processing logprobs
329
    return_logprob: bool = False
330
    top_logprobs_nums: List[int] = None
331

332
    # Batched sampling params
333
334
335
    temperatures: torch.Tensor = None
    top_ps: torch.Tensor = None
    top_ks: torch.Tensor = None
336
    penalizer_orchestrator: penaltylib.BatchedPenalizerOrchestrator = None
337
338
339
340
    logit_bias: torch.Tensor = None

    @classmethod
    def init_new(cls, reqs, req_to_token_pool, token_to_kv_pool, tree_cache):
341
        return_logprob = any(req.return_logprob for req in reqs)
342
343
344
345
346
347

        return cls(
            reqs=reqs,
            req_to_token_pool=req_to_token_pool,
            token_to_kv_pool=token_to_kv_pool,
            tree_cache=tree_cache,
348
            return_logprob=return_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
349
350
        )

351
352
353
    def batch_size(self):
        return len(self.reqs) if self.reqs is not None else 0

Lianmin Zheng's avatar
Lianmin Zheng committed
354
355
356
    def is_empty(self):
        return len(self.reqs) == 0

357
    def has_stream(self) -> bool:
358
        # Return whether batch has at least 1 streaming request
359
360
        return any(r.stream for r in self.reqs)

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
    def alloc_req_slots(self, num_reqs):
        req_pool_indices = self.req_to_token_pool.alloc(num_reqs)
        if req_pool_indices is None:
            raise RuntimeError(
                "Out of memory. "
                "Please set a smaller number for `--max-running-requests`."
            )
        return req_pool_indices

    def alloc_token_slots(self, num_tokens: int):
        out_cache_loc = self.token_to_kv_pool.alloc(num_tokens)

        if out_cache_loc is None:
            if self.tree_cache is not None:
                self.tree_cache.evict(num_tokens, self.token_to_kv_pool.free)
                out_cache_loc = self.token_to_kv_pool.alloc(num_tokens)

            if out_cache_loc is None:
                logger.error("Prefill out of memory. Try to lower your batch size.")
                if self.tree_cache is not None:
                    self.tree_cache.pretty_print()
                exit(1)

        return out_cache_loc

386
    def batch_sampling_params(self, vocab_size):
387
388
389
390
391
392
393
394
395
396
397
398
399
        device = "cuda"
        bs, reqs = self.batch_size(), self.reqs
        self.temperatures = torch.tensor(
            [r.sampling_params.temperature for r in reqs],
            dtype=torch.float,
            device=device,
        ).view(-1, 1)
        self.top_ps = torch.tensor(
            [r.sampling_params.top_p for r in reqs], dtype=torch.float, device=device
        )
        self.top_ks = torch.tensor(
            [r.sampling_params.top_k for r in reqs], dtype=torch.int, device=device
        )
400
401
402
403
404
405
406
407
408
409
410

        # Each penalizers will do nothing if they evaluate themselves as not required by looking at
        # the sampling_params of the requests (See {_is_required()} of each penalizers). So this
        # should not add hefty computation overhead other than simple checks.
        #
        # While we choose not to even create the class instances if they are not required, this
        # could add additional complexity to the {ScheduleBatch} class, especially we need to
        # handle {filter_batch()} and {merge()} cases as well.
        self.penalizer_orchestrator = penaltylib.BatchedPenalizerOrchestrator(
            vocab_size=vocab_size,
            batch=self,
411
            device=device,
412
413
414
415
416
417
            Penalizers={
                penaltylib.BatchedFrequencyPenalizer,
                penaltylib.BatchedMinNewTokensPenalizer,
                penaltylib.BatchedPresencePenalizer,
                penaltylib.BatchedRepetitionPenalizer,
            },
418
419
420
421
        )

