test_transforms.py 79.9 KB
Newer Older
1
import math
2
import os
3
import random
4
import re
5
from functools import partial
6
7
8

import numpy as np
import pytest
9
10
import torch
import torchvision.transforms as transforms
11
import torchvision.transforms.functional as F
12
import torchvision.transforms.functional_tensor as F_t
13
from PIL import Image
14
15
from torch._utils_internal import get_file_path_2

16
17
18
19
20
try:
    import accimage
except ImportError:
    accimage = None

21
22
23
24
25
try:
    from scipy import stats
except ImportError:
    stats = None

26
from common_utils import cycle_over, int_dtypes, float_dtypes, assert_equal
27
28


29
GRACE_HOPPER = get_file_path_2(
30
31
    os.path.dirname(os.path.abspath(__file__)), "assets", "encode_jpeg", "grace_hopper_517x606.jpg"
)
32
33


34
def _get_grayscale_test_image(img, fill=None):
35
36
    img = img.convert("L")
    fill = (fill[0],) if isinstance(fill, tuple) else fill
37
38
39
    return img, fill


40
class TestConvertImageDtype:
41
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(float_dtypes()))
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
    def test_float_to_float(self, input_dtype, output_dtype):
        input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0.0, 1.0

        assert abs(actual_min - desired_min) < 1e-7
        assert abs(actual_max - desired_max) < 1e-7

58
59
    @pytest.mark.parametrize("input_dtype", float_dtypes())
    @pytest.mark.parametrize("output_dtype", int_dtypes())
60
61
62
63
64
65
    def test_float_to_int(self, input_dtype, output_dtype):
        input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        if (input_dtype == torch.float32 and output_dtype in (torch.int32, torch.int64)) or (
66
            input_dtype == torch.float64 and output_dtype == torch.int64
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        ):
            with pytest.raises(RuntimeError):
                transform(input_image)
        else:
            output_image = transform(input_image)
            output_image_script = transform_script(input_image, output_dtype)

            torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

            actual_min, actual_max = output_image.tolist()
            desired_min, desired_max = 0, torch.iinfo(output_dtype).max

            assert actual_min == desired_min
            assert actual_max == desired_max

82
83
    @pytest.mark.parametrize("input_dtype", int_dtypes())
    @pytest.mark.parametrize("output_dtype", float_dtypes())
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    def test_int_to_float(self, input_dtype, output_dtype):
        input_image = torch.tensor((0, torch.iinfo(input_dtype).max), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0.0, 1.0

        assert abs(actual_min - desired_min) < 1e-7
        assert actual_min >= desired_min
        assert abs(actual_max - desired_max) < 1e-7
        assert actual_max <= desired_max

102
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(int_dtypes()))
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    def test_dtype_int_to_int(self, input_dtype, output_dtype):
        input_max = torch.iinfo(input_dtype).max
        input_image = torch.tensor((0, input_max), dtype=input_dtype)
        output_max = torch.iinfo(output_dtype).max

        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(
            output_image_script,
            output_image,
            rtol=0.0,
            atol=1e-6,
119
            msg=f"{output_image_script} vs {output_image}",
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        )

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0, output_max

        # see https://github.com/pytorch/vision/pull/2078#issuecomment-641036236 for details
        if input_max >= output_max:
            error_term = 0
        else:
            error_term = 1 - (torch.iinfo(output_dtype).max + 1) // (torch.iinfo(input_dtype).max + 1)

        assert actual_min == desired_min
        assert actual_max == (desired_max + error_term)

134
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(int_dtypes()))
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    def test_int_to_int_consistency(self, input_dtype, output_dtype):
        input_max = torch.iinfo(input_dtype).max
        input_image = torch.tensor((0, input_max), dtype=input_dtype)

        output_max = torch.iinfo(output_dtype).max
        if output_max <= input_max:
            return

        transform = transforms.ConvertImageDtype(output_dtype)
        inverse_transfrom = transforms.ConvertImageDtype(input_dtype)
        output_image = inverse_transfrom(transform(input_image))

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0, input_max

        assert actual_min == desired_min
        assert actual_max == desired_max
152

153

154
155
156
@pytest.mark.skipif(accimage is None, reason="accimage not available")
class TestAccImage:
    def test_accimage_to_tensor(self):
157
        trans = transforms.PILToTensor()
158

159
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
160
161
162
163
164
165
166
        output = trans(accimage.Image(GRACE_HOPPER))

        torch.testing.assert_close(output, expected_output)

    def test_accimage_pil_to_tensor(self):
        trans = transforms.PILToTensor()

167
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
168
169
170
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
171
        torch.testing.assert_close(output, expected_output)
172
173

    def test_accimage_resize(self):
174
175
176
        trans = transforms.Compose(
            [
                transforms.Resize(256, interpolation=Image.LINEAR),
177
178
                transforms.PILToTensor(),
                transforms.ConvertImageDtype(dtype=torch.float),
179
180
            ]
        )
181
182
183
184

        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

185
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
186
187
188
189
190
191
192
193
194
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
        assert np.abs((expected_output - output).mean()) < 1e-3
        assert (expected_output - output).var() < 1e-5
        # note the high absolute tolerance
        torch.testing.assert_close(output.numpy(), expected_output.numpy(), rtol=1e-5, atol=5e-2)

    def test_accimage_crop(self):
195
        trans = transforms.Compose(
196
            [transforms.CenterCrop(256), transforms.PILToTensor(), transforms.ConvertImageDtype(dtype=torch.float)]
197
        )
198
199
200
201

        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

202
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
203
204
205
206
207
208
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
        torch.testing.assert_close(output, expected_output)


209
class TestToTensor:
210
    @pytest.mark.parametrize("channels", [1, 3, 4])
211
212
213
    def test_to_tensor(self, channels):
        height, width = 4, 4
        trans = transforms.ToTensor()
214
        np_rng = np.random.RandomState(0)
215

216
217
218
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
219
        torch.testing.assert_close(output, input_data)
220

221
        ndarray = np_rng.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
222
223
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1)) / 255.0
224
        torch.testing.assert_close(output.numpy(), expected_output, check_dtype=False)
225

226
        ndarray = np_rng.rand(height, width, channels).astype(np.float32)
227
228
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1))
229
        torch.testing.assert_close(output.numpy(), expected_output, check_dtype=False)
230
231
232

        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
233
        img = transforms.ToPILImage()(input_data.mul(255)).convert("1")
234
        output = trans(img)
235
        torch.testing.assert_close(input_data, output, check_dtype=False)
236
237
238
239

    def test_to_tensor_errors(self):
        height, width = 4, 4
        trans = transforms.ToTensor()
240
        np_rng = np.random.RandomState(0)
241

242
        with pytest.raises(TypeError):
243
            trans(np_rng.rand(1, height, width).tolist())
244

245
        with pytest.raises(ValueError):
246
            trans(np_rng.rand(height))
247

248
        with pytest.raises(ValueError):
249
            trans(np_rng.rand(1, 1, height, width))
250

251
    @pytest.mark.parametrize("dtype", [torch.float16, torch.float, torch.double])
252
    def test_to_tensor_with_other_default_dtypes(self, dtype):
253
        np_rng = np.random.RandomState(0)
254
        current_def_dtype = torch.get_default_dtype()
255

256
        t = transforms.ToTensor()
257
        np_arr = np_rng.randint(0, 255, (32, 32, 3), dtype=np.uint8)
258
        img = Image.fromarray(np_arr)
259

260
261
262
        torch.set_default_dtype(dtype)
        res = t(img)
        assert res.dtype == dtype, f"{res.dtype} vs {dtype}"
263

264
        torch.set_default_dtype(current_def_dtype)
265

266
    @pytest.mark.parametrize("channels", [1, 3, 4])
267
268
269
    def test_pil_to_tensor(self, channels):
        height, width = 4, 4
        trans = transforms.PILToTensor()
270
        np_rng = np.random.RandomState(0)
271

272
273
274
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
275
        torch.testing.assert_close(input_data, output)
276

277
        input_data = np_rng.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
278
279
280
281
282
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
        expected_output = input_data.transpose((2, 0, 1))
        torch.testing.assert_close(output.numpy(), expected_output)

