README.md 24.3 KB
Newer Older
1
<div align="center"  id="sglangtop">
Kushal Agrawal's avatar
Kushal Agrawal committed
2
<img src="https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png" alt="logo" width="400" margin="10px"></img>
Lianmin Zheng's avatar
Lianmin Zheng committed
3

Yineng Zhang's avatar
Yineng Zhang committed
4
5
6
7
8
9
[![PyPI](https://img.shields.io/pypi/v/sglang)](https://pypi.org/project/sglang)
![PyPI - Downloads](https://img.shields.io/pypi/dm/sglang)
[![license](https://img.shields.io/github/license/sgl-project/sglang.svg)](https://github.com/sgl-project/sglang/tree/main/LICENSE)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)
[![open issues](https://img.shields.io/github/issues-raw/sgl-project/sglang)](https://github.com/sgl-project/sglang/issues)

Yineng Zhang's avatar
Yineng Zhang committed
10
11
</div>

Lianmin Zheng's avatar
Lianmin Zheng committed
12
13
--------------------------------------------------------------------------------

Lianmin Zheng's avatar
Lianmin Zheng committed
14
| [**Blog**](https://lmsys.org/blog/2024-07-25-sglang-llama3/) | [**Paper**](https://arxiv.org/abs/2312.07104) | [**Slides**](https://github.com/sgl-project/sgl-learning-materials/blob/main/slides/amd_dev_day_v2.pdf) | [**Learn More**](https://github.com/sgl-project/sgl-learning-materials) | [**Join Slack**](https://join.slack.com/t/sgl-fru7574/shared_invite/zt-2ngly9muu-t37XiH87qvD~6rVBTkTEHw) |
Ying Sheng's avatar
Ying Sheng committed
15
[**Join Bi-Weekly Development Meeting**](https://docs.google.com/document/d/1xEow4eIM152xNcRxqZz9VEcOiTQo8-CEuuQ5qTmkt-E/edit?usp=sharing) |
Lianmin Zheng's avatar
Lianmin Zheng committed
16

Lianmin Zheng's avatar
Lianmin Zheng committed
17
## News
Lianmin Zheng's avatar
Lianmin Zheng committed
18
19
20
- [2024/10] 🔥 The First SGLang Online Meetup ([slides](https://github.com/sgl-project/sgl-learning-materials?tab=readme-ov-file#the-first-sglang-online-meetup)).
- [2024/09] SGLang v0.3 Release: 7x Faster DeepSeek MLA, 1.5x Faster torch.compile, Multi-Image/Video LLaVA-OneVision ([blog](https://lmsys.org/blog/2024-09-04-sglang-v0-3/)).
- [2024/07] Faster Llama3 Serving with SGLang Runtime (vs. TensorRT-LLM, vLLM) ([blog](https://lmsys.org/blog/2024-07-25-sglang-llama3/)).
Ying Sheng's avatar
Ying Sheng committed
21

Ying Sheng's avatar
Ying Sheng committed
22
23
24
<details>
<summary>More</summary>

25
- [2024/02] SGLang enables **3x faster JSON decoding** with compressed finite state machine ([blog](https://lmsys.org/blog/2024-02-05-compressed-fsm/)).
26
- [2024/04] SGLang is used by the official **LLaVA-NeXT (video)** release ([blog](https://llava-vl.github.io/blog/2024-04-30-llava-next-video/)).
Ying Sheng's avatar
Ying Sheng committed
27
- [2024/01] SGLang provides up to **5x faster inference** with RadixAttention ([blog](https://lmsys.org/blog/2024-01-17-sglang/)).
Ying Sheng's avatar
Ying Sheng committed
28
29
30
31
- [2024/01] SGLang powers the serving of the official **LLaVA v1.6** release demo ([usage](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#demo)).

</details>

Ying Sheng's avatar
Ying Sheng committed
32
33
34
35
36
37
38
## About
SGLang is a fast serving framework for large language models and vision language models.
It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
The core features include:

- **Fast Backend Runtime**: Provides efficient serving with RadixAttention for prefix caching, jump-forward constrained decoding, continuous batching, token attention (paged attention), tensor parallelism, FlashInfer kernels, chunked prefill, and quantization (INT4/FP8/AWQ/GPTQ).
- **Flexible Frontend Language**: Offers an intuitive interface for programming LLM applications, including chained generation calls, advanced prompting, control flow, multi-modal inputs, parallelism, and external interactions.
Lianmin Zheng's avatar
Lianmin Zheng committed
39
- **Extensive Model Support**: Supports a wide range of generative models (Llama, Gemma, Mistral, QWen, DeepSeek, LLaVA, etc.) and embedding models (e5-mistral), with easy extensibility for integrating new models.
Ying Sheng's avatar
Ying Sheng committed
40
41
- **Active Community**: SGLang is open-source and backed by an active community with industry adoption.