        # Handle logit bias but only allocate when needed
        self.logit_bias = None
422
423

    def prepare_for_extend(self, vocab_size: int):
424
        bs = self.batch_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
425
        reqs = self.reqs
426
        input_ids = [r.fill_ids[len(r.prefix_indices) :] for r in reqs]
427
        extend_num_tokens = sum(len(ids) for ids in input_ids)
Lianmin Zheng's avatar
Lianmin Zheng committed
428
429
        seq_lens = []

430
        # Allocate memory
431
        req_pool_indices_cpu = self.alloc_req_slots(bs)
432
        out_cache_loc = self.alloc_token_slots(extend_num_tokens)
433

434
        pt = 0
435
436
        for i, req in enumerate(reqs):
            req.req_pool_idx = req_pool_indices_cpu[i]
437
            pre_len, seq_len = len(req.prefix_indices), len(req.fill_ids)
438
439
            ext_len = seq_len - pre_len
            seq_lens.append(seq_len)
Lianmin Zheng's avatar
Lianmin Zheng committed
440

441
            if pre_len > 0:
442
                self.req_to_token_pool.req_to_token[req.req_pool_idx][
443
444
                    :pre_len
                ] = req.prefix_indices
Lianmin Zheng's avatar
Lianmin Zheng committed
445

446
447
448
449
            self.req_to_token_pool.req_to_token[req.req_pool_idx][pre_len:seq_len] = (
                out_cache_loc[pt : pt + ext_len]
            )
            pt += ext_len
Lianmin Zheng's avatar
Lianmin Zheng committed
450
451

        # Set fields
452
453
454
455
        with torch.device("cuda"):
            self.input_ids = torch.tensor(sum(input_ids, []), dtype=torch.int32)
            self.req_pool_indices = torch.tensor(req_pool_indices_cpu)
            self.seq_lens = torch.tensor(seq_lens, dtype=torch.int32)
456
457
            self.position_ids_offsets = torch.zeros((bs,), dtype=torch.int64)

Lianmin Zheng's avatar
Lianmin Zheng committed
458
459
        self.extend_num_tokens = extend_num_tokens
        self.out_cache_loc = out_cache_loc
Liangsheng Yin's avatar
Liangsheng Yin committed
460
        self.top_logprobs_nums = [r.top_logprobs_num for r in reqs]
Lianmin Zheng's avatar
Lianmin Zheng committed
461

462
        self.batch_sampling_params(vocab_size)
Lianmin Zheng's avatar
Lianmin Zheng committed
463

464
    def check_decode_mem(self):
465
        bs = self.batch_size()
Ying Sheng's avatar
Ying Sheng committed
466
        if self.token_to_kv_pool.available_size() >= bs:
467
468
            return True

Mingyi's avatar
Mingyi committed
469
        self.tree_cache.evict(bs, self.token_to_kv_pool.free)
470

471
472
473
474
475
476
477
        if self.token_to_kv_pool.available_size() >= bs:
            return True

        return False

    def retract_decode(self):
        sorted_indices = [i for i in range(len(self.reqs))]
Liangsheng Yin's avatar
Liangsheng Yin committed
478
479

        # TODO(lsyin): improve retraction policy for radix cache
480
        sorted_indices.sort(
Liangsheng Yin's avatar
Liangsheng Yin committed
481
482
483
484
            key=lambda i: (
                len(self.reqs[i].output_ids),
                -len(self.reqs[i].origin_input_ids),
            ),
485
486
487
488
            reverse=True,
        )

        retracted_reqs = []
489
        seq_lens_cpu = self.seq_lens.cpu().numpy()
Liangsheng Yin's avatar
Liangsheng Yin committed
490
491
492
493
494
495
496
497
498
499
500
        while (
            self.token_to_kv_pool.available_size()
            < len(sorted_indices) * global_config.retract_decode_steps
        ):
            if len(sorted_indices) == 1:
                # Corner case: only one request left
                assert (
                    self.token_to_kv_pool.available_size() > 0
                ), "No space left for only one request"
                break

501
502
503
504
            idx = sorted_indices.pop()
            req = self.reqs[idx]
            retracted_reqs.append(req)