283
        input_data = torch.as_tensor(np_rng.rand(channels, height, width).astype(np.float32))
284
285
286
        img = transforms.ToPILImage()(input_data)  # CHW -> HWC and (* 255).byte()
        output = trans(img)  # HWC -> CHW
        expected_output = (input_data * 255).byte()
287
        torch.testing.assert_close(output, expected_output)
288

289
290
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
291
        img = transforms.ToPILImage()(input_data.mul(255)).convert("1")
292
        output = trans(img).view(torch.uint8).bool().to(torch.uint8)
293
        torch.testing.assert_close(input_data, output)
294

295
296
297
    def test_pil_to_tensor_errors(self):
        height, width = 4, 4
        trans = transforms.PILToTensor()
298
        np_rng = np.random.RandomState(0)
299

300
        with pytest.raises(TypeError):
301
            trans(np_rng.rand(1, height, width).tolist())
302

303
        with pytest.raises(TypeError):
304
            trans(np_rng.rand(1, height, width))
305
306


307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
def test_randomresized_params():
    height = random.randint(24, 32) * 2
    width = random.randint(24, 32) * 2
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    size = 100
    epsilon = 0.05
    min_scale = 0.25
    for _ in range(10):
        scale_min = max(round(random.random(), 2), min_scale)
        scale_range = (scale_min, scale_min + round(random.random(), 2))
        aspect_min = max(round(random.random(), 2), epsilon)
        aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
        randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range)
        i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
        aspect_ratio_obtained = w / h
324
325
326
327
        assert (
            min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained
            and aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon
        ) or aspect_ratio_obtained == 1.0
328
329
330
331
332
333
        assert isinstance(i, int)
        assert isinstance(j, int)
        assert isinstance(h, int)
        assert isinstance(w, int)


334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
@pytest.mark.parametrize(
    "height, width",
    [
        # height, width
        # square image
        (28, 28),
        (27, 27),
        # rectangular image: h < w
        (28, 34),
        (29, 35),
        # rectangular image: h > w
        (34, 28),
        (35, 29),
    ],
)
@pytest.mark.parametrize(
    "osize",
    [
        # single integer
        22,
        27,
        28,
        36,
        # single integer in tuple/list
        [
            22,
        ],
        (27,),
    ],
)
@pytest.mark.parametrize("max_size", (None, 37, 1000))
365
366
367
368
369
370
def test_resize(height, width, osize, max_size):
    img = Image.new("RGB", size=(width, height), color=127)

    t = transforms.Resize(osize, max_size=max_size)
    result = t(img)

371
    msg = f"{height}, {width} - {osize} - {max_size}"
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    osize = osize[0] if isinstance(osize, (list, tuple)) else osize
    # If size is an int, smaller edge of the image will be matched to this number.
    # i.e, if height > width, then image will be rescaled to (size * height / width, size).
    if height < width:
        exp_w, exp_h = (int(osize * width / height), osize)  # (w, h)
        if max_size is not None and max_size < exp_w:
            exp_w, exp_h = max_size, int(max_size * exp_h / exp_w)
        assert result.size == (exp_w, exp_h), msg
    elif width < height:
        exp_w, exp_h = (osize, int(osize * height / width))  # (w, h)
        if max_size is not None and max_size < exp_h:
            exp_w, exp_h = int(max_size * exp_w / exp_h), max_size
        assert result.size == (exp_w, exp_h), msg
    else:
        exp_w, exp_h = (osize, osize)  # (w, h)
        if max_size is not None and max_size < osize:
            exp_w, exp_h = max_size, max_size
        assert result.size == (exp_w, exp_h), msg


392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
@pytest.mark.parametrize(
    "height, width",
    [
        # height, width
        # square image
        (28, 28),
        (27, 27),
        # rectangular image: h < w
        (28, 34),
        (29, 35),
        # rectangular image: h > w
        (34, 28),
        (35, 29),
    ],
)
@pytest.mark.parametrize(
    "osize",
    [
        # two integers sequence output
        [22, 22],
        [22, 28],
        [22, 36],
        [27, 22],
        [36, 22],
        [28, 28],
        [28, 37],
        [37, 27],
        [37, 37],
    ],
)
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
def test_resize_sequence_output(height, width, osize):
    img = Image.new("RGB", size=(width, height), color=127)
    oheight, owidth = osize

    t = transforms.Resize(osize)
    result = t(img)

    assert (owidth, oheight) == result.size


def test_resize_antialias_error():
    osize = [37, 37]
    img = Image.new("RGB", size=(35, 29), color=127)

    with pytest.warns(UserWarning, match=r"Anti-alias option is always applied for PIL Image input"):
        t = transforms.Resize(osize, antialias=False)
        t(img)


441
442
443
444
445
446
447
448
449
450
451
452
453
@pytest.mark.parametrize("height, width", ((32, 64), (64, 32)))
def test_resize_size_equals_small_edge_size(height, width):
    # Non-regression test for https://github.com/pytorch/vision/issues/5405
    # max_size used to be ignored if size == small_edge_size
    max_size = 40
    img = Image.new("RGB", size=(width, height), color=127)

    small_edge = min(height, width)
    t = transforms.Resize(small_edge, max_size=max_size)
    result = t(img)
    assert max(result.size) == max_size


454
455
456
457
class TestPad:
    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
458
        img = torch.ones(3, height, width, dtype=torch.uint8)
459
460
        padding = random.randint(1, 20)
        fill = random.randint(1, 50)
461
462
463
464
        result = transforms.Compose(
            [
                transforms.ToPILImage(),
                transforms.Pad(padding, fill=fill),
465
                transforms.PILToTensor(),
466
467
            ]
        )(img)
468
469
470
471
472
473
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
        # check that all elements in the padded region correspond
        # to the pad value
        h_padded = result[:, :padding, :]
        w_padded = result[:, :, :padding]
474
475
        torch.testing.assert_close(h_padded, torch.full_like(h_padded, fill_value=fill), rtol=0.0, atol=0.0)
        torch.testing.assert_close(w_padded, torch.full_like(w_padded, fill_value=fill), rtol=0.0, atol=0.0)
476
        pytest.raises(ValueError, transforms.Pad(padding, fill=(1, 2)), transforms.ToPILImage()(img))
477
478
479
480
481
482

    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

483
        padding = tuple(random.randint(1, 20) for _ in range(2))
484
485
486
        output = transforms.Pad(padding)(img)
        assert output.size == (width + padding[0] * 2, height + padding[1] * 2)

487
        padding = tuple(random.randint(1, 20) for _ in range(4))
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
        output = transforms.Pad(padding)(img)
        assert output.size[0] == width + padding[0] + padding[2]
        assert output.size[1] == height + padding[1] + padding[3]

        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
        img = torch.zeros(3, 27, 27).byte()
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
503
        edge_padded_img = F.pad(img, 3, padding_mode="edge")
504
505
506
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
507
        assert_equal(edge_middle_slice, np.asarray([200, 200, 200, 200, 1, 0], dtype=np.uint8))
508
        assert transforms.PILToTensor()(edge_padded_img).size() == (3, 35, 35)
509
510

        # Pad 3 to left/right, 2 to top/bottom
511
        reflect_padded_img = F.pad(img, (3, 2), padding_mode="reflect")
512
513
514
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
515
        assert_equal(reflect_middle_slice, np.asarray([0, 0, 1, 200, 1, 0], dtype=np.uint8))
516
        assert transforms.PILToTensor()(reflect_padded_img).size() == (3, 33, 35)
517
518

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
519
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode="symmetric")
520
521
522
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
523
        assert_equal(symmetric_middle_slice, np.asarray([0, 1, 200, 200, 1, 0], dtype=np.uint8))
524
        assert transforms.PILToTensor()(symmetric_padded_img).size() == (3, 32, 34)
525
526
527
528

        # Check negative padding explicitly for symmetric case, since it is not
        # implemented for tensor case to compare to
        # Crop 1 to left, pad 2 to top, pad 3 to right, crop 3 to bottom
529
        symmetric_padded_img_neg = F.pad(img, (-1, 2, 3, -3), padding_mode="symmetric")
530
531
        symmetric_neg_middle_left = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][:3]
        symmetric_neg_middle_right = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][-4:]
532
533
        assert_equal(symmetric_neg_middle_left, np.asarray([1, 0, 0], dtype=np.uint8))
        assert_equal(symmetric_neg_middle_right, np.asarray([200, 200, 0, 0], dtype=np.uint8))
534
        assert transforms.PILToTensor()(symmetric_padded_img_neg).size() == (3, 28, 31)
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

    def test_pad_raises_with_invalid_pad_sequence_len(self):
        with pytest.raises(ValueError):
            transforms.Pad(())