Lianmin Zheng's avatar
Lianmin Zheng committed
42
43
44
## Contents
- [Install](#install)
- [Backend: SGLang Runtime (SRT)](#backend-sglang-runtime-srt)
Ying Sheng's avatar
Ying Sheng committed
45
- [Frontend: Structured Generation Language (SGLang)](#frontend-structured-generation-language-sglang)
Lianmin Zheng's avatar
Lianmin Zheng committed
46
47
48
49
50
51
- [Benchmark And Performance](#benchmark-and-performance)
- [Roadmap](#roadmap)
- [Citation And Acknowledgment](#citation-and-acknowledgment)

## Install

52
53
You can install SGLang using any of the methods below.

Lianmin Zheng's avatar
Lianmin Zheng committed
54
55
### Method 1: With pip
```
56
pip install --upgrade pip
Lianmin Zheng's avatar
Lianmin Zheng committed
57
pip install "sglang[all]"
Lianmin Zheng's avatar
Lianmin Zheng committed
58

Lianmin Zheng's avatar
Lianmin Zheng committed
59
# Install FlashInfer CUDA kernels
60
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
Lianmin Zheng's avatar
Lianmin Zheng committed
61
```
62

Lianmin Zheng's avatar
Lianmin Zheng committed
63
### Method 2: From source
Lianmin Zheng's avatar
Lianmin Zheng committed
64
```
Ying Sheng's avatar
Ying Sheng committed
65
# Use the last release branch
Lianmin Zheng's avatar
Lianmin Zheng committed
66
git clone -b v0.3.4 https://github.com/sgl-project/sglang.git
Lianmin Zheng's avatar
Lianmin Zheng committed
67
68
cd sglang

Lianmin Zheng's avatar
Lianmin Zheng committed
69
pip install --upgrade pip
Lianmin Zheng's avatar
Lianmin Zheng committed
70
71
pip install -e "python[all]"

Lianmin Zheng's avatar
Lianmin Zheng committed
72
# Install FlashInfer CUDA kernels
73
pip install flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
Lianmin Zheng's avatar
Lianmin Zheng committed
74
```
75

Lianmin Zheng's avatar
Lianmin Zheng committed
76
### Method 3: Using docker
77
The docker images are available on Docker Hub as [lmsysorg/sglang](https://hub.docker.com/r/lmsysorg/sglang/tags), built from [Dockerfile](https://github.com/sgl-project/sglang/tree/main/docker).
78
Replace `<secret>` below with your huggingface hub [token](https://huggingface.co/docs/hub/en/security-tokens).
Ying Sheng's avatar
Ying Sheng committed
79

Liangsheng Yin's avatar
Liangsheng Yin committed
80
81
82
83
```bash
docker run --gpus all \
    -p 30000:30000 \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
84
    --env "HF_TOKEN=<secret>" \
Liangsheng Yin's avatar
Liangsheng Yin committed
85
86
    --ipc=host \
    lmsysorg/sglang:latest \
87
    python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --host 0.0.0.0 --port 30000
Liangsheng Yin's avatar
Liangsheng Yin committed
88
89
```

90
91
### Method 4: Using docker compose

92
<details>
Dr. Artificial曾小健's avatar
Dr. Artificial曾小健 committed
93
<summary>More</summary>
94

95
> This method is recommended if you plan to serve it as a service.
96
> A better approach is to use the [k8s-sglang-service.yaml](docker/k8s-sglang-service.yaml).
97

98
1. Copy the [compose.yml](docker/compose.yaml) to your local machine
99
2. Execute the command `docker compose up -d` in your terminal.
100
</details>
101

102
103
### Method 5: Run on Kubernetes or Clouds with SkyPilot

104
<details>
Dr. Artificial曾小健's avatar
Dr. Artificial曾小健 committed
105
<summary>More</summary>
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
To deploy on Kubernetes or 12+ clouds, you can use [SkyPilot](https://github.com/skypilot-org/skypilot).