505
506
            if isinstance(self.tree_cache, ChunkCache):
                # ChunkCache does not have eviction
507
508
509
                token_indices = self.req_to_token_pool.req_to_token[req.req_pool_idx][
                    : seq_lens_cpu[idx]
                ]
510
                self.token_to_kv_pool.free(token_indices)
511
                self.req_to_token_pool.free(req.req_pool_idx)
512
513
514
515
                del self.tree_cache.entries[req.rid]
            else:
                # TODO: apply more fine-grained retraction
                last_uncached_pos = len(req.prefix_indices)
516
517
518
                token_indices = self.req_to_token_pool.req_to_token[req.req_pool_idx][
                    last_uncached_pos : seq_lens_cpu[idx]
                ]
519
                self.token_to_kv_pool.free(token_indices)
520
                self.req_to_token_pool.free(req.req_pool_idx)
521
522
523
524
525
526
527
528
529
530
531

                # release the last node
                self.tree_cache.dec_lock_ref(req.last_node)

                # NOTE(lsyin): we should use the newly evictable memory instantly.
                residual_size = (
                    len(sorted_indices) * global_config.retract_decode_steps
                    - self.token_to_kv_pool.available_size()
                )
                residual_size = max(0, residual_size)
                self.tree_cache.evict(residual_size, self.token_to_kv_pool.free)
Liangsheng Yin's avatar
Liangsheng Yin committed
532

533
            req.prefix_indices = []
534
            req.last_node = None
535
            req.extend_input_len = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
536
537
538
539

            # For incremental logprobs
            req.last_update_decode_tokens = 0
            req.logprob_start_len = 10**9
Liangsheng Yin's avatar
Liangsheng Yin committed
540

541
542
        self.filter_batch(sorted_indices)

Liangsheng Yin's avatar
Liangsheng Yin committed
543
544
545
546
547
548
549
550
551
552
        # Reqs in batch are filtered
        total_decoded_tokens = sum(len(r.output_ids) for r in self.reqs)
        total_max_new_tokens = sum(r.sampling_params.max_new_tokens for r in self.reqs)

        new_estimate_ratio = (
            total_decoded_tokens + global_config.retract_decode_steps * len(self.reqs)
        ) / total_max_new_tokens
        new_estimate_ratio = min(1.0, new_estimate_ratio)

        return retracted_reqs, new_estimate_ratio
553

Liangsheng Yin's avatar
Liangsheng Yin committed
554
    def check_for_jump_forward(self, model_runner):
Liangsheng Yin's avatar
Liangsheng Yin committed
555
        jump_forward_reqs = []
Liangsheng Yin's avatar
Liangsheng Yin committed
556
557
558
        filter_indices = [i for i in range(len(self.reqs))]

        for i, req in enumerate(self.reqs):
Liangsheng Yin's avatar
Liangsheng Yin committed
559
            if req.jump_forward_map is not None:
Liangsheng Yin's avatar
Liangsheng Yin committed
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
                jump_forward_bytes = req.jump_forward_map.jump_forward_byte(
                    req.regex_fsm_state
                )
                if jump_forward_bytes is not None and len(jump_forward_bytes) > 1:
                    suffix_bytes = []
                    continuation_range = range(0x80, 0xC0)
                    cur_state = req.regex_fsm_state
                    while (
                        len(jump_forward_bytes)
                        and jump_forward_bytes[0][0] in continuation_range
                    ):
                        # continuation bytes
                        byte_edge = jump_forward_bytes.pop(0)
                        suffix_bytes.append(byte_edge[0])
                        cur_state = byte_edge[1]

                    suffix_tokens = [f"<0x{hex(b)[2:].upper()}>" for b in suffix_bytes]
                    suffix_ids = req.tokenizer.convert_tokens_to_ids(suffix_tokens)