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3))

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

    def test_pad_with_mode_F_images(self):
        pad = 2
        transform = transforms.Pad(pad)

        img = Image.new("F", (10, 10))
        padded_img = transform(img)
552
        assert_equal(padded_img.size, [edge_size + 2 * pad for edge_size in img.size])
553
554


555
@pytest.mark.parametrize(
556
    "fn, trans, kwargs",
557
558
559
560
561
562
563
    [
        (F.invert, transforms.RandomInvert, {}),
        (F.posterize, transforms.RandomPosterize, {"bits": 4}),
        (F.solarize, transforms.RandomSolarize, {"threshold": 192}),
        (F.adjust_sharpness, transforms.RandomAdjustSharpness, {"sharpness_factor": 2.0}),
        (F.autocontrast, transforms.RandomAutocontrast, {}),
        (F.equalize, transforms.RandomEqualize, {}),
564
565
566
        (F.vflip, transforms.RandomVerticalFlip, {}),
        (F.hflip, transforms.RandomHorizontalFlip, {}),
        (partial(F.to_grayscale, num_output_channels=3), transforms.RandomGrayscale, {}),
567
568
    ],
)
569
570
571
572
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("p", (0, 1))
def test_randomness(fn, trans, kwargs, seed, p):
    torch.manual_seed(seed)
573
574
    img = transforms.ToPILImage()(torch.rand(3, 16, 18))

575
576
    expected_transformed_img = fn(img, **kwargs)
    randomly_transformed_img = trans(p=p, **kwargs)(img)
577

578
579
580
581
    if p == 0:
        assert randomly_transformed_img == img
    elif p == 1:
        assert randomly_transformed_img == expected_transformed_img
582

583
    trans(**kwargs).__repr__()
584
585


586
587
588
589
590
591
592
593
594
def test_autocontrast_equal_minmax():
    img_tensor = torch.tensor([[[10]], [[128]], [[245]]], dtype=torch.uint8).expand(3, 32, 32)
    img_pil = F.to_pil_image(img_tensor)

    img_tensor = F.autocontrast(img_tensor)
    img_pil = F.autocontrast(img_pil)
    torch.testing.assert_close(img_tensor, F.pil_to_tensor(img_pil))


595
596
597
598
class TestToPil:
    def _get_1_channel_tensor_various_types():
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
        expected_output = img_data_float.mul(255).int().float().div(255).numpy()
599
        yield img_data_float, expected_output, "L"
600

601
602
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        expected_output = img_data_byte.float().div(255.0).numpy()
603
        yield img_data_byte, expected_output, "L"
604

605
606
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        expected_output = img_data_short.numpy()
607
        yield img_data_short, expected_output, "I;16"
608

609
610
        img_data_int = torch.IntTensor(1, 4, 4).random_()
        expected_output = img_data_int.numpy()
611
        yield img_data_int, expected_output, "I"
612

613
614
615
    def _get_2d_tensor_various_types():
        img_data_float = torch.Tensor(4, 4).uniform_()
        expected_output = img_data_float.mul(255).int().float().div(255).numpy()
616
        yield img_data_float, expected_output, "L"
617

618
619
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        expected_output = img_data_byte.float().div(255.0).numpy()
620
        yield img_data_byte, expected_output, "L"
621

622
623
        img_data_short = torch.ShortTensor(4, 4).random_()
        expected_output = img_data_short.numpy()
624
        yield img_data_short, expected_output, "I;16"
625

626
627
        img_data_int = torch.IntTensor(4, 4).random_()
        expected_output = img_data_int.numpy()
628
        yield img_data_int, expected_output, "I"
629

630
631
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize("img_data, expected_output, expected_mode", _get_1_channel_tensor_various_types())
632
633
634
    def test_1_channel_tensor_to_pil_image(self, with_mode, img_data, expected_output, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        to_tensor = transforms.ToTensor()
635

636
        img = transform(img_data)
637
        assert img.mode == expected_mode
638
        torch.testing.assert_close(expected_output, to_tensor(img).numpy())
639

640
641
642
    def test_1_channel_float_tensor_to_pil_image(self):
        img_data = torch.Tensor(1, 4, 4).uniform_()
        # 'F' mode for torch.FloatTensor
643
644
        img_F_mode = transforms.ToPILImage(mode="F")(img_data)
        assert img_F_mode.mode == "F"
645
        torch.testing.assert_close(
646
            np.array(Image.fromarray(img_data.squeeze(0).numpy(), mode="F")), np.array(img_F_mode)
647
        )
648

649
650
651
652
653
654
655
656
657
658
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize(
        "img_data, expected_mode",
        [
            (torch.Tensor(4, 4, 1).uniform_().numpy(), "F"),
            (torch.ByteTensor(4, 4, 1).random_(0, 255).numpy(), "L"),
            (torch.ShortTensor(4, 4, 1).random_().numpy(), "I;16"),
            (torch.IntTensor(4, 4, 1).random_().numpy(), "I"),
        ],
    )
659
660
661
    def test_1_channel_ndarray_to_pil_image(self, with_mode, img_data, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        img = transform(img_data)
662
        assert img.mode == expected_mode
663
664
665
        # note: we explicitly convert img's dtype because pytorch doesn't support uint16
        # and otherwise assert_close wouldn't be able to construct a tensor from the uint16 array
        torch.testing.assert_close(img_data[:, :, 0], np.asarray(img).astype(img_data.dtype))
666

667
    @pytest.mark.parametrize("expected_mode", [None, "LA"])
668
669
    def test_2_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
670

671
672
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
673
            assert img.mode == "LA"  # default should assume LA
674
675
676
677
678
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(2):
679
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
680
681
682
683
684
685
686

    def test_2_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        transforms.ToPILImage().__repr__()

        # should raise if we try a mode for 4 or 1 or 3 channel images
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
687
            transforms.ToPILImage(mode="RGBA")(img_data)
688
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
689
            transforms.ToPILImage(mode="P")(img_data)
690
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
691
            transforms.ToPILImage(mode="RGB")(img_data)
692

693
    @pytest.mark.parametrize("expected_mode", [None, "LA"])
694
695
696
697
698
    def test_2_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
699
            assert img.mode == "LA"  # default should assume LA
700
701
702
703
704
705
706
707
708
709
710
711
712
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode

        split = img.split()
        for i in range(2):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_2_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(2, 4, 4).uniform_()

        # should raise if we try a mode for 4 or 1 or 3 channel images
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
713
            transforms.ToPILImage(mode="RGBA")(img_data)
714
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
715
            transforms.ToPILImage(mode="P")(img_data)
716
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
717
            transforms.ToPILImage(mode="RGB")(img_data)
718

719
720
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize("img_data, expected_output, expected_mode", _get_2d_tensor_various_types())
721
722
723
724
725
    def test_2d_tensor_to_pil_image(self, with_mode, img_data, expected_output, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        to_tensor = transforms.ToTensor()

        img = transform(img_data)
726
        assert img.mode == expected_mode
727
728
        torch.testing.assert_close(expected_output, to_tensor(img).numpy()[0])

729
730
731
732
733
734
735
736
737
738
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize(
        "img_data, expected_mode",
        [
            (torch.Tensor(4, 4).uniform_().numpy(), "F"),
            (torch.ByteTensor(4, 4).random_(0, 255).numpy(), "L"),
            (torch.ShortTensor(4, 4).random_().numpy(), "I;16"),
            (torch.IntTensor(4, 4).random_().numpy(), "I"),
        ],
    )
739
740
741
    def test_2d_ndarray_to_pil_image(self, with_mode, img_data, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        img = transform(img_data)
742
        assert img.mode == expected_mode
743
        np.testing.assert_allclose(img_data, img)
744

745
    @pytest.mark.parametrize("expected_mode", [None, "RGB", "HSV", "YCbCr"])
746
747
748
    def test_3_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
749

