wan_audio_runner.py 39.7 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
import gc
2
import io
3
import json
PengGao's avatar
PengGao committed
4
import os
sandy's avatar
sandy committed
5
import warnings
PengGao's avatar
PengGao committed
6
from dataclasses import dataclass
7
from typing import Dict, List, Optional, Tuple, Union
PengGao's avatar
PengGao committed
8

wangshankun's avatar
wangshankun committed
9
10
import numpy as np
import torch
11
import torch.distributed as dist
sandy's avatar
sandy committed
12
import torch.nn.functional as F
gushiqiao's avatar
gushiqiao committed
13
import torchaudio as ta
helloyongyang's avatar
helloyongyang committed
14
import torchvision.transforms.functional as TF
15
from PIL import Image, ImageCms, ImageOps
gushiqiao's avatar
gushiqiao committed
16
from einops import rearrange
PengGao's avatar
PengGao committed
17
from loguru import logger
gushiqiao's avatar
gushiqiao committed
18
19
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
20

LiangLiu's avatar
LiangLiu committed
21
22
from lightx2v.deploy.common.va_reader import VAReader
from lightx2v.deploy.common.va_recorder import VARecorder
LiangLiu's avatar
LiangLiu committed
23
from lightx2v.deploy.common.va_recorder_x264 import X264VARecorder
24
from lightx2v.models.input_encoders.hf.seko_audio.audio_adapter import AudioAdapter
helloyongyang's avatar
helloyongyang committed
25
from lightx2v.models.input_encoders.hf.seko_audio.audio_encoder import SekoAudioEncoderModel
26
from lightx2v.models.networks.wan.audio_model import WanAudioModel
PengGao's avatar
PengGao committed
27
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
28
from lightx2v.models.runners.wan.wan_runner import WanRunner
29
from lightx2v.models.schedulers.wan.audio.scheduler import EulerScheduler
sandy's avatar
sandy committed
30
from lightx2v.models.video_encoders.hf.wan.vae_2_2 import Wan2_2_VAE
yihuiwen's avatar
yihuiwen committed
31
from lightx2v.server.metrics import monitor_cli
32
from lightx2v.utils.envs import *
33
from lightx2v.utils.profiler import *
PengGao's avatar
PengGao committed
34
from lightx2v.utils.registry_factory import RUNNER_REGISTER
LiangLiu's avatar
LiangLiu committed
35
from lightx2v.utils.utils import find_torch_model_path, load_weights, vae_to_comfyui_image_inplace
36
from lightx2v_platform.base.global_var import AI_DEVICE
37

sandy's avatar
sandy committed
38
39
40
warnings.filterwarnings("ignore", category=UserWarning, module="torchaudio")
warnings.filterwarnings("ignore", category=UserWarning, module="torchvision.io")

wangshankun's avatar
wangshankun committed
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
def get_optimal_patched_size_with_sp(patched_h, patched_w, sp_size):
    assert sp_size > 0 and (sp_size & (sp_size - 1)) == 0, "sp_size must be a power of 2"

    h_ratio, w_ratio = 1, 1
    while sp_size != 1:
        sp_size //= 2
        if patched_h % 2 == 0:
            patched_h //= 2
            h_ratio *= 2
        elif patched_w % 2 == 0:
            patched_w //= 2
            w_ratio *= 2
        else:
            if patched_h > patched_w:
                patched_h //= 2
57
58
                h_ratio *= 2
            else:
59
                patched_w //= 2
60
                w_ratio *= 2
61
    return patched_h * h_ratio, patched_w * w_ratio
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82


def get_crop_bbox(ori_h, ori_w, tgt_h, tgt_w):
    tgt_ar = tgt_h / tgt_w
    ori_ar = ori_h / ori_w
    if abs(ori_ar - tgt_ar) < 0.01:
        return 0, ori_h, 0, ori_w
    if ori_ar > tgt_ar:
        crop_h = int(tgt_ar * ori_w)
        y0 = (ori_h - crop_h) // 2
        y1 = y0 + crop_h
        return y0, y1, 0, ori_w
    else:
        crop_w = int(ori_h / tgt_ar)
        x0 = (ori_w - crop_w) // 2
        x1 = x0 + crop_w
        return 0, ori_h, x0, x1


def isotropic_crop_resize(frames: torch.Tensor, size: tuple):
    """
83
    frames: (C, H, W) or (T, C, H, W) or (N, C, H, W)
84
85
    size: (H, W)
    """
86
87
88
89
90
91
92
    original_shape = frames.shape

    if len(frames.shape) == 3:
        frames = frames.unsqueeze(0)
    elif len(frames.shape) == 4 and frames.shape[0] > 1:
        pass

93
94
95
96
    ori_h, ori_w = frames.shape[2:]
    h, w = size
    y0, y1, x0, x1 = get_crop_bbox(ori_h, ori_w, h, w)
    cropped_frames = frames[:, :, y0:y1, x0:x1]
97
    resized_frames = resize(cropped_frames, [h, w], InterpolationMode.BICUBIC, antialias=True)
98
99
100
101

    if len(original_shape) == 3:
        resized_frames = resized_frames.squeeze(0)

102
103
104
    return resized_frames


105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def fixed_shape_resize(img, target_height, target_width):
    orig_height, orig_width = img.shape[-2:]

    target_ratio = target_height / target_width
    orig_ratio = orig_height / orig_width

    if orig_ratio > target_ratio:
        crop_width = orig_width
        crop_height = int(crop_width * target_ratio)
    else:
        crop_height = orig_height
        crop_width = int(crop_height / target_ratio)

    cropped_img = TF.center_crop(img, [crop_height, crop_width])

    resized_img = TF.resize(cropped_img, [target_height, target_width], antialias=True)

    h, w = resized_img.shape[-2:]
    return resized_img, h, w


126
def resize_image(img, resize_mode="adaptive", bucket_shape=None, fixed_area=None, fixed_shape=None):
127
    assert resize_mode in ["adaptive", "keep_ratio_fixed_area", "fixed_min_area", "fixed_max_area", "fixed_shape", "fixed_min_side"]
128
129
130
131
132

    if resize_mode == "fixed_shape":
        assert fixed_shape is not None
        logger.info(f"[wan_audio] fixed_shape_resize fixed_height: {fixed_shape[0]}, fixed_width: {fixed_shape[1]}")
        return fixed_shape_resize(img, fixed_shape[0], fixed_shape[1])
133