1. Install SkyPilot and set up Kubernetes cluster or cloud access: see [SkyPilot's documentation](https://skypilot.readthedocs.io/en/latest/getting-started/installation.html).
2. Deploy on your own infra with a single command and get the HTTP API endpoint:
<details>
<summary>SkyPilot YAML: <code>sglang.yaml</code></summary>

```yaml
# sglang.yaml
envs:
  HF_TOKEN: null

resources:
  image_id: docker:lmsysorg/sglang:latest
  accelerators: A100
  ports: 30000

run: |
  conda deactivate
  python3 -m sglang.launch_server \
127
    --model-path meta-llama/Llama-3.1-8B-Instruct \
128
129
130
    --host 0.0.0.0 \
    --port 30000
```
131
</details>
132
133
134
135
136
137
138
139
140

```bash
# Deploy on any cloud or Kubernetes cluster. Use --cloud <cloud> to select a specific cloud provider.
HF_TOKEN=<secret> sky launch -c sglang --env HF_TOKEN sglang.yaml

# Get the HTTP API endpoint
sky status --endpoint 30000 sglang
```
3. To further scale up your deployment with autoscaling and failure recovery, check out the [SkyServe + SGLang guide](https://github.com/skypilot-org/skypilot/tree/master/llm/sglang#serving-llama-2-with-sglang-for-more-traffic-using-skyserve).
141
</details>
142
143


Lianmin Zheng's avatar
Lianmin Zheng committed
144
### Common Notes
Lianmin Zheng's avatar
Lianmin Zheng committed
145
- [FlashInfer](https://github.com/flashinfer-ai/flashinfer) is the default attention kernel backend. It only supports sm75 and above. If you encounter any FlashInfer-related issues on sm75+ devices (e.g., T4, A10, A100, L4, L40S, H100), please switch to other kernels by adding `--attention-backend triton --sampling-backend pytorch` and open an issue on GitHub.
Lianmin Zheng's avatar
Lianmin Zheng committed
146
- If you only need to use the OpenAI backend, you can avoid installing other dependencies by using `pip install "sglang[openai]"`.
Ying Sheng's avatar
Ying Sheng committed
147

Ying Sheng's avatar
Ying Sheng committed
148
149
150
## Backend: SGLang Runtime (SRT)
The SGLang Runtime (SRT) is an efficient serving engine.

Ying Sheng's avatar
Ying Sheng committed
151
### Quick Start
Ying Sheng's avatar
Ying Sheng committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
Launch a server
```
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
```

Send a request
```
curl http://localhost:30000/generate \
  -H "Content-Type: application/json" \
  -d '{
    "text": "Once upon a time,",
    "sampling_params": {
      "max_new_tokens": 16,
      "temperature": 0
    }
  }'
```
Lianmin Zheng's avatar
Lianmin Zheng committed
169
170

Learn more about the argument specification, streaming, and multi-modal support [here](docs/en/sampling_params.md).
Ying Sheng's avatar
Ying Sheng committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

### OpenAI Compatible API
In addition, the server supports OpenAI-compatible APIs.

```python
import openai
client = openai.Client(
    base_url="http://127.0.0.1:30000/v1", api_key="EMPTY")

# Text completion
response = client.completions.create(
	model="default",
	prompt="The capital of France is",
	temperature=0,
	max_tokens=32,
)
print(response)

# Chat completion
response = client.chat.completions.create(
    model="default",
    messages=[
        {"role": "system", "content": "You are a helpful AI assistant"},
        {"role": "user", "content": "List 3 countries and their capitals."},
    ],
    temperature=0,
    max_tokens=64,
)
print(response)
200
201
202
203
204
205
206

# Text embedding
response = client.embeddings.create(
    model="default",
    input="How are you today",
)
print(response)
Ying Sheng's avatar
Ying Sheng committed
207
208
```

Lianmin Zheng's avatar
Lianmin Zheng committed
209
It supports streaming, vision, and almost all features of the Chat/Completions/Models/Batch endpoints specified by the [OpenAI API Reference](https://platform.openai.com/docs/api-reference/).
Ying Sheng's avatar
Ying Sheng committed
210
211