750
751
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
752
            assert img.mode == "RGB"  # default should assume RGB
753
754
755
756
757
758
759
760
761
762
763
764
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(3):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_3_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(3, 4, 4).uniform_()
        error_message_3d = r"Only modes \['RGB', 'YCbCr', 'HSV'\] are supported for 3D inputs"
        # should raise if we try a mode for 4 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_3d):
765
            transforms.ToPILImage(mode="RGBA")(img_data)
766
        with pytest.raises(ValueError, match=error_message_3d):
767
            transforms.ToPILImage(mode="P")(img_data)
768
        with pytest.raises(ValueError, match=error_message_3d):
769
            transforms.ToPILImage(mode="LA")(img_data)
770

771
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
772
773
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

774
    @pytest.mark.parametrize("expected_mode", [None, "RGB", "HSV", "YCbCr"])
775
776
777
778
779
    def test_3_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
780
            assert img.mode == "RGB"  # default should assume RGB
781
782
783
784
785
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(3):
786
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
787
788
789
790
791
792
793
794
795
796

    def test_3_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()

        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

        error_message_3d = r"Only modes \['RGB', 'YCbCr', 'HSV'\] are supported for 3D inputs"
        # should raise if we try a mode for 4 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_3d):
797
            transforms.ToPILImage(mode="RGBA")(img_data)
798
        with pytest.raises(ValueError, match=error_message_3d):
799
            transforms.ToPILImage(mode="P")(img_data)
800
        with pytest.raises(ValueError, match=error_message_3d):
801
            transforms.ToPILImage(mode="LA")(img_data)
802

803
    @pytest.mark.parametrize("expected_mode", [None, "RGBA", "CMYK", "RGBX"])
804
805
806
807
808
809
    def test_4_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(4, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
810
            assert img.mode == "RGBA"  # default should assume RGBA
811
812
813
814
815
816
817
818
819
820
821
822
823
824
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode

        split = img.split()
        for i in range(4):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_4_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(4, 4, 4).uniform_()

        error_message_4d = r"Only modes \['RGBA', 'CMYK', 'RGBX'\] are supported for 4D inputs"
        # should raise if we try a mode for 3 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_4d):
825
            transforms.ToPILImage(mode="RGB")(img_data)
826
        with pytest.raises(ValueError, match=error_message_4d):
827
            transforms.ToPILImage(mode="P")(img_data)
828
        with pytest.raises(ValueError, match=error_message_4d):
829
            transforms.ToPILImage(mode="LA")(img_data)
830

831
    @pytest.mark.parametrize("expected_mode", [None, "RGBA", "CMYK", "RGBX"])
832
833
834
835
836
    def test_4_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
837
            assert img.mode == "RGBA"  # default should assume RGBA
838
839
840
841
842
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(4):
843
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
844
845
846
847
848
849
850

    def test_4_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()

        error_message_4d = r"Only modes \['RGBA', 'CMYK', 'RGBX'\] are supported for 4D inputs"
        # should raise if we try a mode for 3 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_4d):
851
            transforms.ToPILImage(mode="RGB")(img_data)
852
        with pytest.raises(ValueError, match=error_message_4d):
853
            transforms.ToPILImage(mode="P")(img_data)
854
        with pytest.raises(ValueError, match=error_message_4d):
855
            transforms.ToPILImage(mode="LA")(img_data)
856
857
858

    def test_ndarray_bad_types_to_pil_image(self):
        trans = transforms.ToPILImage()
859
        reg_msg = r"Input type \w+ is not supported"
860
861
862
863
864
865
866
867
868
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.int64))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.uint16))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.uint32))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.float64))

869
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
870
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))
871
        with pytest.raises(ValueError, match=r"pic should not have > 4 channels. Got \d+ channels."):
872
873
874
            transforms.ToPILImage()(np.ones([4, 4, 6]))

    def test_tensor_bad_types_to_pil_image(self):
875
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
876
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))
877
        with pytest.raises(ValueError, match=r"pic should not have > 4 channels. Got \d+ channels."):
878
            transforms.ToPILImage()(torch.ones(6, 4, 4))
879
880


881
882
883
884
def test_adjust_brightness():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
885
    x_pil = Image.fromarray(x_np, mode="RGB")
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910

    # test 0
    y_pil = F.adjust_brightness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_brightness(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_brightness(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_contrast():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
911
    x_pil = Image.fromarray(x_np, mode="RGB")
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

    # test 0
    y_pil = F.adjust_contrast(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_contrast(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_contrast(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


933
@pytest.mark.skipif(Image.__version__ >= "7", reason="Temporarily disabled")
934
935
936
937
def test_adjust_saturation():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
938
    x_pil = Image.fromarray(x_np, mode="RGB")
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963

    # test 0
    y_pil = F.adjust_saturation(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_saturation(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_saturation(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_hue():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
964
    x_pil = Image.fromarray(x_np, mode="RGB")
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994

    with pytest.raises(ValueError):
        F.adjust_hue(x_pil, -0.7)
        F.adjust_hue(x_pil, 1)

    # test 0: almost same as x_data but not exact.
    # probably because hsv <-> rgb floating point ops
    y_pil = F.adjust_hue(x_pil, 0)
    y_np = np.array(y_pil)
    y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 1
    y_pil = F.adjust_hue(x_pil, 0.25)
    y_np = np.array(y_pil)
    y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_hue(x_pil, -0.25)
    y_np = np.array(y_pil)
    y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_sharpness():
    x_shape = [4, 4, 3]
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
    x_data = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        0,
        0,
        65,
        108,
        101,
        120,
        97,
        110,
        100,
        101,
        114,
        32,
        86,
        114,
        121,
        110,
        105,
        111,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1045
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1046
    x_pil = Image.fromarray(x_np, mode="RGB")
1047
1048
1049
1050
1051
1052
1053
1054
1055

    # test 0
    y_pil = F.adjust_sharpness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_sharpness(x_pil, 0.5)
    y_np = np.array(y_pil)
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
    y_ans = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        30,
        30,
        74,
        103,
        96,
        114,
        97,
        110,
        100,
        101,
        114,
        32,
        81,
        103,
        108,
        102,
        101,
        107,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1106
1107
1108
1109
1110
1111
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil)
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
    y_ans = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        0,
        0,
        46,
        118,
        111,
        132,
        97,
        110,
        100,
        101,
        114,
        32,
        95,
        135,
        146,
        126,
        112,
        119,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1162
1163
1164
1165
1166
1167
1168
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 3
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1169
    x_pil = Image.fromarray(x_np, mode="RGB")
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
    x_th = torch.tensor(x_np.transpose(2, 0, 1))
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil).transpose(2, 0, 1)
    y_th = F.adjust_sharpness(x_th, 2)
    torch.testing.assert_close(y_np, y_th.numpy())


def test_adjust_gamma():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1181
    x_pil = Image.fromarray(x_np, mode="RGB")
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206

    # test 0
    y_pil = F.adjust_gamma(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_gamma(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 35, 57, 117, 186, 241, 97, 45, 245, 152, 255, 16]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_gamma(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 11, 71, 201, 5, 0, 215, 31, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjusts_L_mode():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1207
    x_rgb = Image.fromarray(x_np, mode="RGB")
1208

1209
1210
1211
1212
1213
1214
1215
    x_l = x_rgb.convert("L")
    assert F.adjust_brightness(x_l, 2).mode == "L"
    assert F.adjust_saturation(x_l, 2).mode == "L"
    assert F.adjust_contrast(x_l, 2).mode == "L"
    assert F.adjust_hue(x_l, 0.4).mode == "L"
    assert F.adjust_sharpness(x_l, 2).mode == "L"
    assert F.adjust_gamma(x_l, 0.5).mode == "L"
1216
1217


1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
def test_rotate():
    x = np.zeros((100, 100, 3), dtype=np.uint8)
    x[40, 40] = [255, 255, 255]

    with pytest.raises(TypeError, match=r"img should be PIL Image"):
        F.rotate(x, 10)

    img = F.to_pil_image(x)

    result = F.rotate(img, 45)
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [49, 50])
    assert all(x in c for x in [36])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, expand=True)
    assert result.size == (142, 142)
    r, c, ch = np.where(result)
    assert all(x in r for x in [70, 71])
    assert all(x in c for x in [57])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, center=(40, 40))
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [40])
    assert all(x in c for x in [40])
    assert all(x in ch for x in [0, 1, 2])

    result_a = F.rotate(img, 90)
    result_b = F.rotate(img, -270)

    assert_equal(np.array(result_a), np.array(result_b))