                    # Current ids, for cache and revert
                    cur_all_ids = tuple(req.origin_input_ids + req.output_ids)[:-1]
                    cur_output_ids = req.output_ids

                    req.output_ids.extend(suffix_ids)
584
                    decode_res, new_text = req.get_next_inc_detokenization()
Liangsheng Yin's avatar
Liangsheng Yin committed
585
586
                    if not decode_res:
                        req.output_ids = cur_output_ids
Liangsheng Yin's avatar
Liangsheng Yin committed
587
588
                        continue

sglang's avatar
sglang committed
589
590
591
592
                    (
                        jump_forward_str,
                        next_state,
                    ) = req.jump_forward_map.jump_forward_symbol(cur_state)
Liangsheng Yin's avatar
Liangsheng Yin committed
593
594
595
596
597
598
599
600
601

                    # Make the incrementally decoded text part of jump_forward_str
                    # so that the UTF-8 will not corrupt
                    jump_forward_str = new_text + jump_forward_str
                    if not req.jump_forward_and_retokenize(
                        jump_forward_str, next_state
                    ):
                        req.output_ids = cur_output_ids
                        continue
Liangsheng Yin's avatar
Liangsheng Yin committed
602

603
604
605
                    # The decode status has diverged from detokenizer_manager
                    req.vid += 1

Liangsheng Yin's avatar
Liangsheng Yin committed
606
                    # insert the old request into tree_cache
607
                    self.tree_cache.cache_finished_req(req, cur_all_ids)
Liangsheng Yin's avatar
Liangsheng Yin committed
608

Liangsheng Yin's avatar
Liangsheng Yin committed
609
610
611
612
613
614
615
616
617
618
619
620
                    # re-applying image padding
                    if req.pixel_values is not None:
                        (
                            req.origin_input_ids,
                            req.image_offset,
                        ) = model_runner.model.pad_input_ids(
                            req.origin_input_ids_unpadded,
                            req.pad_value,
                            req.pixel_values.shape,
                            req.image_size,
                        )

Liangsheng Yin's avatar
Liangsheng Yin committed
621
                    jump_forward_reqs.append(req)
Liangsheng Yin's avatar
Liangsheng Yin committed
622
623
                    filter_indices.remove(i)

624
        self.filter_batch(filter_indices)
Liangsheng Yin's avatar
Liangsheng Yin committed
625

Liangsheng Yin's avatar
Liangsheng Yin committed
626
        return jump_forward_reqs
Liangsheng Yin's avatar
Liangsheng Yin committed
627

628
    def prepare_for_decode(self, input_ids=None):
Lianmin Zheng's avatar
Lianmin Zheng committed
629
630
        if input_ids is None:
            input_ids = [
631
632
                r.output_ids[-1] if r.output_ids else r.origin_input_ids[-1]
                for r in self.reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
633
            ]
634
635
636
        else:
            self.penalizer_orchestrator.cumulate_input_tokens(input_ids)

Lianmin Zheng's avatar
Lianmin Zheng committed
637
638
639
640
        self.input_ids = torch.tensor(input_ids, dtype=torch.int32, device="cuda")
        self.seq_lens.add_(1)

        # Alloc mem
641
642
        bs = self.batch_size()
        self.out_cache_loc = self.alloc_token_slots(bs)
Lianmin Zheng's avatar
Lianmin Zheng committed
643
644
645
646
647
648

        self.req_to_token_pool.req_to_token[
            self.req_pool_indices, self.seq_lens - 1
        ] = self.out_cache_loc

    def filter_batch(self, unfinished_indices: List[int]):
649
650
651
652
653
654
655
656
657
        if unfinished_indices is None or len(unfinished_indices) == 0:
            # Filter out all requests
            self.reqs = []
            return

        if len(unfinished_indices) == len(self.reqs):
            # No need to filter
            return