### Additional Server Arguments
212
- To enable multi-GPU tensor parallelism, add `--tp 2`. If it reports the error "peer access is not supported between these two devices", add `--enable-p2p-check` to the server launch command.
Ying Sheng's avatar
Ying Sheng committed
213
```
214
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 2
Ying Sheng's avatar
Ying Sheng committed
215
```
216
- To enable multi-GPU data parallelism, add `--dp 2`. Data parallelism is better for throughput if there is enough memory. It can also be used together with tensor parallelism. The following command uses 4 GPUs in total.
Ying Sheng's avatar
Ying Sheng committed
217
```
218
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --dp 2 --tp 2
Ying Sheng's avatar
Ying Sheng committed
219
```
220
- If you see out-of-memory errors during serving, try to reduce the memory usage of the KV cache pool by setting a smaller value of `--mem-fraction-static`. The default value is `0.9`.
Ying Sheng's avatar
Ying Sheng committed
221
```
222
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --mem-fraction-static 0.7
Ying Sheng's avatar
Ying Sheng committed
223
```
224
225
- See [hyperparameter_tuning.md](docs/en/hyperparameter_tuning.md) on tuning hyperparameters for better performance.
- If you see out-of-memory errors during prefill for long prompts, try to set a smaller chunked prefill size.
Ying Sheng's avatar
Ying Sheng committed
226
```
227
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --chunked-prefill-size 4096
Ying Sheng's avatar
Ying Sheng committed
228
```
229
- To enable torch.compile acceleration, add `--enable-torch-compile`. It accelerates small models on small batch sizes.
Lianmin Zheng's avatar
Lianmin Zheng committed
230
- To enable torchao quantization, add `--torchao-config int4wo-128`. It supports various quantization strategies.
231
232
233
- To enable fp8 weight quantization, add `--quantization fp8` on a fp16 checkpoint or directly load a fp8 checkpoint without specifying any arguments.
- To enable fp8 kv cache quantization, add `--kv-cache-dtype fp8_e5m2`.
- If the model does not have a chat template in the Hugging Face tokenizer, you can specify a [custom chat template](docs/en/custom_chat_template.md).
234
- To run tensor parallelism on multiple nodes, add `--nnodes 2`. If you have two nodes with two GPUs on each node and want to run TP=4, let `sgl-dev-0` be the hostname of the first node and `50000` be an available port, you can use the following commands. If you meet deadlock, please try to add `--disable-cuda-graph`
Ying Sheng's avatar
Ying Sheng committed
235
236
```
# Node 0
237
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 0
Ying Sheng's avatar
Ying Sheng committed
238
239

# Node 1
240
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --tp 4 --nccl-init sgl-dev-0:50000 --nnodes 2 --node-rank 1
Ying Sheng's avatar
Ying Sheng committed
241
```
Lianmin Zheng's avatar
Lianmin Zheng committed
242
 
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
### Engine Without HTTP Server

We also provide an inference engine **without a HTTP server**. For example,

```python
import sglang as sgl


def main():
    prompts = [
        "Hello, my name is",
        "The president of the United States is",
        "The capital of France is",
        "The future of AI is",
    ]
    sampling_params = {"temperature": 0.8, "top_p": 0.95}
    llm = sgl.Engine(model_path="meta-llama/Meta-Llama-3.1-8B-Instruct")

    outputs = llm.generate(prompts, sampling_params)
    for prompt, output in zip(prompts, outputs):
        print("===============================")
        print(f"Prompt: {prompt}\nGenerated text: {output['text']}")

if __name__ == "__main__":
    main()
```

This can be used for:

1. **Offline Batch Inference**
2. **Building Custom Servers**

You can view the full example [here](https://github.com/sgl-project/sglang/tree/main/examples/runtime/engine)

Ying Sheng's avatar
Ying Sheng committed
277
278
### Supported Models

279
**Generative Models**
280
- Llama / Llama 2 / Llama 3 / Llama 3.1
281
- Mistral / Mixtral / Mistral NeMo
Ying Sheng's avatar
Ying Sheng committed
282
283
- Gemma / Gemma 2
- Qwen / Qwen 2 / Qwen 2 MoE
284
- DeepSeek / DeepSeek 2
Lianmin Zheng's avatar
Lianmin Zheng committed
285
- OLMoE
286
- [LLaVA-OneVision](https://llava-vl.github.io/blog/2024-08-05-llava-onevision/)
287
  - `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-7b-ov --port=30000 --chat-template=chatml-llava`
288
  - `python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-72b-ov --port=30000 --tp-size=8 --chat-template=chatml-llava`
289
290
291
292
293
  - Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](test/srt/test_vision_openai_server.py)
- LLaVA 1.5 / 1.6 / NeXT
  - `python -m sglang.launch_server --model-path lmms-lab/llama3-llava-next-8b --port=30000 --tp-size=1 --chat-template=llava_llama_3`
  - `python -m sglang.launch_server --model-path lmms-lab/llava-next-72b --port=30000 --tp-size=8 --chat-template=chatml-llava`
  - Query the server with the [OpenAI Vision API](https://platform.openai.com/docs/guides/vision). See examples at [test/srt/test_vision_openai_server.py](test/srt/test_vision_openai_server.py)
Ying Sheng's avatar
Ying Sheng committed
294
295
296
297
298
299
300
- Yi-VL
- StableLM
- Command-R
- DBRX
- Grok
- ChatGLM
- InternLM 2
301
- Exaone 3
Vectory's avatar
Vectory committed
302
- BaiChuan2
William's avatar
William committed
303
- MiniCPM / MiniCPM 3
304
- XVERSE / XVERSE MoE
305
- SmolLM
306
- GLM-4
William's avatar
William committed
307