134
135
136
137
138
139
140
141
142
143
144
    if bucket_shape is not None:
        """
        "adaptive_shape": {
            "0.667": [[480, 832], [544, 960], [720, 1280]],
            "1.500": [[832, 480], [960, 544], [1280, 720]],
            "1.000": [[480, 480], [576, 576], [704, 704], [960, 960]]
        }
        """
        bucket_config = {}
        for ratio, resolutions in bucket_shape.items():
            bucket_config[float(ratio)] = np.array(resolutions, dtype=np.int64)
145
        # logger.info(f"[wan_audio] use custom bucket_shape: {bucket_config}")
146
147
148
149
150
151
    else:
        bucket_config = {
            0.667: np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64),
            1.500: np.array([[832, 480], [960, 544], [1280, 720]], dtype=np.int64),
            1.000: np.array([[480, 480], [576, 576], [704, 704], [960, 960]], dtype=np.int64),
        }
152
        # logger.info(f"[wan_audio] use default bucket_shape: {bucket_config}")
153

154
155
156
    ori_height = img.shape[-2]
    ori_weight = img.shape[-1]
    ori_ratio = ori_height / ori_weight
157
158
159
160
161
162
163
164
165
166
167

    if resize_mode == "adaptive":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
        if ori_ratio < 1.0:
            target_h, target_w = 480, 832
        elif ori_ratio == 1.0:
            target_h, target_w = 480, 480
        else:
            target_h, target_w = 832, 480
168
        for resolution in bucket_config[closet_ratio]:
169
170
171
172
173
174
175
176
177
178
179
            if ori_height * ori_weight >= resolution[0] * resolution[1]:
                target_h, target_w = resolution
    elif resize_mode == "keep_ratio_fixed_area":
        assert fixed_area in ["480p", "720p"], f"fixed_area must be in ['480p', '720p'], but got {fixed_area}, please set fixed_area in config."
        fixed_area = 480 * 832 if fixed_area == "480p" else 720 * 1280
        target_h = round(np.sqrt(fixed_area * ori_ratio))
        target_w = round(np.sqrt(fixed_area / ori_ratio))
    elif resize_mode == "fixed_min_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
180
        target_h, target_w = bucket_config[closet_ratio][0]
181
182
183
184
185
186
187
188
189
190
    elif resize_mode == "fixed_min_side":
        assert fixed_area in ["480p", "720p"], f"fixed_min_side mode requires fixed_area to be '480p' or '720p', got {fixed_area}"

        min_side = 720 if fixed_area == "720p" else 480
        if ori_ratio < 1.0:
            target_h = min_side
            target_w = round(target_h / ori_ratio)
        else:
            target_w = min_side
            target_h = round(target_w * ori_ratio)
191
192
193
194
    elif resize_mode == "fixed_max_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
195
        target_h, target_w = bucket_config[closet_ratio][-1]
196

197
198
199
200
    cropped_img = isotropic_crop_resize(img, (target_h, target_w))
    return cropped_img, target_h, target_w


201
202
203
204
@dataclass
class AudioSegment:
    """Data class for audio segment information"""

sandy's avatar
sandy committed
205
    audio_array: torch.Tensor
206
207
208
209
    start_frame: int
    end_frame: int


210
class FramePreprocessorTorchVersion:
211
212
213
214
215
216
217
    """Handles frame preprocessing including noise and masking"""

    def __init__(self, noise_mean: float = -3.0, noise_std: float = 0.5, mask_rate: float = 0.1):
        self.noise_mean = noise_mean
        self.noise_std = noise_std
        self.mask_rate = mask_rate

218
    def add_noise(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
219
220
        """Add noise to frames"""

221
        device = frames.device
222
223
        shape = frames.shape
        bs = 1 if len(shape) == 4 else shape[0]
224
225
226
227
228
229
230
231
232
233

        # Generate sigma values on the same device
        sigma = torch.normal(mean=self.noise_mean, std=self.noise_std, size=(bs,), device=device, generator=generator)
        sigma = torch.exp(sigma)

        for _ in range(1, len(shape)):
            sigma = sigma.unsqueeze(-1)

        # Generate noise on the same device
        noise = torch.randn(*shape, device=device, generator=generator) * sigma
234
235
        return frames + noise

236
    def add_mask(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
237
238
        """Add mask to frames"""

239
        device = frames.device
240
        h, w = frames.shape[-2:]
241
242
243

        # Generate mask on the same device
        mask = torch.rand(h, w, device=device, generator=generator) > self.mask_rate
244
245
246
247
        return frames * mask

    def process_prev_frames(self, frames: torch.Tensor) -> torch.Tensor:
        """Process previous frames with noise and masking"""
248
249
250
        frames = self.add_noise(frames, torch.Generator(device=frames.device))
        frames = self.add_mask(frames, torch.Generator(device=frames.device))
        return frames
251
252
253
254
255
256
257
258


class AudioProcessor:
    """Handles audio loading and segmentation"""

    def __init__(self, audio_sr: int = 16000, target_fps: int = 16):
        self.audio_sr = audio_sr
        self.target_fps = target_fps
sandy's avatar
sandy committed
259
        self.audio_frame_rate = audio_sr // target_fps
260

sandy's avatar
sandy committed
261
    def load_audio(self, audio_path: str):
262
263
        audio_array, ori_sr = ta.load(audio_path)
        audio_array = ta.functional.resample(audio_array.mean(0), orig_freq=ori_sr, new_freq=self.audio_sr)
sandy's avatar
sandy committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        return audio_array

    def load_multi_person_audio(self, audio_paths: List[str]):
        audio_arrays = []
        max_len = 0

        for audio_path in audio_paths:
            audio_array = self.load_audio(audio_path)
            audio_arrays.append(audio_array)
            max_len = max(max_len, audio_array.numel())