Lianmin Zheng's avatar
Lianmin Zheng committed
658
659
660
661
662
663
        self.reqs = [self.reqs[i] for i in unfinished_indices]
        new_indices = torch.tensor(unfinished_indices, dtype=torch.int32, device="cuda")
        self.seq_lens = self.seq_lens[new_indices]
        self.input_ids = None
        self.req_pool_indices = self.req_pool_indices[new_indices]
        self.position_ids_offsets = self.position_ids_offsets[new_indices]
664
        self.out_cache_loc = None
Liangsheng Yin's avatar
Liangsheng Yin committed
665
        self.top_logprobs_nums = [self.top_logprobs_nums[i] for i in unfinished_indices]
666
        self.return_logprob = any(req.return_logprob for req in self.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
667

668
669
        self.penalizer_orchestrator.filter(unfinished_indices, new_indices)

Lianmin Zheng's avatar
Lianmin Zheng committed
670
671
672
673
674
675
        for item in [
            "temperatures",
            "top_ps",
            "top_ks",
            "logit_bias",
        ]:
676
            self_val = getattr(self, item, None)
Mingyi's avatar
Mingyi committed
677
            if self_val is not None:  # logit_bias can be None
678
                setattr(self, item, self_val[new_indices])
Lianmin Zheng's avatar
Lianmin Zheng committed
679

680
    def merge(self, other: "ScheduleBatch"):
681
682
683
684
685
        # Penalizer orchestrator must be merged before Batch.reqs is merged. This is because
        # orchestrator.merge() depends on Batch.reqs during preparation of each penalizers, so it
        # needs to be called with pre-merged Batch.reqs.
        self.penalizer_orchestrator.merge(other.penalizer_orchestrator)

Lianmin Zheng's avatar
Lianmin Zheng committed
686
687
688
689
690
691
692
693
694
        self.reqs.extend(other.reqs)

        self.req_pool_indices = torch.concat(
            [self.req_pool_indices, other.req_pool_indices]
        )
        self.seq_lens = torch.concat([self.seq_lens, other.seq_lens])
        self.position_ids_offsets = torch.concat(
            [self.position_ids_offsets, other.position_ids_offsets]
        )
695
        self.out_cache_loc = None
Liangsheng Yin's avatar
Liangsheng Yin committed
696
        self.top_logprobs_nums.extend(other.top_logprobs_nums)
697
        self.return_logprob = any(req.return_logprob for req in self.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
698
699
700
701
702
703

        for item in [
            "temperatures",
            "top_ps",
            "top_ks",
        ]:
704
705
706
707
708
709
710
711
712
713
            self_val = getattr(self, item, None)
            other_val = getattr(other, item, None)
            setattr(self, item, torch.concat([self_val, other_val]))

        # logit_bias can be None
        if self.logit_bias is not None or other.logit_bias is not None:
            vocab_size = (
                self.logit_bias.shape[1]
                if self.logit_bias is not None
                else other.logit_bias.shape[1]
Lianmin Zheng's avatar
Lianmin Zheng committed
714
            )
715
716
717
718
719
720
721
722
723
            if self.logit_bias is None:
                self.logit_bias = torch.zeros(
                    (len(self.reqs), vocab_size), dtype=torch.float32, device="cuda"
                )
            if other.logit_bias is None:
                other.logit_bias = torch.zeros(
                    (len(other.reqs), vocab_size), dtype=torch.float32, device="cuda"
                )
            self.logit_bias = torch.concat([self.logit_bias, other.logit_bias])
Lianmin Zheng's avatar
Lianmin Zheng committed
724
725

    def sample(self, logits: torch.Tensor):
726
        # TODO(lsyin): move this into a part of layer and run with CUDA Graph
Lianmin Zheng's avatar
Lianmin Zheng committed
727
728
729
        # Post process logits
        logits = logits.contiguous()
        logits.div_(self.temperatures)
730
731
        if self.logit_bias is not None:
            logits.add_(self.logit_bias)
Lianmin Zheng's avatar
Lianmin Zheng committed
732
733
734
735
736
737
738
739

        has_regex = any(req.regex_fsm is not None for req in self.reqs)
        if has_regex:
            allowed_mask = torch.empty_like(logits[0], dtype=torch.bool)
            for i, req in enumerate(self.reqs):
                if req.regex_fsm is not None:
                    allowed_mask.zero_()
                    allowed_mask[
Liangsheng Yin's avatar
Liangsheng Yin committed
740
                        req.regex_fsm.get_next_instruction(req.regex_fsm_state).tokens
Lianmin Zheng's avatar
Lianmin Zheng committed
741
742
743
                    ] = 1
                    logits[i].masked_fill_(~allowed_mask, float("-inf"))