308
309
310
311
312
313
**Embedding Models**

- e5-mistral
- gte-Qwen2
  - `python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct --is-embedding`

314
Instructions for supporting a new model are [here](docs/en/model_support.md).
Ying Sheng's avatar
Ying Sheng committed
315

Lianmin Zheng's avatar
Lianmin Zheng committed
316
#### Use Models From ModelScope
317
<details>
Dr. Artificial曾小健's avatar
Dr. Artificial曾小健 committed
318
<summary>More</summary>
319

Lianmin Zheng's avatar
Lianmin Zheng committed
320
To use a model from [ModelScope](https://www.modelscope.cn), set the environment variable SGLANG_USE_MODELSCOPE.
Lianmin Zheng's avatar
Lianmin Zheng committed
321
322
323
324
325
326
```
export SGLANG_USE_MODELSCOPE=true
```
Launch [Qwen2-7B-Instruct](https://www.modelscope.cn/models/qwen/qwen2-7b-instruct) Server
```
SGLANG_USE_MODELSCOPE=true python -m sglang.launch_server --model-path qwen/Qwen2-7B-Instruct --port 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
327
```
328
329
330
331
332
333
334
335
336
337
338

Or start it by docker.
```bash
docker run --gpus all \
    -p 30000:30000 \
    -v ~/.cache/modelscope:/root/.cache/modelscope \
    --env "SGLANG_USE_MODELSCOPE=true" \
    --ipc=host \
    lmsysorg/sglang:latest \
    python3 -m sglang.launch_server --model-path Qwen/Qwen2.5-7B-Instruct --host 0.0.0.0 --port 30000
```
Lianmin Zheng's avatar
Lianmin Zheng committed
339
  
340
</details>
Lianmin Zheng's avatar
Lianmin Zheng committed
341
342

#### Run Llama 3.1 405B
Lianmin Zheng's avatar
Lianmin Zheng committed
343
<details>
Dr. Artificial曾小健's avatar
Dr. Artificial曾小健 committed
344
<summary>More</summary>
Ying Sheng's avatar
Ying Sheng committed
345
346

```bash
347
# Run 405B (fp8) on a single node
Ying Sheng's avatar
Ying Sheng committed
348
349
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct-FP8 --tp 8

350
351
352
# Run 405B (fp16) on two nodes
## on the first node, replace the `172.16.4.52:20000` with your own first node ip address and port
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 0 --disable-cuda-graph
Ying Sheng's avatar
Ying Sheng committed
353

354
355
## on the first node, replace the `172.16.4.52:20000` with your own first node ip address and port
GLOO_SOCKET_IFNAME=eth0 python3 -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-405B-Instruct --tp 16 --nccl-init-addr 172.16.4.52:20000 --nnodes 2 --node-rank 1 --disable-cuda-graph
Ying Sheng's avatar
Ying Sheng committed
356
357
```

Lianmin Zheng's avatar
Lianmin Zheng committed
358
359
</details>

Ying Sheng's avatar
Ying Sheng committed
360
361
### Benchmark Performance

Lianmin Zheng's avatar
Lianmin Zheng committed
362
363
364
- Benchmark a single static batch by running the following command without launching a server. The arguments are the same as for `launch_server.py`.
  Note that this is not a dynamic batching server, so it may run out of memory for a batch size that a real server can handle.
  A real server truncates the prefill into several batches, while this unit test does not. For accurate large batch testing, please use `sglang.bench_serving` instead.
Ying Sheng's avatar
Ying Sheng committed
365
  ```
366
  python -m sglang.bench_latency --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 32 --input-len 256 --output-len 32
Ying Sheng's avatar
Ying Sheng committed
367
368
369
  ```
- Benchmark online serving. Launch a server first and run the following command.
  ```
370
  python3 -m sglang.bench_serving --backend sglang --num-prompt 10
Ying Sheng's avatar
Ying Sheng committed
371
372
  ```