        num_files = len(audio_arrays)
        padded = torch.zeros(num_files, max_len, dtype=torch.float32)

        for i, arr in enumerate(audio_arrays):
            length = arr.numel()
            padded[i, :length] = arr

        return padded
283
284
285

    def get_audio_range(self, start_frame: int, end_frame: int) -> Tuple[int, int]:
        """Calculate audio range for given frame range"""
sandy's avatar
sandy committed
286
        return round(start_frame * self.audio_frame_rate), round(end_frame * self.audio_frame_rate)
287

sandy's avatar
sandy committed
288
289
290
291
292
    def segment_audio(self, audio_array: torch.Tensor, expected_frames: int, max_num_frames: int, prev_frame_length: int = 5) -> List[AudioSegment]:
        """
        Segment audio based on frame requirements
        audio_array is (N, T) tensor
        """
293
        segments = []
sandy's avatar
sandy committed
294
        segments_idx = self.init_segments_idx(expected_frames, max_num_frames, prev_frame_length)
295

sandy's avatar
sandy committed
296
        audio_start, audio_end = self.get_audio_range(0, expected_frames)
sandy's avatar
sandy committed
297
        audio_array_ori = audio_array[:, audio_start:audio_end]
298

sandy's avatar
sandy committed
299
300
        for idx, (start_idx, end_idx) in enumerate(segments_idx):
            audio_start, audio_end = self.get_audio_range(start_idx, end_idx)
sandy's avatar
sandy committed
301
            audio_array = audio_array_ori[:, audio_start:audio_end]
302

sandy's avatar
sandy committed
303
304
            if idx < len(segments_idx) - 1:
                end_idx = segments_idx[idx + 1][0]
sandy's avatar
sandy committed
305
306
307
308
309
            else:  # for last segments
                if audio_array.shape[1] < audio_end - audio_start:
                    padding_len = audio_end - audio_start - audio_array.shape[1]
                    audio_array = F.pad(audio_array, (0, padding_len))
                    # Adjust end_idx to account for the frames added by padding
sandy's avatar
sandy committed
310
                    end_idx = end_idx - padding_len // self.audio_frame_rate
311

sandy's avatar
sandy committed
312
313
            segments.append(AudioSegment(audio_array, start_idx, end_idx))
        del audio_array, audio_array_ori
314
315
        return segments

sandy's avatar
sandy committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    def init_segments_idx(self, total_frame: int, clip_frame: int = 81, overlap_frame: int = 5) -> list[tuple[int, int, int]]:
        """Initialize segment indices with overlap"""
        start_end_list = []
        min_frame = clip_frame
        for start in range(0, total_frame, clip_frame - overlap_frame):
            is_last = start + clip_frame >= total_frame
            end = min(start + clip_frame, total_frame)
            if end - start < min_frame:
                end = start + min_frame
            if ((end - start) - 1) % 4 != 0:
                end = start + (((end - start) - 1) // 4) * 4 + 1
            start_end_list.append((start, end))
            if is_last:
                break
        return start_end_list

332

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
def load_image(image: Union[str, Image.Image], to_rgb: bool = True) -> Image.Image:
    _image = image
    if isinstance(image, str):
        if os.path.isfile(image):
            _image = Image.open(image)
        else:
            raise ValueError(f"Incorrect path. {image} is not a valid path.")
    # orientation transpose
    _image = ImageOps.exif_transpose(_image)
    # convert color space to sRGB
    icc_profile = _image.info.get("icc_profile")
    if icc_profile:
        srgb_profile = ImageCms.createProfile("sRGB")
        input_profile = ImageCms.ImageCmsProfile(io.BytesIO(icc_profile))
        _image = ImageCms.profileToProfile(_image, input_profile, srgb_profile)
    # convert to "RGB"
    if to_rgb:
        _image = _image.convert("RGB")

    return _image


Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
355
@RUNNER_REGISTER("seko_talk")
helloyongyang's avatar
helloyongyang committed
356
357
358
class WanAudioRunner(WanRunner):  # type:ignore
    def __init__(self, config):
        super().__init__(config)
359
        self.prev_frame_length = self.config.get("prev_frame_length", 5)
360
        self.frame_preprocessor = FramePreprocessorTorchVersion()
helloyongyang's avatar
helloyongyang committed
361
362
363

    def init_scheduler(self):
        """Initialize consistency model scheduler"""
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
364
        self.scheduler = EulerScheduler(self.config)
helloyongyang's avatar
helloyongyang committed
365

366
    def read_audio_input(self, audio_path):
sandy's avatar
sandy committed
367
        """Read audio input - handles both single and multi-person scenarios"""
helloyongyang's avatar
helloyongyang committed
368
369
370
        audio_sr = self.config.get("audio_sr", 16000)
        target_fps = self.config.get("target_fps", 16)
        self._audio_processor = AudioProcessor(audio_sr, target_fps)
sandy's avatar
sandy committed
371

LiangLiu's avatar
LiangLiu committed
372
373
374
        if not isinstance(audio_path, str):
            return [], 0, None, 0

sandy's avatar
sandy committed
375
        # Get audio files from person objects or legacy format
376
        audio_files, mask_files = self.get_audio_files_from_audio_path(audio_path)
helloyongyang's avatar
helloyongyang committed
377

sandy's avatar
sandy committed
378
379
380
381
382
383
384
385
386
        # Load audio based on single or multi-person mode
        if len(audio_files) == 1:
            audio_array = self._audio_processor.load_audio(audio_files[0])
            audio_array = audio_array.unsqueeze(0)  # Add batch dimension for consistency
        else:
            audio_array = self._audio_processor.load_multi_person_audio(audio_files)

        video_duration = self.config.get("video_duration", 5)
        audio_len = int(audio_array.shape[1] / audio_sr * target_fps)
yihuiwen's avatar
yihuiwen committed
387
388
389
        if GET_RECORDER_MODE():
            monitor_cli.lightx2v_input_audio_len.observe(audio_len)

helloyongyang's avatar
helloyongyang committed
390
        expected_frames = min(max(1, int(video_duration * target_fps)), audio_len)
gushiqiao's avatar
gushiqiao committed
391
392
        if expected_frames < int(video_duration * target_fps):
            logger.warning(f"Input video duration is greater than actual audio duration, using audio duration instead: audio_duration={audio_len / target_fps}, video_duration={video_duration}")
helloyongyang's avatar
helloyongyang committed
393
394

