test_transforms_tensor.py 29.7 KB
Newer Older
1
import os
2
3
4
import torch
from torchvision import transforms as T
from torchvision.transforms import functional as F
5
from torchvision.transforms import InterpolationMode
6
7
8
9

import numpy as np

import unittest
10
from typing import Sequence
11

12
from common_utils import TransformsTester, get_tmp_dir, int_dtypes, float_dtypes
13
from _assert_utils import assert_equal
panning's avatar
panning committed
14
import pytest
15

16
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
17
18


19
class Tester(TransformsTester):
20

21
22
23
    def setUp(self):
        self.device = "cpu"

24
    def _test_functional_op(self, func, fn_kwargs, test_exact_match=True, **match_kwargs):
25
26
        if fn_kwargs is None:
            fn_kwargs = {}
27
28

        f = getattr(F, func)
29
        tensor, pil_img = self._create_data(height=10, width=10, device=self.device)
30
31
        transformed_tensor = f(tensor, **fn_kwargs)
        transformed_pil_img = f(pil_img, **fn_kwargs)
32
33
34
35
        if test_exact_match:
            self.compareTensorToPIL(transformed_tensor, transformed_pil_img, **match_kwargs)
        else:
            self.approxEqualTensorToPIL(transformed_tensor, transformed_pil_img, **match_kwargs)
36

37
    def _test_transform_vs_scripted(self, transform, s_transform, tensor, msg=None):
38
39
40
41
        torch.manual_seed(12)
        out1 = transform(tensor)
        torch.manual_seed(12)
        out2 = s_transform(tensor)
42
        assert_equal(out1, out2, msg=msg)
43

44
    def _test_transform_vs_scripted_on_batch(self, transform, s_transform, batch_tensors, msg=None):
45
46
47
48
49
50
51
        torch.manual_seed(12)
        transformed_batch = transform(batch_tensors)

        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            torch.manual_seed(12)
            transformed_img = transform(img_tensor)
52
            assert_equal(transformed_img, transformed_batch[i, ...], msg=msg)
53
54
55

        torch.manual_seed(12)
        s_transformed_batch = s_transform(batch_tensors)
56
        assert_equal(transformed_batch, s_transformed_batch, msg=msg)
57

58
    def _test_class_op(self, method, meth_kwargs=None, test_exact_match=True, **match_kwargs):
59
60
        if meth_kwargs is None:
            meth_kwargs = {}
vfdev's avatar
vfdev committed
61
62
63
64
65

        # test for class interface
        f = getattr(T, method)(**meth_kwargs)
        scripted_fn = torch.jit.script(f)

66
        tensor, pil_img = self._create_data(26, 34, device=self.device)
vfdev's avatar
vfdev committed
67
68
69
70
71
        # set seed to reproduce the same transformation for tensor and PIL image
        torch.manual_seed(12)
        transformed_tensor = f(tensor)
        torch.manual_seed(12)
        transformed_pil_img = f(pil_img)
72
73
74
75
        if test_exact_match:
            self.compareTensorToPIL(transformed_tensor, transformed_pil_img, **match_kwargs)
        else:
            self.approxEqualTensorToPIL(transformed_tensor.float(), transformed_pil_img, **match_kwargs)
76

vfdev's avatar
vfdev committed
77
78
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
79
        assert_equal(transformed_tensor, transformed_tensor_script)
80

81
82
83
        batch_tensors = self._create_data_batch(height=23, width=34, channels=3, num_samples=4, device=self.device)
        self._test_transform_vs_scripted_on_batch(f, scripted_fn, batch_tensors)

84
85
86
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_{}.pt".format(method)))

87
88
89
    def _test_op(self, func, method, fn_kwargs=None, meth_kwargs=None, test_exact_match=True, **match_kwargs):
        self._test_functional_op(func, fn_kwargs, test_exact_match=test_exact_match, **match_kwargs)
        self._test_class_op(method, meth_kwargs, test_exact_match=test_exact_match, **match_kwargs)
90
91

    def test_random_horizontal_flip(self):
92
        self._test_op('hflip', 'RandomHorizontalFlip')
93
94

    def test_random_vertical_flip(self):
95
        self._test_op('vflip', 'RandomVerticalFlip')
96