744
745
        logits = self.penalizer_orchestrator.apply(logits)

Lianmin Zheng's avatar
Lianmin Zheng committed
746
        probs = torch.softmax(logits, dim=-1)
747

748
        if not global_server_args_dict["disable_flashinfer_sampling"]:
749
750
751
752
753
754
755
756
757
758
759
760
            max_top_k_round, batch_size = 32, probs.shape[0]
            uniform_samples = torch.rand(
                (max_top_k_round, batch_size), device=probs.device
            )
            batch_next_token_ids, success = top_k_top_p_sampling_from_probs(
                probs, uniform_samples, self.top_ks, self.top_ps
            )
        else:
            # Here we provide a slower fallback implementation.
            batch_next_token_ids, success = top_k_top_p_sampling_from_probs_torch(
                probs, self.top_ks, self.top_ps
            )
761

762
        if not torch.all(success):
Ke Bao's avatar
Ke Bao committed
763
            warnings.warn("Sampling failed, fallback to top_k=1 strategy")
764
            probs = probs.masked_fill(torch.isnan(probs), 0.0)
Ke Bao's avatar
Ke Bao committed
765
766
767
768
            argmax_ids = torch.argmax(probs, dim=-1)
            batch_next_token_ids = torch.where(
                success, batch_next_token_ids, argmax_ids
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
769
770
771
772
773

        if has_regex:
            batch_next_token_ids_cpu = batch_next_token_ids.cpu().numpy()
            for i, req in enumerate(self.reqs):
                if req.regex_fsm is not None:
Liangsheng Yin's avatar
Liangsheng Yin committed
774
                    req.regex_fsm_state = req.regex_fsm.get_next_state(
Lianmin Zheng's avatar
Lianmin Zheng committed
775
776
777
                        req.regex_fsm_state, batch_next_token_ids_cpu[i]
                    )

778
779
        self.penalizer_orchestrator.cumulate_output_tokens(batch_next_token_ids)

780
        return batch_next_token_ids
781
782


783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
def top_k_top_p_sampling_from_probs_torch(
    probs: torch.Tensor, top_ks: torch.Tensor, top_ps: torch.Tensor
):
    """A top-k and top-k sampling implementation with native pytorch operations."""
    probs_sort, probs_idx = probs.sort(dim=-1, descending=True)
    probs_sum = torch.cumsum(probs_sort, dim=-1)
    probs_sort[(probs_sum - probs_sort) > top_ps.view(-1, 1)] = 0.0
    probs_sort[
        torch.arange(0, probs.shape[-1], device=probs.device).view(1, -1)
        >= top_ks.view(-1, 1)
    ] = 0.0
    probs_sort.div_(probs_sort.max(dim=-1, keepdim=True)[0])
    try:
        sampled_index = torch.multinomial(probs_sort, num_samples=1)
    except RuntimeError:
        batch_next_token_ids = torch.zeros(
799
            (probs_sort.shape[0],), dtype=torch.int32, device=probs.device
800
801
802
803
804
805
806
        )
        success = torch.zeros(probs.shape[0], dtype=torch.bool, device=probs.device)
        return batch_next_token_ids, success

    batch_next_token_ids = torch.gather(probs_idx, dim=1, index=sampled_index).view(-1)
    success = torch.ones(probs.shape[0], dtype=torch.bool, device=probs.device)
    return batch_next_token_ids, success