        # Segment audio
395
        audio_segments = self._audio_processor.segment_audio(audio_array, expected_frames, self.config.get("target_video_length", 81), self.prev_frame_length)
helloyongyang's avatar
helloyongyang committed
396

397
398
399
400
401
402
        # Mask latent for multi-person s2v
        if mask_files is not None:
            mask_latents = [self.process_single_mask(mask_file) for mask_file in mask_files]
            mask_latents = torch.cat(mask_latents, dim=0)
        else:
            mask_latents = None
sandy's avatar
sandy committed
403

404
        return audio_segments, expected_frames, mask_latents, len(audio_files)
sandy's avatar
sandy committed
405

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    def get_audio_files_from_audio_path(self, audio_path):
        if os.path.isdir(audio_path):
            audio_files = []
            mask_files = []
            logger.info(f"audio_path is a directory, loading config.json from {audio_path}")
            audio_config_path = os.path.join(audio_path, "config.json")
            assert os.path.exists(audio_config_path), "config.json not found in audio_path"
            with open(audio_config_path, "r") as f:
                audio_config = json.load(f)
            for talk_object in audio_config["talk_objects"]:
                audio_files.append(os.path.join(audio_path, talk_object["audio"]))
                mask_files.append(os.path.join(audio_path, talk_object["mask"]))
        else:
            logger.info(f"audio_path is a file without mask: {audio_path}")
            audio_files = [audio_path]
            mask_files = None
sandy's avatar
sandy committed
422

423
        return audio_files, mask_files
sandy's avatar
sandy committed
424

425
    def process_single_mask(self, mask_file):
426
        mask_img = load_image(mask_file)
sandy's avatar
sandy committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
        mask_img = TF.to_tensor(mask_img).sub_(0.5).div_(0.5).unsqueeze(0).cuda()

        if mask_img.shape[1] == 3:  # If it is an RGB three-channel image
            mask_img = mask_img[:, :1]  # Only take the first channel

        mask_img, h, w = resize_image(
            mask_img,
            resize_mode=self.config.get("resize_mode", "adaptive"),
            bucket_shape=self.config.get("bucket_shape", None),
            fixed_area=self.config.get("fixed_area", None),
            fixed_shape=self.config.get("fixed_shape", None),
        )

        mask_latent = torch.nn.functional.interpolate(
            mask_img,  # (1, 1, H, W)
            size=(h // 16, w // 16),
            mode="bicubic",
        )

        mask_latent = (mask_latent > 0).to(torch.int8)
        return mask_latent
helloyongyang's avatar
helloyongyang committed
448
449

    def read_image_input(self, img_path):
LiangLiu's avatar
LiangLiu committed
450
451
452
        if isinstance(img_path, Image.Image):
            ref_img = img_path
        else:
453
            ref_img = load_image(img_path)
454
        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(0).to(AI_DEVICE)
helloyongyang's avatar
helloyongyang committed
455

456
457
458
459
460
461
462
        ref_img, h, w = resize_image(
            ref_img,
            resize_mode=self.config.get("resize_mode", "adaptive"),
            bucket_shape=self.config.get("bucket_shape", None),
            fixed_area=self.config.get("fixed_area", None),
            fixed_shape=self.config.get("fixed_shape", None),
        )
463
        logger.info(f"[wan_audio] resize_image target_h: {h}, target_w: {w}")
464
465
        patched_h = h // self.config["vae_stride"][1] // self.config["patch_size"][1]
        patched_w = w // self.config["vae_stride"][2] // self.config["patch_size"][2]
helloyongyang's avatar
helloyongyang committed
466
467
468

        patched_h, patched_w = get_optimal_patched_size_with_sp(patched_h, patched_w, 1)

469
470
        latent_h = patched_h * self.config["patch_size"][1]
        latent_w = patched_w * self.config["patch_size"][2]
helloyongyang's avatar
helloyongyang committed
471

472
473
        latent_shape = self.get_latent_shape_with_lat_hw(latent_h, latent_w)
        target_shape = [latent_h * self.config["vae_stride"][1], latent_w * self.config["vae_stride"][2]]
helloyongyang's avatar
helloyongyang committed
474

475
        logger.info(f"[wan_audio] target_h: {target_shape[0]}, target_w: {target_shape[1]}, latent_h: {latent_h}, latent_w: {latent_w}")
helloyongyang's avatar
helloyongyang committed
476

477
478
        ref_img = torch.nn.functional.interpolate(ref_img, size=(target_shape[0], target_shape[1]), mode="bicubic")
        return ref_img, latent_shape, target_shape
helloyongyang's avatar
helloyongyang committed
479

yihuiwen's avatar
yihuiwen committed
480
481
482
483
484
485
    @ProfilingContext4DebugL1(
        "Run Image Encoder",
        recorder_mode=GET_RECORDER_MODE(),
        metrics_func=monitor_cli.lightx2v_run_img_encode_duration,
        metrics_labels=["WanAudioRunner"],
    )
helloyongyang's avatar
helloyongyang committed
486
    def run_image_encoder(self, first_frame, last_frame=None):
487
488
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.image_encoder = self.load_image_encoder()
helloyongyang's avatar
helloyongyang committed
489
        clip_encoder_out = self.image_encoder.visual([first_frame]).squeeze(0).to(GET_DTYPE()) if self.config.get("use_image_encoder", True) else None
490
491
492
493
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.image_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
494
495
        return clip_encoder_out

yihuiwen's avatar
yihuiwen committed
496
497
498
    @ProfilingContext4DebugL1(
        "Run VAE Encoder",
        recorder_mode=GET_RECORDER_MODE(),
499
        metrics_func=monitor_cli.lightx2v_run_vae_encoder_image_duration,
yihuiwen's avatar
yihuiwen committed
500
501
        metrics_labels=["WanAudioRunner"],
    )
helloyongyang's avatar
helloyongyang committed
502
    def run_vae_encoder(self, img):
503
504
505
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

helloyongyang's avatar
helloyongyang committed
506
        img = rearrange(img, "1 C H W -> 1 C 1 H W")
507
        vae_encoder_out = self.vae_encoder.encode(img.to(GET_DTYPE()))
sandy's avatar
sandy committed
508