1254
@pytest.mark.parametrize("mode", ["L", "RGB", "F"])
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
def test_rotate_fill(mode):
    img = F.to_pil_image(np.ones((100, 100, 3), dtype=np.uint8) * 255, "RGB")

    num_bands = len(mode)
    wrong_num_bands = num_bands + 1
    fill = 127

    img_conv = img.convert(mode)
    img_rot = F.rotate(img_conv, 45.0, fill=fill)
    pixel = img_rot.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    with pytest.raises(ValueError):
        F.rotate(img_conv, 45.0, fill=tuple([fill] * wrong_num_bands))


def test_gaussian_blur_asserts():
    np_img = np.ones((100, 100, 3), dtype=np.uint8) * 255
    img = F.to_pil_image(np_img, "RGB")

    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3])
    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3, 3, 3])
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur([3, 3, 3])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [4, 4])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([4, 4])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [-3, -3])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([-3, -3])

    with pytest.raises(ValueError, match=r"If sigma is a sequence, its length should be 2"):
        F.gaussian_blur(img, 3, [1, 1, 1])
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, [1, 1, 1])

    with pytest.raises(ValueError, match=r"sigma should have positive values"):
        F.gaussian_blur(img, 3, -1.0)
    with pytest.raises(ValueError, match=r"If sigma is a single number, it must be positive"):
        transforms.GaussianBlur(3, -1.0)

    with pytest.raises(TypeError, match=r"kernel_size should be int or a sequence of integers"):
        F.gaussian_blur(img, "kernel_size_string")
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur("kernel_size_string")

    with pytest.raises(TypeError, match=r"sigma should be either float or sequence of floats"):
        F.gaussian_blur(img, 3, "sigma_string")
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, "sigma_string")


def test_lambda():
    trans = transforms.Lambda(lambda x: x.add(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, torch.add(x, 10))

    trans = transforms.Lambda(lambda x: x.add_(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, x)

    # Checking if Lambda can be printed as string
    trans.__repr__()


1331
1332
1333
1334
1335
1336
def test_to_grayscale():
    """Unit tests for grayscale transform"""

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1337
1338
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1339
1340
1341
1342
1343
1344
1345
    gray_np = np.array(x_pil_2)

    # Test Set: Grayscale an image with desired number of output channels
    # Case 1: RGB -> 1 channel grayscale
    trans1 = transforms.Grayscale(num_output_channels=1)
    gray_pil_1 = trans1(x_pil)
    gray_np_1 = np.array(gray_pil_1)
1346
1347
    assert gray_pil_1.mode == "L", "mode should be L"
    assert gray_np_1.shape == tuple(x_shape[0:2]), "should be 1 channel"
1348
1349
1350
1351
1352
1353
    assert_equal(gray_np, gray_np_1)

    # Case 2: RGB -> 3 channel grayscale
    trans2 = transforms.Grayscale(num_output_channels=3)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
1354
1355
    assert gray_pil_2.mode == "RGB", "mode should be RGB"
    assert gray_np_2.shape == tuple(x_shape), "should be 3 channel"
1356
1357
    assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
    assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
1358
    assert_equal(gray_np, gray_np_2[:, :, 0])
1359
1360
1361
1362
1363

    # Case 3: 1 channel grayscale -> 1 channel grayscale
    trans3 = transforms.Grayscale(num_output_channels=1)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
1364
1365
    assert gray_pil_3.mode == "L", "mode should be L"
    assert gray_np_3.shape == tuple(x_shape[0:2]), "should be 1 channel"
1366
1367
1368
1369
1370
1371
    assert_equal(gray_np, gray_np_3)

    # Case 4: 1 channel grayscale -> 3 channel grayscale
    trans4 = transforms.Grayscale(num_output_channels=3)
    gray_pil_4 = trans4(x_pil_2)
    gray_np_4 = np.array(gray_pil_4)
1372
1373
    assert gray_pil_4.mode == "RGB", "mode should be RGB"
    assert gray_np_4.shape == tuple(x_shape), "should be 3 channel"
1374
1375
    assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
    assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
1376
    assert_equal(gray_np, gray_np_4[:, :, 0])
1377
1378
1379
1380
1381

    # Checking if Grayscale can be printed as string
    trans4.__repr__()


1382
1383
1384
1385
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("p", (0, 1))
def test_random_apply(p, seed):
    torch.manual_seed(seed)
1386
    random_apply_transform = transforms.RandomApply([transforms.RandomRotation((45, 50))], p=p)
1387
1388
1389
1390
1391
1392
    img = transforms.ToPILImage()(torch.rand(3, 30, 40))
    out = random_apply_transform(img)
    if p == 0:
        assert out == img
    elif p == 1:
        assert out != img
1393

1394
1395
    # Checking if RandomApply can be printed as string
    random_apply_transform.__repr__()
1396
1397


1398
1399
1400
1401
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("proba_passthrough", (0, 1))
def test_random_choice(proba_passthrough, seed):
    random.seed(seed)  # RandomChoice relies on python builtin random.choice, not pytorch
1402

1403
    random_choice_transform = transforms.RandomChoice(
1404
        [
1405
            lambda x: x,  # passthrough
1406
            transforms.RandomRotation((45, 50)),
1407
        ],
1408
        p=[proba_passthrough, 1 - proba_passthrough],
1409
1410
    )

1411
1412
1413
1414
1415
1416
    img = transforms.ToPILImage()(torch.rand(3, 30, 40))
    out = random_choice_transform(img)
    if proba_passthrough == 1:
        assert out == img
    elif proba_passthrough == 0:
        assert out != img
1417
1418
1419
1420
1421

    # Checking if RandomChoice can be printed as string
    random_choice_transform.__repr__()


1422
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1423
1424
1425
def test_random_order():
    random_state = random.getstate()
    random.seed(42)
1426
    random_order_transform = transforms.RandomOrder([transforms.Resize(20), transforms.CenterCrop(10)])
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
    img = transforms.ToPILImage()(torch.rand(3, 25, 25))
    num_samples = 250
    num_normal_order = 0
    resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
    for _ in range(num_samples):
        out = random_order_transform(img)
        if out == resize_crop_out:
            num_normal_order += 1

    p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomOrder can be printed as string
    random_order_transform.__repr__()


1444
1445
1446
1447
1448
1449
1450
1451
def test_linear_transformation():
    num_samples = 1000
    x = torch.randn(num_samples, 3, 10, 10)
    flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
    # compute principal components
    sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
    u, s, _ = np.linalg.svd(sigma.numpy())
    zca_epsilon = 1e-10  # avoid division by 0
1452
    d = torch.Tensor(np.diag(1.0 / np.sqrt(s + zca_epsilon)))
1453
1454
    u = torch.Tensor(u)
    principal_components = torch.mm(torch.mm(u, d), u.t())
1455
    mean_vector = torch.sum(flat_x, dim=0) / flat_x.size(0)
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
    # initialize whitening matrix
    whitening = transforms.LinearTransformation(principal_components, mean_vector)
    # estimate covariance and mean using weak law of large number
    num_features = flat_x.size(1)
    cov = 0.0
    mean = 0.0
    for i in x:
        xwhite = whitening(i)
        xwhite = xwhite.view(1, -1).numpy()
        cov += np.dot(xwhite, xwhite.T) / num_features
        mean += np.sum(xwhite) / num_features
    # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
1468
1469
1470
1471
1472
1473
    torch.testing.assert_close(
        cov / num_samples, np.identity(1), rtol=2e-3, atol=1e-8, check_dtype=False, msg="cov not close to 1"
    )
    torch.testing.assert_close(
        mean / num_samples, 0, rtol=1e-3, atol=1e-8, check_dtype=False, msg="mean not close to 0"
    )
1474
1475
1476
1477
1478