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    def test_random_invert(self):
        self._test_op('invert', 'RandomInvert')

    def test_random_posterize(self):
        fn_kwargs = meth_kwargs = {"bits": 4}
        self._test_op(
            'posterize', 'RandomPosterize', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_random_solarize(self):
        fn_kwargs = meth_kwargs = {"threshold": 192.0}
        self._test_op(
            'solarize', 'RandomSolarize', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_random_adjust_sharpness(self):
        fn_kwargs = meth_kwargs = {"sharpness_factor": 2.0}
        self._test_op(
            'adjust_sharpness', 'RandomAdjustSharpness', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_random_autocontrast(self):
119
120
121
122
        # We check the max abs difference because on some (very rare) pixels, the actual value may be different
        # between PIL and tensors due to floating approximations.
        self._test_op('autocontrast', 'RandomAutocontrast', test_exact_match=False, agg_method='max',
                      tol=(1 + 1e-5), allowed_percentage_diff=.05)
123
124
125
126

    def test_random_equalize(self):
        self._test_op('equalize', 'RandomEqualize')

vfdev's avatar
vfdev committed
127
128
129
    def test_color_jitter(self):

        tol = 1.0 + 1e-10
130
        for f in [0.1, 0.5, 1.0, 1.34, (0.3, 0.7), [0.4, 0.5]]:
vfdev's avatar
vfdev committed
131
132
133
134
135
            meth_kwargs = {"brightness": f}
            self._test_class_op(
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
            )

136
        for f in [0.2, 0.5, 1.0, 1.5, (0.3, 0.7), [0.4, 0.5]]:
vfdev's avatar
vfdev committed
137
138
139
140
141
            meth_kwargs = {"contrast": f}
            self._test_class_op(
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
            )

142
        for f in [0.5, 0.75, 1.0, 1.25, (0.3, 0.7), [0.3, 0.4]]:
vfdev's avatar
vfdev committed
143
144
145
146
            meth_kwargs = {"saturation": f}
            self._test_class_op(
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
            )
147

148
149
150
        for f in [0.2, 0.5, (-0.2, 0.3), [-0.4, 0.5]]:
            meth_kwargs = {"hue": f}
            self._test_class_op(
vfdev's avatar
vfdev committed
151
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=16.1, agg_method="max"
152
153
154
155
156
            )

        # All 4 parameters together
        meth_kwargs = {"brightness": 0.2, "contrast": 0.2, "saturation": 0.2, "hue": 0.2}
        self._test_class_op(
vfdev's avatar
vfdev committed
157
            "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=12.1, agg_method="max"
158
159
        )

160
    def test_pad(self):
161
162
        for m in ["constant", "edge", "reflect", "symmetric"]:
            fill = 127 if m == "constant" else 0
163
            for mul in [1, -1]:
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
                # Test functional.pad (PIL and Tensor) with padding as single int
                self._test_functional_op(
                    "pad", fn_kwargs={"padding": mul * 2, "fill": fill, "padding_mode": m}
                )
                # Test functional.pad and transforms.Pad with padding as [int, ]
                fn_kwargs = meth_kwargs = {"padding": [mul * 2, ], "fill": fill, "padding_mode": m}
                self._test_op(
                    "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
                )
                # Test functional.pad and transforms.Pad with padding as list
                fn_kwargs = meth_kwargs = {"padding": [mul * 4, 4], "fill": fill, "padding_mode": m}
                self._test_op(
                    "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
                )
                # Test functional.pad and transforms.Pad with padding as tuple
                fn_kwargs = meth_kwargs = {"padding": (mul * 2, 2, 2, mul * 2), "fill": fill, "padding_mode": m}
                self._test_op(
                    "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
                )
183

vfdev's avatar
vfdev committed
184
185
186
187
    def test_crop(self):
        fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
        # Test transforms.RandomCrop with size and padding as tuple
        meth_kwargs = {"size": (4, 5), "padding": (4, 4), "pad_if_needed": True, }
188
        self._test_op(
vfdev's avatar
vfdev committed
189
190
191
            'crop', 'RandomCrop', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        # Test transforms.functional.crop including outside the image area
        fn_kwargs = {"top": -2, "left": 3, "height": 4, "width": 5}  # top
        self._test_functional_op('crop', fn_kwargs=fn_kwargs)

        fn_kwargs = {"top": 1, "left": -3, "height": 4, "width": 5}  # left
        self._test_functional_op('crop', fn_kwargs=fn_kwargs)

        fn_kwargs = {"top": 7, "left": 3, "height": 4, "width": 5}  # bottom
        self._test_functional_op('crop', fn_kwargs=fn_kwargs)

        fn_kwargs = {"top": 3, "left": 8, "height": 4, "width": 5}  # right
        self._test_functional_op('crop', fn_kwargs=fn_kwargs)

        fn_kwargs = {"top": -3, "left": -3, "height": 15, "width": 15}  # all
        self._test_functional_op('crop', fn_kwargs=fn_kwargs)

vfdev's avatar
vfdev committed
208
209
210
211
212
213
214
215
216
217
218
219
220
        sizes = [5, [5, ], [6, 6]]
        padding_configs = [
            {"padding_mode": "constant", "fill": 0},
            {"padding_mode": "constant", "fill": 10},
            {"padding_mode": "constant", "fill": 20},
            {"padding_mode": "edge"},
            {"padding_mode": "reflect"},
        ]