509
510
511
512
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
513
514
        return vae_encoder_out

515
    @ProfilingContext4DebugL2("Run Encoders")
516
517
518
519
    def _run_input_encoder_local_s2v(self):
        img, latent_shape, target_shape = self.read_image_input(self.input_info.image_path)
        self.input_info.latent_shape = latent_shape  # Important: set latent_shape in input_info
        self.input_info.target_shape = target_shape  # Important: set target_shape in input_info
helloyongyang's avatar
helloyongyang committed
520
521
        clip_encoder_out = self.run_image_encoder(img) if self.config.get("use_image_encoder", True) else None
        vae_encode_out = self.run_vae_encoder(img)
sandy's avatar
sandy committed
522

523
524
525
526
        audio_segments, expected_frames, person_mask_latens, audio_num = self.read_audio_input(self.input_info.audio_path)
        self.input_info.audio_num = audio_num
        self.input_info.with_mask = person_mask_latens is not None
        text_encoder_output = self.run_text_encoder(self.input_info)
helloyongyang's avatar
helloyongyang committed
527
528
529
530
531
532
533
534
535
536
        torch.cuda.empty_cache()
        gc.collect()
        return {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": {
                "clip_encoder_out": clip_encoder_out,
                "vae_encoder_out": vae_encode_out,
            },
            "audio_segments": audio_segments,
            "expected_frames": expected_frames,
sandy's avatar
sandy committed
537
            "person_mask_latens": person_mask_latens,
helloyongyang's avatar
helloyongyang committed
538
        }
539
540
541

    def prepare_prev_latents(self, prev_video: Optional[torch.Tensor], prev_frame_length: int) -> Optional[Dict[str, torch.Tensor]]:
        """Prepare previous latents for conditioning"""
542
        dtype = GET_DTYPE()
543

544
        tgt_h, tgt_w = self.input_info.target_shape[0], self.input_info.target_shape[1]
545
        prev_frames = torch.zeros((1, 3, self.config["target_video_length"], tgt_h, tgt_w), device=AI_DEVICE)
546

547
548
        if prev_video is not None:
            # Extract and process last frames
549
            last_frames = prev_video[:, :, -prev_frame_length:].clone().to(AI_DEVICE)
550
            if self.config["model_cls"] != "wan2.2_audio":
sandy's avatar
sandy committed
551
                last_frames = self.frame_preprocessor.process_prev_frames(last_frames)
552
            prev_frames[:, :, :prev_frame_length] = last_frames
sandy's avatar
sandy committed
553
554
555
            prev_len = (prev_frame_length - 1) // 4 + 1
        else:
            prev_len = 0
556

557
558
559
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

560
        _, nframe, height, width = self.model.scheduler.latents.shape
561
562
563
564
565
566
        with ProfilingContext4DebugL1(
            "vae_encoder in init run segment",
            recorder_mode=GET_RECORDER_MODE(),
            metrics_func=monitor_cli.lightx2v_run_vae_encoder_pre_latent_duration,
            metrics_labels=["WanAudioRunner"],
        ):
567
            if self.config["model_cls"] == "wan2.2_audio":
568
569
570
571
572
                if prev_video is not None:
                    prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
                else:
                    prev_latents = None
                prev_mask = self.model.scheduler.mask
573
            else:
574
                prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
575

576
            frames_n = (nframe - 1) * 4 + 1
577
            prev_mask = torch.ones((1, frames_n, height, width), device=AI_DEVICE, dtype=dtype)
578
579
            prev_frame_len = max((prev_len - 1) * 4 + 1, 0)
            prev_mask[:, prev_frame_len:] = 0
580
            prev_mask = self._wan_mask_rearrange(prev_mask)
helloyongyang's avatar
fix ci  
helloyongyang committed
581

sandy's avatar
sandy committed
582
583
        if prev_latents is not None:
            if prev_latents.shape[-2:] != (height, width):
584
                logger.warning(f"Size mismatch: prev_latents {prev_latents.shape} vs scheduler latents (H={height}, W={width}). Config tgt_h={tgt_h}, tgt_w={tgt_w}")
sandy's avatar
sandy committed
585
                prev_latents = torch.nn.functional.interpolate(prev_latents, size=(height, width), mode="bilinear", align_corners=False)
586

587
588
589
590
591
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()

sandy's avatar
sandy committed
592
        return {"prev_latents": prev_latents, "prev_mask": prev_mask, "prev_len": prev_len}
593
594
595
596
597
598
599
600
601
602
603

    def _wan_mask_rearrange(self, mask: torch.Tensor) -> torch.Tensor:
        """Rearrange mask for WAN model"""
        if mask.ndim == 3:
            mask = mask[None]
        assert mask.ndim == 4
        _, t, h, w = mask.shape
        assert t == ((t - 1) // 4 * 4 + 1)
        mask_first_frame = torch.repeat_interleave(mask[:, 0:1], repeats=4, dim=1)
        mask = torch.concat([mask_first_frame, mask[:, 1:]], dim=1)
        mask = mask.view(mask.shape[1] // 4, 4, h, w)
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
604
        return mask.transpose(0, 1).contiguous()
605

helloyongyang's avatar
helloyongyang committed
606
607
    def get_video_segment_num(self):
        self.video_segment_num = len(self.inputs["audio_segments"])
wangshankun's avatar
wangshankun committed
608

helloyongyang's avatar
helloyongyang committed
609
610
    def init_run(self):
        super().init_run()
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
611
        self.scheduler.set_audio_adapter(self.audio_adapter)
helloyongyang's avatar
helloyongyang committed
612
        self.prev_video = None
613
614
        if self.input_info.return_result_tensor:
            self.gen_video_final = torch.zeros((self.inputs["expected_frames"], self.input_info.target_shape[0], self.input_info.target_shape[1], 3), dtype=torch.float32, device="cpu")
sandy's avatar
sandy committed
615
            self.cut_audio_final = torch.zeros((self.inputs["expected_frames"] * self._audio_processor.audio_frame_rate), dtype=torch.float32, device="cpu")
LiangLiu's avatar
LiangLiu committed
616
617
        else:
            self.gen_video_final = None
sandy's avatar
sandy committed
618
            self.cut_audio_final = None
wangshankun's avatar
wangshankun committed
619