    # Checking if LinearTransformation can be printed as string
    whitening.__repr__()


1479
@pytest.mark.parametrize("dtype", int_dtypes())
1480
1481
1482
1483
1484
1485
1486
1487
1488
def test_max_value(dtype):

    assert F_t._max_value(dtype) == torch.iinfo(dtype).max
    # remove float testing as it can lead to errors such as
    # runtime error: 5.7896e+76 is outside the range of representable values of type 'float'
    # for dtype in float_dtypes():
    # self.assertGreater(F_t._max_value(dtype), torch.finfo(dtype).max)


1489
1490
@pytest.mark.parametrize("should_vflip", [True, False])
@pytest.mark.parametrize("single_dim", [True, False])
1491
1492
1493
1494
1495
1496
1497
1498
1499
def test_ten_crop(should_vflip, single_dim):
    to_pil_image = transforms.ToPILImage()
    h = random.randint(5, 25)
    w = random.randint(5, 25)
    crop_h = random.randint(1, h)
    crop_w = random.randint(1, w)
    if single_dim:
        crop_h = min(crop_h, crop_w)
        crop_w = crop_h
1500
        transform = transforms.TenCrop(crop_h, vertical_flip=should_vflip)
1501
1502
        five_crop = transforms.FiveCrop(crop_h)
    else:
1503
        transform = transforms.TenCrop((crop_h, crop_w), vertical_flip=should_vflip)
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
        five_crop = transforms.FiveCrop((crop_h, crop_w))

    img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
    results = transform(img)
    expected_output = five_crop(img)

    # Checking if FiveCrop and TenCrop can be printed as string
    transform.__repr__()
    five_crop.__repr__()

    if should_vflip:
        vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
        expected_output += five_crop(vflipped_img)
    else:
        hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
        expected_output += five_crop(hflipped_img)

    assert len(results) == 10
    assert results == expected_output


1525
@pytest.mark.parametrize("single_dim", [True, False])
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
def test_five_crop(single_dim):
    to_pil_image = transforms.ToPILImage()
    h = random.randint(5, 25)
    w = random.randint(5, 25)
    crop_h = random.randint(1, h)
    crop_w = random.randint(1, w)
    if single_dim:
        crop_h = min(crop_h, crop_w)
        crop_w = crop_h
        transform = transforms.FiveCrop(crop_h)
    else:
        transform = transforms.FiveCrop((crop_h, crop_w))

    img = torch.FloatTensor(3, h, w).uniform_()

    results = transform(to_pil_image(img))

    assert len(results) == 5
    for crop in results:
        assert crop.size == (crop_w, crop_h)

    to_pil_image = transforms.ToPILImage()
    tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
1549
1550
1551
    tr = to_pil_image(img[:, 0:crop_h, w - crop_w :])
    bl = to_pil_image(img[:, h - crop_h :, 0:crop_w])
    br = to_pil_image(img[:, h - crop_h :, w - crop_w :])
1552
1553
1554
1555
1556
    center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
    expected_output = (tl, tr, bl, br, center)
    assert results == expected_output


1557
1558
1559
@pytest.mark.parametrize("policy", transforms.AutoAugmentPolicy)
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("grayscale", [True, False])
1560
def test_autoaugment(policy, fill, grayscale):
1561
1562
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1563
1564
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1565
1566
1567
1568
1569
1570
    transform = transforms.AutoAugment(policy=policy, fill=fill)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1571
1572
1573
1574
@pytest.mark.parametrize("num_ops", [1, 2, 3])
@pytest.mark.parametrize("magnitude", [7, 9, 11])
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("grayscale", [True, False])
1575
def test_randaugment(num_ops, magnitude, fill, grayscale):
1576
1577
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1578
1579
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1580
1581
1582
1583
1584
1585
    transform = transforms.RandAugment(num_ops=num_ops, magnitude=magnitude, fill=fill)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1586
1587
1588
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("num_magnitude_bins", [10, 13, 30])
@pytest.mark.parametrize("grayscale", [True, False])
1589
def test_trivialaugmentwide(fill, num_magnitude_bins, grayscale):
1590
1591
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1592
1593
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1594
1595
1596
1597
1598
1599
    transform = transforms.TrivialAugmentWide(fill=fill, num_magnitude_bins=num_magnitude_bins)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("severity", [1, 10])
@pytest.mark.parametrize("mixture_width", [1, 2])
@pytest.mark.parametrize("chain_depth", [-1, 2])
@pytest.mark.parametrize("all_ops", [True, False])
@pytest.mark.parametrize("grayscale", [True, False])
def test_augmix(fill, severity, mixture_width, chain_depth, all_ops, grayscale):
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
    transform = transforms.AugMix(
        fill=fill, severity=severity, mixture_width=mixture_width, chain_depth=chain_depth, all_ops=all_ops
    )
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1619
1620
1621
1622
1623
def test_random_crop():
    height = random.randint(10, 32) * 2
    width = random.randint(10, 32) * 2
    oheight = random.randint(5, (height - 2) / 2) * 2
    owidth = random.randint(5, (width - 2) / 2) * 2
1624
    img = torch.ones(3, height, width, dtype=torch.uint8)
1625
1626
1627
1628
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
1629
            transforms.PILToTensor(),
1630
1631
        ]
    )(img)
1632
1633
1634
1635
    assert result.size(1) == oheight
    assert result.size(2) == owidth

    padding = random.randint(1, 20)
1636
1637
1638
1639
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
1640
            transforms.PILToTensor(),
1641
1642
        ]
    )(img)
1643
1644
1645
    assert result.size(1) == oheight
    assert result.size(2) == owidth

1646
    result = transforms.Compose(
1647
        [transforms.ToPILImage(), transforms.RandomCrop((height, width)), transforms.PILToTensor()]
1648
    )(img)
1649
1650
1651
1652
    assert result.size(1) == height
    assert result.size(2) == width
    torch.testing.assert_close(result, img)

1653
1654
1655
1656
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
1657
            transforms.PILToTensor(),
1658
1659
        ]
    )(img)
1660
1661
1662
1663
1664
1665
1666
1667
1668
    assert result.size(1) == height + 1
    assert result.size(2) == width + 1

    t = transforms.RandomCrop(48)
    img = torch.ones(3, 32, 32)
    with pytest.raises(ValueError, match=r"Required crop size .+ is larger then input image size .+"):
        t(img)


1669
1670
1671
1672
1673
1674
def test_center_crop():
    height = random.randint(10, 32) * 2
    width = random.randint(10, 32) * 2
    oheight = random.randint(5, (height - 2) / 2) * 2
    owidth = random.randint(5, (width - 2) / 2) * 2

1675
    img = torch.ones(3, height, width, dtype=torch.uint8)
1676
1677
    oh1 = (height - oheight) // 2
    ow1 = (width - owidth) // 2
1678
    imgnarrow = img[:, oh1 : oh1 + oheight, ow1 : ow1 + owidth]
1679
    imgnarrow.fill_(0)
1680
1681
1682
1683
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
1684
            transforms.PILToTensor(),
1685
1686
        ]
    )(img)
1687
1688
1689
    assert result.sum() == 0
    oheight += 1
    owidth += 1
1690
1691
1692
1693
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
1694
            transforms.PILToTensor(),
1695
1696
        ]
    )(img)
1697
1698
1699
1700
    sum1 = result.sum()
    assert sum1 > 1
    oheight += 1
    owidth += 1
1701
1702
1703
1704
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
1705
            transforms.PILToTensor(),
1706
1707
        ]
    )(img)
1708
1709
1710
1711
1712
    sum2 = result.sum()
    assert sum2 > 0
    assert sum2 > sum1


1713
1714
1715
1716
@pytest.mark.parametrize("odd_image_size", (True, False))
@pytest.mark.parametrize("delta", (1, 3, 5))
@pytest.mark.parametrize("delta_width", (-2, -1, 0, 1, 2))
@pytest.mark.parametrize("delta_height", (-2, -1, 0, 1, 2))
1717
def test_center_crop_2(odd_image_size, delta, delta_width, delta_height):
1718
    """Tests when center crop size is larger than image size, along any dimension"""
1719
1720
1721
1722
1723
1724
1725
1726
1727

    # Since height is independent of width, we can ignore images with odd height and even width and vice-versa.
    input_image_size = (random.randint(10, 32) * 2, random.randint(10, 32) * 2)
    if odd_image_size:
        input_image_size = (input_image_size[0] + 1, input_image_size[1] + 1)

    delta_height *= delta
    delta_width *= delta

1728
    img = torch.ones(3, *input_image_size, dtype=torch.uint8)
1729
1730
1731
    crop_size = (input_image_size[0] + delta_height, input_image_size[1] + delta_width)