Ying Sheng's avatar
Ying Sheng committed
373
## Frontend: Structured Generation Language (SGLang)
374
The frontend language can be used with local models or API models. It is an alternative to the OpenAI API. You may found it easier to use for complex prompting workflow.
Ying Sheng's avatar
Ying Sheng committed
375
376

### Quick Start
377
The example below shows how to use sglang to answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
378

Ying Sheng's avatar
Ying Sheng committed
379
#### Using Local Models
380
First, launch a server with
Lianmin Zheng's avatar
Lianmin Zheng committed
381
```
Ying Sheng's avatar
Ying Sheng committed
382
python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
383
384
```

385
386
Then, connect to the server and answer a multi-turn question.

Lianmin Zheng's avatar
Lianmin Zheng committed
387
```python
388
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint
Lianmin Zheng's avatar
Lianmin Zheng committed
389
390
391
392
393
394
395
396
397

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

398
set_default_backend(RuntimeEndpoint("http://localhost:30000"))
Lianmin Zheng's avatar
Lianmin Zheng committed
399
400
401
402
403
404
405
406

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
407
408

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
409
410
```

Ying Sheng's avatar
Ying Sheng committed
411
#### Using OpenAI Models
412
Set the OpenAI API Key
Lianmin Zheng's avatar
Lianmin Zheng committed
413
```
414
export OPENAI_API_KEY=sk-******
Lianmin Zheng's avatar
Lianmin Zheng committed
415
416
```

417
Then, answer a multi-turn question.
Lianmin Zheng's avatar
Lianmin Zheng committed
418
```python
419
from sglang import function, system, user, assistant, gen, set_default_backend, OpenAI
Lianmin Zheng's avatar
Lianmin Zheng committed
420
421
422
423
424
425
426
427
428

@function
def multi_turn_question(s, question_1, question_2):
    s += system("You are a helpful assistant.")
    s += user(question_1)
    s += assistant(gen("answer_1", max_tokens=256))
    s += user(question_2)
    s += assistant(gen("answer_2", max_tokens=256))

429
set_default_backend(OpenAI("gpt-3.5-turbo"))
Lianmin Zheng's avatar
Lianmin Zheng committed
430
431
432
433
434
435
436
437

state = multi_turn_question.run(
    question_1="What is the capital of the United States?",
    question_2="List two local attractions.",
)

for m in state.messages():
    print(m["role"], ":", m["content"])
438
439

print(state["answer_1"])
Lianmin Zheng's avatar
Lianmin Zheng committed
440
441
```

Ying Sheng's avatar
Ying Sheng committed
442
#### More Examples
Lianmin Zheng's avatar
Lianmin Zheng committed
443

444
Anthropic and VertexAI (Gemini) models are also supported.
Byron Hsu's avatar
Byron Hsu committed
445
You can find more examples at [examples/quick_start](examples/frontend_language/quick_start).
Lianmin Zheng's avatar
Lianmin Zheng committed
446

Ying Sheng's avatar
Ying Sheng committed
447
### Language Feature
Lianmin Zheng's avatar
Lianmin Zheng committed
448
449
450
451
452
To begin with, import sglang.
```python
import sglang as sgl
```

Lianmin Zheng's avatar
Lianmin Zheng committed
453
`sglang` provides some simple primitives such as `gen`, `select`, `fork`, `image`.
Lianmin Zheng's avatar
Lianmin Zheng committed
454
455
You can implement your prompt flow in a function decorated by `sgl.function`.
You can then invoke the function with `run` or `run_batch`.
456
The system will manage the state, chat template, parallelism and batching for you.
Lianmin Zheng's avatar
Lianmin Zheng committed
457

458
The complete code for the examples below can be found at [readme_examples.py](examples/frontend_language/usage/readme_examples.py)
459

Ying Sheng's avatar
Ying Sheng committed
460
#### Control Flow
Lianmin Zheng's avatar
Lianmin Zheng committed
461
462
You can use any Python code within the function body, including control flow, nested function calls, and external libraries.