620
621
622
623
624
625
    @ProfilingContext4DebugL1(
        "Init run segment",
        recorder_mode=GET_RECORDER_MODE(),
        metrics_func=monitor_cli.lightx2v_run_init_run_segment_duration,
        metrics_labels=["WanAudioRunner"],
    )
LiangLiu's avatar
LiangLiu committed
626
    def init_run_segment(self, segment_idx, audio_array=None):
helloyongyang's avatar
helloyongyang committed
627
        self.segment_idx = segment_idx
LiangLiu's avatar
LiangLiu committed
628
        if audio_array is not None:
LiangLiu's avatar
LiangLiu committed
629
630
631
            end_idx = audio_array.shape[0] // self._audio_processor.audio_frame_rate - self.prev_frame_length
            audio_tensor = torch.Tensor(audio_array).float().unsqueeze(0)
            self.segment = AudioSegment(audio_tensor, 0, end_idx)
LiangLiu's avatar
LiangLiu committed
632
633
        else:
            self.segment = self.inputs["audio_segments"][segment_idx]
wangshankun's avatar
wangshankun committed
634

635
636
        self.input_info.seed = self.input_info.seed + segment_idx
        torch.manual_seed(self.input_info.seed)
637
        # logger.info(f"Processing segment {segment_idx + 1}/{self.video_segment_num}, seed: {self.config.seed}")
wangshankun's avatar
wangshankun committed
638

639
640
641
        if (self.config.get("lazy_load", False) or self.config.get("unload_modules", False)) and not hasattr(self, "audio_encoder"):
            self.audio_encoder = self.load_audio_encoder()

sandy's avatar
sandy committed
642
643
644
645
646
647
        features_list = []
        for i in range(self.segment.audio_array.shape[0]):
            feat = self.audio_encoder.infer(self.segment.audio_array[i])
            feat = self.audio_adapter.forward_audio_proj(feat, self.model.scheduler.latents.shape[1])
            features_list.append(feat.squeeze(0))
        audio_features = torch.stack(features_list, dim=0)
PengGao's avatar
PengGao committed
648

helloyongyang's avatar
helloyongyang committed
649
        self.inputs["audio_encoder_output"] = audio_features
650
        self.inputs["previmg_encoder_output"] = self.prepare_prev_latents(self.prev_video, prev_frame_length=self.prev_frame_length)
wangshankun's avatar
wangshankun committed
651

helloyongyang's avatar
helloyongyang committed
652
653
        # Reset scheduler for non-first segments
        if segment_idx > 0:
654
            self.model.scheduler.reset(self.input_info.seed, self.input_info.latent_shape, self.inputs["previmg_encoder_output"])
wangshankun's avatar
wangshankun committed
655

656
657
658
659
660
661
    @ProfilingContext4DebugL1(
        "End run segment",
        recorder_mode=GET_RECORDER_MODE(),
        metrics_func=monitor_cli.lightx2v_run_end_run_segment_duration,
        metrics_labels=["WanAudioRunner"],
    )
662
    def end_run_segment(self, segment_idx):
helloyongyang's avatar
helloyongyang committed
663
        self.gen_video = torch.clamp(self.gen_video, -1, 1).to(torch.float)
sandy's avatar
sandy committed
664
        useful_length = self.segment.end_frame - self.segment.start_frame
LiangLiu's avatar
LiangLiu committed
665
        video_seg = self.gen_video[:, :, :useful_length].cpu()
sandy's avatar
sandy committed
666
667
        audio_seg = self.segment.audio_array[:, : useful_length * self._audio_processor.audio_frame_rate]
        audio_seg = audio_seg.sum(dim=0)  # Multiple audio tracks, mixed into one track
LiangLiu's avatar
LiangLiu committed
668
669
670
671
672
673
674
675
676
677
678
        video_seg = vae_to_comfyui_image_inplace(video_seg)

        # [Warning] Need check whether video segment interpolation works...
        if "video_frame_interpolation" in self.config and self.vfi_model is not None:
            target_fps = self.config["video_frame_interpolation"]["target_fps"]
            logger.info(f"Interpolating frames from {self.config.get('fps', 16)} to {target_fps}")
            video_seg = self.vfi_model.interpolate_frames(
                video_seg,
                source_fps=self.config.get("fps", 16),
                target_fps=target_fps,
            )
LiangLiu's avatar
LiangLiu committed
679

680
681
682
683
684
685
686
687
        if "video_super_resolution" in self.config and self.vsr_model is not None:
            logger.info(f"Applying video super resolution with scale {self.config['video_super_resolution']['scale']}")
            video_seg = self.vsr_model.super_resolve_frames(
                video_seg,
                seed=self.config["video_super_resolution"]["seed"],
                scale=self.config["video_super_resolution"]["scale"],
            )

LiangLiu's avatar
LiangLiu committed
688
689
        if self.va_recorder:
            self.va_recorder.pub_livestream(video_seg, audio_seg)
690
        elif self.input_info.return_result_tensor:
LiangLiu's avatar
LiangLiu committed
691
            self.gen_video_final[self.segment.start_frame : self.segment.end_frame].copy_(video_seg)
sandy's avatar
sandy committed
692
            self.cut_audio_final[self.segment.start_frame * self._audio_processor.audio_frame_rate : self.segment.end_frame * self._audio_processor.audio_frame_rate].copy_(audio_seg)
LiangLiu's avatar
LiangLiu committed
693

helloyongyang's avatar
helloyongyang committed
694
695
696
        # Update prev_video for next iteration
        self.prev_video = self.gen_video