    # Test both transforms, one with PIL input and one with tensor
1732
    output_pil = transforms.Compose(
1733
        [transforms.ToPILImage(), transforms.CenterCrop(crop_size), transforms.PILToTensor()],
1734
1735
1736
1737
1738
1739
1740
1741
    )(img)
    assert output_pil.size()[1:3] == crop_size

    output_tensor = transforms.CenterCrop(crop_size)(img)
    assert output_tensor.size()[1:3] == crop_size

    # Ensure output for PIL and Tensor are equal
    assert_equal(
1742
1743
        output_tensor,
        output_pil,
1744
        msg=f"image_size: {input_image_size} crop_size: {crop_size}",
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
    )

    # Check if content in center of both image and cropped output is same.
    center_size = (min(crop_size[0], input_image_size[0]), min(crop_size[1], input_image_size[1]))
    crop_center_tl, input_center_tl = [0, 0], [0, 0]
    for index in range(2):
        if crop_size[index] > input_image_size[index]:
            crop_center_tl[index] = (crop_size[index] - input_image_size[index]) // 2
        else:
            input_center_tl[index] = (input_image_size[index] - crop_size[index]) // 2

    output_center = output_pil[
        :,
1758
1759
        crop_center_tl[0] : crop_center_tl[0] + center_size[0],
        crop_center_tl[1] : crop_center_tl[1] + center_size[1],
1760
1761
1762
1763
    ]

    img_center = img[
        :,
1764
1765
        input_center_tl[0] : input_center_tl[0] + center_size[0],
        input_center_tl[1] : input_center_tl[1] + center_size[1],
1766
1767
    ]

1768
    assert_equal(output_center, img_center)
1769
1770
1771
1772
1773
1774
1775
1776


def test_color_jitter():
    color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1777
1778
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790

    for _ in range(10):
        y_pil = color_jitter(x_pil)
        assert y_pil.mode == x_pil.mode

        y_pil_2 = color_jitter(x_pil_2)
        assert y_pil_2.mode == x_pil_2.mode

    # Checking if ColorJitter can be printed as string
    color_jitter.__repr__()


1791
@pytest.mark.parametrize("seed", range(10))
1792
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1793
1794
def test_random_erasing(seed):
    torch.random.manual_seed(seed)
1795
1796
    img = torch.ones(3, 128, 128)

1797
1798
1799
1800
1801
1802
1803
1804
1805
    t = transforms.RandomErasing(scale=(0.1, 0.1), ratio=(1 / 3, 3.0))
    y, x, h, w, v = t.get_params(
        img,
        t.scale,
        t.ratio,
        [
            t.value,
        ],
    )
1806
1807
1808
    aspect_ratio = h / w
    # Add some tolerance due to the rounding and int conversion used in the transform
    tol = 0.05
1809
    assert 1 / 3 - tol <= aspect_ratio <= 3 + tol
1810

1811
    # Make sure that h > w and h < w are equaly likely (log-scale sampling)
1812
1813
1814
1815
    aspect_ratios = []
    random.seed(42)
    trial = 1000
    for _ in range(trial):
1816
1817
1818
1819
1820
1821
1822
1823
        y, x, h, w, v = t.get_params(
            img,
            t.scale,
            t.ratio,
            [
                t.value,
            ],
        )
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
        aspect_ratios.append(h / w)

    count_bigger_then_ones = len([1 for aspect_ratio in aspect_ratios if aspect_ratio > 1])
    p_value = stats.binom_test(count_bigger_then_ones, trial, p=0.5)
    assert p_value > 0.0001

    # Checking if RandomErasing can be printed as string
    t.__repr__()


def test_random_rotation():

    with pytest.raises(ValueError):
        transforms.RandomRotation(-0.7)

    with pytest.raises(ValueError):
        transforms.RandomRotation([-0.7])

    with pytest.raises(ValueError):
        transforms.RandomRotation([-0.7, 0, 0.7])

    t = transforms.RandomRotation(0, fill=None)
    assert t.fill == 0

    t = transforms.RandomRotation(10)
    angle = t.get_params(t.degrees)
1850
    assert angle > -10 and angle < 10
1851
1852
1853

    t = transforms.RandomRotation((-10, 10))
    angle = t.get_params(t.degrees)
1854
    assert -10 < angle < 10
1855
1856
1857
1858
1859

    # Checking if RandomRotation can be printed as string
    t.__repr__()

    # assert deprecation warning and non-BC
1860
1861
1862
1863
1864
1865
1866
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "The parameter 'resample' is deprecated since 0.12 and will be removed 0.14. "
            "Please use 'interpolation' instead."
        ),
    ):
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
        t = transforms.RandomRotation((-10, 10), resample=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR

    # assert changed type warning
    with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
        t = transforms.RandomRotation((-10, 10), interpolation=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR


def test_random_rotation_error():
    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomRotation(0, fill={})


def test_randomperspective():
    for _ in range(10):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        perp = transforms.RandomPerspective()
        startpoints, endpoints = perp.get_params(width, height, 0.5)
        tr_img = F.perspective(img, startpoints, endpoints)
1892
1893
        tr_img2 = F.convert_image_dtype(F.pil_to_tensor(F.perspective(tr_img, endpoints, startpoints)))
        tr_img = F.convert_image_dtype(F.pil_to_tensor(tr_img))
1894
1895
        assert img.size[0] == width
        assert img.size[1] == height
1896
1897
1898
        assert torch.nn.functional.mse_loss(
            tr_img, F.convert_image_dtype(F.pil_to_tensor(img))
        ) + 0.3 > torch.nn.functional.mse_loss(tr_img2, F.convert_image_dtype(F.pil_to_tensor(img)))
1899
1900


1901
@pytest.mark.parametrize("seed", range(10))
1902
@pytest.mark.parametrize("mode", ["L", "RGB", "F"])
1903
1904
def test_randomperspective_fill(mode, seed):
    torch.random.manual_seed(seed)
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942

    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomPerspective(fill={})

    t = transforms.RandomPerspective(fill=None)
    assert t.fill == 0

    height = 100
    width = 100
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    fill = 127
    num_bands = len(mode)

    img_conv = img.convert(mode)
    perspective = transforms.RandomPerspective(p=1, fill=fill)
    tr_img = perspective(img_conv)
    pixel = tr_img.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    startpoints, endpoints = transforms.RandomPerspective.get_params(width, height, 0.5)
    tr_img = F.perspective(img_conv, startpoints, endpoints, fill=fill)
    pixel = tr_img.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    wrong_num_bands = num_bands + 1
    with pytest.raises(ValueError):
        F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))


1943
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1944
1945
def test_normalize():
    def samples_from_standard_normal(tensor):
1946
        p_value = stats.kstest(list(tensor.view(-1)), "norm", args=(0, 1)).pvalue
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
        return p_value > 0.0001

    random_state = random.getstate()
    random.seed(42)
    for channels in [1, 3]:
        img = torch.rand(channels, 10, 10)
        mean = [img[c].mean() for c in range(channels)]
        std = [img[c].std() for c in range(channels)]
        normalized = transforms.Normalize(mean, std)(img)
        assert samples_from_standard_normal(normalized)
    random.setstate(random_state)

    # Checking if Normalize can be printed as string
    transforms.Normalize(mean, std).__repr__()

    # Checking the optional in-place behaviour
    tensor = torch.rand((1, 16, 16))
    tensor_inplace = transforms.Normalize((0.5,), (0.5,), inplace=True)(tensor)
    assert_equal(tensor, tensor_inplace)