Lianmin Zheng's avatar
Lianmin Zheng committed
463
464
```python
@sgl.function
465
466
467
def tool_use(s, question):
    s += "To answer this question: " + question + ". "
    s += "I need to use a " + sgl.gen("tool", choices=["calculator", "search engine"]) + ". "
Lianmin Zheng's avatar
Lianmin Zheng committed
468
469
470

    if s["tool"] == "calculator":
        s += "The math expression is" + sgl.gen("expression")
471
472
    elif s["tool"] == "search engine":
        s += "The key word to search is" + sgl.gen("word")
Lianmin Zheng's avatar
Lianmin Zheng committed
473
```
Lianmin Zheng's avatar
Lianmin Zheng committed
474

Ying Sheng's avatar
Ying Sheng committed
475
#### Parallelism
Lianmin Zheng's avatar
Lianmin Zheng committed
476
477
478
Use `fork` to launch parallel prompts.
Because `sgl.gen` is non-blocking, the for loop below issues two generation calls in parallel.

Lianmin Zheng's avatar
Lianmin Zheng committed
479
480
481
482
483
484
485
486
```python
@sgl.function
def tip_suggestion(s):
    s += (
        "Here are two tips for staying healthy: "
        "1. Balanced Diet. 2. Regular Exercise.\n\n"
    )

Lianmin Zheng's avatar
Lianmin Zheng committed
487
    forks = s.fork(2)
Lianmin Zheng's avatar
Lianmin Zheng committed
488
489
490
491
492
493
494
495
    for i, f in enumerate(forks):
        f += f"Now, expand tip {i+1} into a paragraph:\n"
        f += sgl.gen(f"detailed_tip", max_tokens=256, stop="\n\n")

    s += "Tip 1:" + forks[0]["detailed_tip"] + "\n"
    s += "Tip 2:" + forks[1]["detailed_tip"] + "\n"
    s += "In summary" + sgl.gen("summary")
```
Lianmin Zheng's avatar
Lianmin Zheng committed
496

Lianmin Zheng's avatar
Lianmin Zheng committed
497
#### Multi-Modality
Lianmin Zheng's avatar
Lianmin Zheng committed
498
499
Use `sgl.image` to pass an image as input.

Lianmin Zheng's avatar
Lianmin Zheng committed
500
501
```python
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
502
def image_qa(s, image_file, question):
Lianmin Zheng's avatar
Lianmin Zheng committed
503
    s += sgl.user(sgl.image(image_file) + question)
Lianmin Zheng's avatar
Lianmin Zheng committed
504
    s += sgl.assistant(sgl.gen("answer", max_tokens=256)
Lianmin Zheng's avatar
Lianmin Zheng committed
505
506
```

507
See also [srt_example_llava.py](examples/frontend_language/quick_start/local_example_llava_next.py).
508

Ying Sheng's avatar
Ying Sheng committed
509
#### Constrained Decoding
510
511
Use `regex` to specify a regular expression as a decoding constraint.
This is only supported for local models.
Lianmin Zheng's avatar
Lianmin Zheng committed
512

Lianmin Zheng's avatar
Lianmin Zheng committed
513
```python
Lianmin Zheng's avatar
Lianmin Zheng committed
514
@sgl.function
Lianmin Zheng's avatar
Lianmin Zheng committed
515
516
def regular_expression_gen(s):
    s += "Q: What is the IP address of the Google DNS servers?\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
517
    s += "A: " + sgl.gen(
Lianmin Zheng's avatar
Lianmin Zheng committed
518
519
520
521
522
        "answer",
        temperature=0,
        regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
    )
```
Lianmin Zheng's avatar
Lianmin Zheng committed
523

Ying Sheng's avatar
Ying Sheng committed
524
#### JSON Decoding
Lianmin Zheng's avatar
Lianmin Zheng committed
525
Use `regex` to specify a JSON schema with a regular expression.
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

```python
character_regex = (
    r"""\{\n"""
    + r"""    "name": "[\w\d\s]{1,16}",\n"""
    + r"""    "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
    + r"""    "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
    + r"""    "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
    + r"""    "wand": \{\n"""
    + r"""        "wood": "[\w\d\s]{1,16}",\n"""
    + r"""        "core": "[\w\d\s]{1,16}",\n"""
    + r"""        "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
    + r"""    \},\n"""
    + r"""    "alive": "(Alive|Deceased)",\n"""
    + r"""    "patronus": "[\w\d\s]{1,16}",\n"""
    + r"""    "bogart": "[\w\d\s]{1,16}"\n"""
    + r"""\}"""
)

@sgl.function
def character_gen(s, name):
Lianmin Zheng's avatar
Lianmin Zheng committed
547
    s += name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
548
549
550
    s += sgl.gen("json_output", max_tokens=256, regex=character_regex)
```

551
See also [json_decode.py](examples/frontend_language/usage/json_decode.py) for an additional example of specifying formats with Pydantic models.
552

Ying Sheng's avatar
Ying Sheng committed
553
#### Batching
Lianmin Zheng's avatar
Lianmin Zheng committed
554
555
Use `run_batch` to run a batch of requests with continuous batching.