LiangLiu's avatar
LiangLiu committed
697
        del video_seg, audio_seg
helloyongyang's avatar
helloyongyang committed
698
699
        torch.cuda.empty_cache()

LiangLiu's avatar
LiangLiu committed
700
701
702
703
704
705
706
707
708
    def get_rank_and_world_size(self):
        rank = 0
        world_size = 1
        if dist.is_initialized():
            rank = dist.get_rank()
            world_size = dist.get_world_size()
        return rank, world_size

    def init_va_recorder(self):
709
        output_video_path = self.input_info.save_result_path
LiangLiu's avatar
LiangLiu committed
710
711
        self.va_recorder = None
        if isinstance(output_video_path, dict):
LiangLiu's avatar
LiangLiu committed
712
713
714
715
716
717
718
719
            output_video_path = output_video_path["data"]
        logger.info(f"init va_recorder with output_video_path: {output_video_path}")
        rank, world_size = self.get_rank_and_world_size()
        if output_video_path and rank == world_size - 1:
            record_fps = self.config.get("target_fps", 16)
            audio_sr = self.config.get("audio_sr", 16000)
            if "video_frame_interpolation" in self.config and self.vfi_model is not None:
                record_fps = self.config["video_frame_interpolation"]["target_fps"]
LiangLiu's avatar
LiangLiu committed
720
721
722

            whip_shared_path = os.getenv("WHIP_SHARED_LIB", None)
            if whip_shared_path and output_video_path.startswith("http"):
LiangLiu's avatar
LiangLiu committed
723
                self.va_recorder = X264VARecorder(
LiangLiu's avatar
LiangLiu committed
724
725
726
727
728
729
730
731
732
733
734
                    whip_shared_path=whip_shared_path,
                    livestream_url=output_video_path,
                    fps=record_fps,
                    sample_rate=audio_sr,
                )
            else:
                self.va_recorder = VARecorder(
                    livestream_url=output_video_path,
                    fps=record_fps,
                    sample_rate=audio_sr,
                )
LiangLiu's avatar
LiangLiu committed
735
736

    def init_va_reader(self):
LiangLiu's avatar
LiangLiu committed
737
        audio_path = self.input_info.audio_path
LiangLiu's avatar
LiangLiu committed
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
        self.va_reader = None
        if isinstance(audio_path, dict):
            assert audio_path["type"] == "stream", f"unexcept audio_path: {audio_path}"
            rank, world_size = self.get_rank_and_world_size()
            target_fps = self.config.get("target_fps", 16)
            max_num_frames = self.config.get("target_video_length", 81)
            audio_sr = self.config.get("audio_sr", 16000)
            prev_frames = self.config.get("prev_frame_length", 5)
            self.va_reader = VAReader(
                rank=rank,
                world_size=world_size,
                stream_url=audio_path["data"],
                sample_rate=audio_sr,
                segment_duration=max_num_frames / target_fps,
                prev_duration=prev_frames / target_fps,
                target_rank=1,
            )

PengGao's avatar
PengGao committed
756
    def run_main(self):
LiangLiu's avatar
LiangLiu committed
757
758
759
760
761
762
        try:
            self.init_va_recorder()
            self.init_va_reader()
            logger.info(f"init va_recorder: {self.va_recorder} and va_reader: {self.va_reader}")

            if self.va_reader is None:
PengGao's avatar
PengGao committed
763
                return super().run_main()
LiangLiu's avatar
LiangLiu committed
764

LiangLiu's avatar
LiangLiu committed
765
            self.va_reader.start()
LiangLiu's avatar
LiangLiu committed
766
            rank, world_size = self.get_rank_and_world_size()
LiangLiu's avatar
LiangLiu committed
767
768
            if rank == world_size - 1:
                assert self.va_recorder is not None, "va_recorder is required for stream audio input for rank 2"
LiangLiu's avatar
LiangLiu committed
769
770
771
                self.va_recorder.start(self.input_info.target_shape[1], self.input_info.target_shape[0])
            if world_size > 1:
                dist.barrier()
LiangLiu's avatar
LiangLiu committed
772
773

            self.init_run()
LiangLiu's avatar
LiangLiu committed
774
            if self.config.get("compile", False):
775
                self.model.select_graph_for_compile(self.input_info)
LiangLiu's avatar
LiangLiu committed
776
777
778
779
780
781
782
783
            self.video_segment_num = "unlimited"

            fetch_timeout = self.va_reader.segment_duration + 1
            segment_idx = 0
            fail_count = 0
            max_fail_count = 10

            while True:
784
                with ProfilingContext4DebugL1(f"stream segment get audio segment {segment_idx}"):
LiangLiu's avatar
LiangLiu committed
785
786
787
788
789
790
791
792
793
                    self.check_stop()
                    audio_array = self.va_reader.get_audio_segment(timeout=fetch_timeout)
                    if audio_array is None:
                        fail_count += 1
                        logger.warning(f"Failed to get audio chunk {fail_count} times")
                        if fail_count > max_fail_count:
                            raise Exception(f"Failed to get audio chunk {fail_count} times, stop reader")
                        continue

794
                with ProfilingContext4DebugL1(f"stream segment end2end {segment_idx}"):
LiangLiu's avatar
LiangLiu committed
795
796
                    fail_count = 0
                    self.init_run_segment(segment_idx, audio_array)
PengGao's avatar
PengGao committed
797
                    latents = self.run_segment(segment_idx)
LiangLiu's avatar
LiangLiu committed
798
                    self.gen_video = self.run_vae_decoder(latents)
LiangLiu's avatar
LiangLiu committed
799
                    self.end_run_segment(segment_idx)
LiangLiu's avatar
LiangLiu committed
800
801
802
                    segment_idx += 1

        finally:
LiangLiu's avatar
LiangLiu committed
803
            if hasattr(self.model, "inputs"):
LiangLiu's avatar
LiangLiu committed
804
805
806
807
808
                self.end_run()
            if self.va_reader:
                self.va_reader.stop()
                self.va_reader = None
            if self.va_recorder:
LiangLiu's avatar
LiangLiu committed
809
                self.va_recorder.stop()
LiangLiu's avatar
LiangLiu committed
810
811
                self.va_recorder = None