1968
1969
@pytest.mark.parametrize("dtype1", [torch.float32, torch.float64])
@pytest.mark.parametrize("dtype2", [torch.int64, torch.float32, torch.float64])
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
def test_normalize_different_dtype(dtype1, dtype2):
    img = torch.rand(3, 10, 10, dtype=dtype1)
    mean = torch.tensor([1, 2, 3], dtype=dtype2)
    std = torch.tensor([1, 2, 1], dtype=dtype2)
    # checks that it doesn't crash
    transforms.functional.normalize(img, mean, std)


def test_normalize_3d_tensor():
    torch.manual_seed(28)
    n_channels = 3
    img_size = 10
    mean = torch.rand(n_channels)
    std = torch.rand(n_channels)
    img = torch.rand(n_channels, img_size, img_size)
    target = F.normalize(img, mean, std)

    mean_unsqueezed = mean.view(-1, 1, 1)
    std_unsqueezed = std.view(-1, 1, 1)
    result1 = F.normalize(img, mean_unsqueezed, std_unsqueezed)
1990
1991
1992
    result2 = F.normalize(
        img, mean_unsqueezed.repeat(1, img_size, img_size), std_unsqueezed.repeat(1, img_size, img_size)
    )
1993
1994
1995
1996
    torch.testing.assert_close(target, result1)
    torch.testing.assert_close(target, result2)


1997
class TestAffine:
1998
    @pytest.fixture(scope="class")
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
    def input_img(self):
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
        for pt in [(16, 16), (20, 16), (20, 20)]:
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]
        return input_img

    def test_affine_translate_seq(self, input_img):
        with pytest.raises(TypeError, match=r"Argument translate should be a sequence"):
            F.affine(input_img, 10, translate=0, scale=1, shear=1)

2011
    @pytest.fixture(scope="class")
2012
2013
2014
2015
2016
2017
2018
2019
2020
    def pil_image(self, input_img):
        return F.to_pil_image(input_img)

    def _to_3x3_inv(self, inv_result_matrix):
        result_matrix = np.zeros((3, 3))
        result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
        result_matrix[2, 2] = 1
        return np.linalg.inv(result_matrix)

2021
    def _test_transformation(self, angle, translate, scale, shear, pil_image, input_img, center=None):
2022
2023
2024

        a_rad = math.radians(angle)
        s_rad = [math.radians(sh_) for sh_ in shear]
2025
        cnt = [20, 20] if center is None else center
2026
2027
2028
2029
2030
2031
        cx, cy = cnt
        tx, ty = translate
        sx, sy = s_rad
        rot = a_rad

        # 1) Check transformation matrix:
2032
2033
        C = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
        T = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
2034
2035
2036
        Cinv = np.linalg.inv(C)

        RS = np.array(
2037
2038
2039
2040
2041
2042
            [
                [scale * math.cos(rot), -scale * math.sin(rot), 0],
                [scale * math.sin(rot), scale * math.cos(rot), 0],
                [0, 0, 1],
            ]
        )
2043

2044
        SHx = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
2045

2046
        SHy = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
2047
2048
2049
2050
2051

        RSS = np.matmul(RS, np.matmul(SHy, SHx))

        true_matrix = np.matmul(T, np.matmul(C, np.matmul(RSS, Cinv)))

2052
2053
2054
        result_matrix = self._to_3x3_inv(
            F._get_inverse_affine_matrix(center=cnt, angle=angle, translate=translate, scale=scale, shear=shear)
        )
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
        assert np.sum(np.abs(true_matrix - result_matrix)) < 1e-10
        # 2) Perform inverse mapping:
        true_result = np.zeros((40, 40, 3), dtype=np.uint8)
        inv_true_matrix = np.linalg.inv(true_matrix)
        for y in range(true_result.shape[0]):
            for x in range(true_result.shape[1]):
                # Same as for PIL:
                # https://github.com/python-pillow/Pillow/blob/71f8ec6a0cfc1008076a023c0756542539d057ab/
                # src/libImaging/Geometry.c#L1060
                input_pt = np.array([x + 0.5, y + 0.5, 1.0])
                res = np.floor(np.dot(inv_true_matrix, input_pt)).astype(np.int)
                _x, _y = res[:2]
                if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                    true_result[y, x, :] = input_img[_y, _x, :]

2070
        result = F.affine(pil_image, angle=angle, translate=translate, scale=scale, shear=shear, center=center)
2071
2072
2073
2074
2075
        assert result.size == pil_image.size
        # Compute number of different pixels:
        np_result = np.array(result)
        n_diff_pixels = np.sum(np_result != true_result) / 3
        # Accept 3 wrong pixels
2076
2077
2078
        error_msg = (
            f"angle={angle}, translate={translate}, scale={scale}, shear={shear}\nn diff pixels={n_diff_pixels}\n"
        )
2079
2080
2081
2082
2083
        assert n_diff_pixels < 3, error_msg

    def test_transformation_discrete(self, pil_image, input_img):
        # Test rotation
        angle = 45
2084
2085
2086
        self._test_transformation(
            angle=angle, translate=(0, 0), scale=1.0, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2087

2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
        # Test rotation
        angle = 45
        self._test_transformation(
            angle=angle,
            translate=(0, 0),
            scale=1.0,
            shear=(0.0, 0.0),
            pil_image=pil_image,
            input_img=input_img,
            center=[0, 0],
        )

2100
2101
        # Test translation
        translate = [10, 15]
2102
2103
2104
        self._test_transformation(
            angle=0.0, translate=translate, scale=1.0, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2105
2106
2107

        # Test scale
        scale = 1.2
2108
2109
2110
        self._test_transformation(
            angle=0.0, translate=(0.0, 0.0), scale=scale, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2111
2112
2113

        # Test shear
        shear = [45.0, 25.0]
2114
2115
2116
        self._test_transformation(
            angle=0.0, translate=(0.0, 0.0), scale=1.0, shear=shear, pil_image=pil_image, input_img=input_img
        )
2117

2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
        # Test shear with top-left as center
        shear = [45.0, 25.0]
        self._test_transformation(
            angle=0.0,
            translate=(0.0, 0.0),
            scale=1.0,
            shear=shear,
            pil_image=pil_image,
            input_img=input_img,
            center=[0, 0],
        )

2130
2131
2132
2133
2134
    @pytest.mark.parametrize("angle", range(-90, 90, 36))
    @pytest.mark.parametrize("translate", range(-10, 10, 5))
    @pytest.mark.parametrize("scale", [0.77, 1.0, 1.27])
    @pytest.mark.parametrize("shear", range(-15, 15, 5))
    def test_transformation_range(self, angle, translate, scale, shear, pil_image, input_img):
2135
2136
2137
2138
2139
2140
2141
2142
        self._test_transformation(
            angle=angle,
            translate=(translate, translate),
            scale=scale,
            shear=(shear, shear),
            pil_image=pil_image,
            input_img=input_img,
        )
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189


def test_random_affine():

    with pytest.raises(ValueError):
        transforms.RandomAffine(-0.7)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-0.7])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-0.7, 0, 0.7])
    with pytest.raises(TypeError):
        transforms.RandomAffine([-90, 90], translate=2.0)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10, 0, 10])

    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomAffine(0, fill={})

    t = transforms.RandomAffine(0, fill=None)
    assert t.fill == 0

    x = np.zeros((100, 100, 3), dtype=np.uint8)
    img = F.to_pil_image(x)

    t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10, 20, 40])
    for _ in range(100):
2190
        angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear, img_size=img.size)
2191
        assert -10 < angle < 10
2192
2193
        assert -img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5
        assert -img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
        assert 0.7 < scale < 1.3
        assert -10 < shear[0] < 10
        assert -20 < shear[1] < 40

    # Checking if RandomAffine can be printed as string
    t.__repr__()

    t = transforms.RandomAffine(10, interpolation=transforms.InterpolationMode.BILINEAR)
    assert "bilinear" in t.__repr__()

    # assert deprecation warning and non-BC
2205
2206
2207
2208
2209
2210
2211
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "The parameter 'resample' is deprecated since 0.12 and will be removed in 0.14. "
            "Please use 'interpolation' instead."
        ),
    ):
2212
2213
2214
        t = transforms.RandomAffine(10, resample=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR

2215
2216
2217
2218
2219
2220
2221
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "The parameter 'fillcolor' is deprecated since 0.12 and will be removed in 0.14. "
            "Please use 'fill' instead."
        ),
    ):
2222
2223
2224
2225
2226
2227
2228
2229
2230
        t = transforms.RandomAffine(10, fillcolor=10)
        assert t.fill == 10

    # assert changed type warning
    with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
        t = transforms.RandomAffine(10, interpolation=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR


2231
if __name__ == "__main__":
2232
    pytest.main([__file__])