Lianmin Zheng's avatar
Lianmin Zheng committed
556
557
558
559
560
561
562
563
564
565
566
567
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

states = text_qa.run_batch(
    [
        {"question": "What is the capital of the United Kingdom?"},
        {"question": "What is the capital of France?"},
        {"question": "What is the capital of Japan?"},
    ],
Lianmin Zheng's avatar
Lianmin Zheng committed
568
    progress_bar=True
Lianmin Zheng's avatar
Lianmin Zheng committed
569
570
)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
571

Ying Sheng's avatar
Ying Sheng committed
572
#### Streaming
Lianmin Zheng's avatar
Lianmin Zheng committed
573
574
Add `stream=True` to enable streaming.

Lianmin Zheng's avatar
Lianmin Zheng committed
575
576
577
578
579
580
```python
@sgl.function
def text_qa(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", stop="\n")

581
state = text_qa.run(
Lianmin Zheng's avatar
Lianmin Zheng committed
582
    question="What is the capital of France?",
Lianmin Zheng's avatar
Lianmin Zheng committed
583
584
585
    temperature=0.1,
    stream=True
)
Lianmin Zheng's avatar
Lianmin Zheng committed
586

Lianmin Zheng's avatar
Lianmin Zheng committed
587
588
589
for out in state.text_iter():
    print(out, end="", flush=True)
```
Lianmin Zheng's avatar
Lianmin Zheng committed
590

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
#### Roles

Use `sgl.system``sgl.user` and `sgl.assistant` to set roles when using Chat models. You can also define more complex role prompts using begin and end tokens.

```python
@sgl.function
def chat_example(s):
    s += sgl.system("You are a helpful assistant.")
    # Same as: s += s.system("You are a helpful assistant.")

    with s.user():
        s += "Question: What is the capital of France?"

    s += sgl.assistant_begin()
    s += "Answer: " + sgl.gen(max_tokens=100, stop="\n")
    s += sgl.assistant_end()
```

Ying Sheng's avatar
Ying Sheng committed
609
#### Tips and Implementation Details
610
611
- The `choices` argument in `sgl.gen` is implemented by computing the [token-length normalized log probabilities](https://blog.eleuther.ai/multiple-choice-normalization/) of all choices and selecting the one with the highest probability.
- The `regex` argument in `sgl.gen` is implemented through autoregressive decoding with logit bias masking, according to the constraints set by the regex. It is compatible with `temperature=0` and `temperature != 0`.
Lianmin Zheng's avatar
Lianmin Zheng committed
612

Ying Sheng's avatar
Ying Sheng committed
613
## Benchmark And Performance
Lianmin Zheng's avatar
Lianmin Zheng committed
614
Learn more in our release blogs: [v0.2](https://lmsys.org/blog/2024-07-25-sglang-llama3/), [v0.3](https://lmsys.org/blog/2024-09-04-sglang-v0-3/).
Lianmin Zheng's avatar
Lianmin Zheng committed
615

Lianmin Zheng's avatar
Lianmin Zheng committed
616
## Roadmap
617
[Development Roadmap (2024 Q4)](https://github.com/sgl-project/sglang/issues/1487)
Lianmin Zheng's avatar
Lianmin Zheng committed
618
619

## Citation And Acknowledgment
Ying Sheng's avatar
Ying Sheng committed
620
621
Please cite our paper, [SGLang: Efficient Execution of Structured Language Model Programs](https://arxiv.org/abs/2312.07104), if you find the project useful.
We also learned from the design and reused code from the following projects: [Guidance](https://github.com/guidance-ai/guidance), [vLLM](https://github.com/vllm-project/vllm), [LightLLM](https://github.com/ModelTC/lightllm), [FlashInfer](https://github.com/flashinfer-ai/flashinfer), [Outlines](https://github.com/outlines-dev/outlines), and [LMQL](https://github.com/eth-sri/lmql).
622
623
624
625
626
627
628
629



<p align="center">
  <a href="#sglangtop" target="_blank">
  <bold>Back To Top </bold>
  </a>
</p>