812
    @ProfilingContext4DebugL1("Process after vae decoder")
813
814
    def process_images_after_vae_decoder(self):
        if self.input_info.return_result_tensor:
sandy's avatar
sandy committed
815
            audio_waveform = self.cut_audio_final.unsqueeze(0).unsqueeze(0)
LiangLiu's avatar
LiangLiu committed
816
817
818
            comfyui_audio = {"waveform": audio_waveform, "sample_rate": self._audio_processor.audio_sr}
            return {"video": self.gen_video_final, "audio": comfyui_audio}
        return {"video": None, "audio": None}
819

wangshankun's avatar
wangshankun committed
820
    def load_transformer(self):
821
        """Load transformer with LoRA support"""
822
823
        base_model = WanAudioModel(self.config["model_path"], self.config, self.init_device)
        if self.config.get("lora_configs") and self.config["lora_configs"]:
824
            assert not self.config.get("dit_quantized", False)
wangshankun's avatar
wangshankun committed
825
            lora_wrapper = WanLoraWrapper(base_model)
826
            for lora_config in self.config["lora_configs"]:
827
828
829
830
831
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                lora_name = lora_wrapper.load_lora(lora_path)
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
wangshankun's avatar
wangshankun committed
832

wangshankun's avatar
wangshankun committed
833
834
        return base_model

helloyongyang's avatar
helloyongyang committed
835
    def load_audio_encoder(self):
gushiqiao's avatar
gushiqiao committed
836
        audio_encoder_path = self.config.get("audio_encoder_path", os.path.join(self.config["model_path"], "TencentGameMate-chinese-hubert-large"))
837
        audio_encoder_offload = self.config.get("audio_encoder_cpu_offload", self.config.get("cpu_offload", False))
838
        model = SekoAudioEncoderModel(audio_encoder_path, self.config["audio_sr"], audio_encoder_offload)
helloyongyang's avatar
helloyongyang committed
839
        return model
840

helloyongyang's avatar
helloyongyang committed
841
    def load_audio_adapter(self):
842
843
844
845
        audio_adapter_offload = self.config.get("audio_adapter_cpu_offload", self.config.get("cpu_offload", False))
        if audio_adapter_offload:
            device = torch.device("cpu")
        else:
846
            device = torch.device(AI_DEVICE)
helloyongyang's avatar
helloyongyang committed
847
        audio_adapter = AudioAdapter(
sandy's avatar
sandy committed
848
            attention_head_dim=self.config["dim"] // self.config["num_heads"],
helloyongyang's avatar
helloyongyang committed
849
850
851
852
853
854
855
856
857
            num_attention_heads=self.config["num_heads"],
            base_num_layers=self.config["num_layers"],
            interval=1,
            audio_feature_dim=1024,
            time_freq_dim=256,
            projection_transformer_layers=4,
            mlp_dims=(1024, 1024, 32 * 1024),
            quantized=self.config.get("adapter_quantized", False),
            quant_scheme=self.config.get("adapter_quant_scheme", None),
858
            cpu_offload=audio_adapter_offload,
helloyongyang's avatar
helloyongyang committed
859
        )
860

861
        audio_adapter.to(device)
862
        load_from_rank0 = self.config.get("load_from_rank0", False)
863
        weights_dict = load_weights(self.config["adapter_model_path"], cpu_offload=audio_adapter_offload, remove_key="ca", load_from_rank0=load_from_rank0)
864
        audio_adapter.load_state_dict(weights_dict, strict=False)
helloyongyang's avatar
helloyongyang committed
865
        return audio_adapter.to(dtype=GET_DTYPE())
wangshankun's avatar
wangshankun committed
866

helloyongyang's avatar
helloyongyang committed
867
868
    def load_model(self):
        super().load_model()
869
870
871
        with ProfilingContext4DebugL2("Load audio encoder and adapter"):
            self.audio_encoder = self.load_audio_encoder()
            self.audio_adapter = self.load_audio_adapter()
wangshankun's avatar
wangshankun committed
872

873
874
875
876
877
878
879
880
    def get_latent_shape_with_lat_hw(self, latent_h, latent_w):
        latent_shape = [
            self.config.get("num_channels_latents", 16),
            (self.config["target_video_length"] - 1) // self.config["vae_stride"][0] + 1,
            latent_h,
            latent_w,
        ]
        return latent_shape
sandy's avatar
sandy committed
881
882
883
884
885
886
887
888
889
890
891
892
893


@RUNNER_REGISTER("wan2.2_audio")
class Wan22AudioRunner(WanAudioRunner):
    def __init__(self, config):
        super().__init__(config)

    def load_vae_decoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
894
            vae_device = torch.device(AI_DEVICE)
sandy's avatar
sandy committed
895
        vae_config = {
gushiqiao's avatar
gushiqiao committed
896
            "vae_path": find_torch_model_path(self.config, "vae_path", "Wan2.2_VAE.pth"),
sandy's avatar
sandy committed
897
898
899
900
901
902
903
904
905
906
907
908
909
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        vae_decoder = Wan2_2_VAE(**vae_config)
        return vae_decoder

    def load_vae_encoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
910
            vae_device = torch.device(AI_DEVICE)
sandy's avatar
sandy committed
911
        vae_config = {
gushiqiao's avatar
gushiqiao committed
912
            "vae_path": find_torch_model_path(self.config, "vae_path", "Wan2.2_VAE.pth"),
sandy's avatar
sandy committed
913
914
915
916
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
917
        if self.config.task not in ["i2v", "s2v"]:
sandy's avatar
sandy committed
918
919
920
921
922
923
924
925
            return None
        else:
            return Wan2_2_VAE(**vae_config)

    def load_vae(self):
        vae_encoder = self.load_vae_encoder()
        vae_decoder = self.load_vae_decoder()
        return vae_encoder, vae_decoder