        for size in sizes:
            for padding_config in padding_configs:
                config = dict(padding_config)
                config["size"] = size
221
                self._test_class_op("RandomCrop", config)
vfdev's avatar
vfdev committed
222
223
224
225

    def test_center_crop(self):
        fn_kwargs = {"output_size": (4, 5)}
        meth_kwargs = {"size": (4, 5), }
226
        self._test_op(
vfdev's avatar
vfdev committed
227
228
229
230
            "center_crop", "CenterCrop", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = {"output_size": (5,)}
        meth_kwargs = {"size": (5, )}
231
        self._test_op(
vfdev's avatar
vfdev committed
232
233
            "center_crop", "CenterCrop", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
234
        tensor = torch.randint(0, 256, (3, 10, 10), dtype=torch.uint8, device=self.device)
vfdev's avatar
vfdev committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        # Test torchscript of transforms.CenterCrop with size as int
        f = T.CenterCrop(size=5)
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

        # Test torchscript of transforms.CenterCrop with size as [int, ]
        f = T.CenterCrop(size=[5, ])
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

        # Test torchscript of transforms.CenterCrop with size as tuple
        f = T.CenterCrop(size=(6, 6))
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

250
251
252
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_center_crop.pt"))

253
    def _test_op_list_output(self, func, method, out_length, fn_kwargs=None, meth_kwargs=None):
vfdev's avatar
vfdev committed
254
255
256
257
        if fn_kwargs is None:
            fn_kwargs = {}
        if meth_kwargs is None:
            meth_kwargs = {}
258
259
260
261

        fn = getattr(F, func)
        scripted_fn = torch.jit.script(fn)

262
        tensor, pil_img = self._create_data(height=20, width=20, device=self.device)
263
264
        transformed_t_list = fn(tensor, **fn_kwargs)
        transformed_p_list = fn(pil_img, **fn_kwargs)
vfdev's avatar
vfdev committed
265
266
267
268
269
270
271
272
273
        self.assertEqual(len(transformed_t_list), len(transformed_p_list))
        self.assertEqual(len(transformed_t_list), out_length)
        for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
            self.compareTensorToPIL(transformed_tensor, transformed_pil_img)

        transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
        self.assertEqual(len(transformed_t_list), len(transformed_t_list_script))
        self.assertEqual(len(transformed_t_list_script), out_length)
        for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
274
275
276
277
278
            assert_equal(
                transformed_tensor,
                transformed_tensor_script,
                msg="{} vs {}".format(transformed_tensor, transformed_tensor_script),
            )
vfdev's avatar
vfdev committed
279
280

        # test for class interface
281
282
        fn = getattr(T, method)(**meth_kwargs)
        scripted_fn = torch.jit.script(fn)
vfdev's avatar
vfdev committed
283
284
285
        output = scripted_fn(tensor)
        self.assertEqual(len(output), len(transformed_t_list_script))

286
287
288
289
290
291
292
293
294
295
        # test on batch of tensors
        batch_tensors = self._create_data_batch(height=23, width=34, channels=3, num_samples=4, device=self.device)
        torch.manual_seed(12)
        transformed_batch_list = fn(batch_tensors)

        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            torch.manual_seed(12)
            transformed_img_list = fn(img_tensor)
            for transformed_img, transformed_batch in zip(transformed_img_list, transformed_batch_list):
296
297
298
299
300
                assert_equal(
                    transformed_img,
                    transformed_batch[i, ...],
                    msg="{} vs {}".format(transformed_img, transformed_batch[i, ...]),
                )
301

302
303
304
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_op_list_{}.pt".format(method)))

vfdev's avatar
vfdev committed
305
306
    def test_five_crop(self):
        fn_kwargs = meth_kwargs = {"size": (5,)}
307
        self._test_op_list_output(
vfdev's avatar
vfdev committed
308
309
310
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [5, ]}
311
        self._test_op_list_output(
vfdev's avatar
vfdev committed
312
313
314
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": (4, 5)}
315
        self._test_op_list_output(
vfdev's avatar
vfdev committed
316
317
318
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [4, 5]}
319
        self._test_op_list_output(
vfdev's avatar
vfdev committed
320
321
322
323
324
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_ten_crop(self):
        fn_kwargs = meth_kwargs = {"size": (5,)}
325
        self._test_op_list_output(
vfdev's avatar
vfdev committed
326
327
328
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [5, ]}
329
        self._test_op_list_output(
vfdev's avatar
vfdev committed
330
331
332
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": (4, 5)}
333
        self._test_op_list_output(
vfdev's avatar
vfdev committed
334
335
336
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [4, 5]}
337
        self._test_op_list_output(
vfdev's avatar
vfdev committed
338
339
340
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

vfdev's avatar
vfdev committed
341
    def test_resize(self):
342
343
344
345
346
347
348
349
350
351
352

        # TODO: Minimal check for bug-fix, improve this later
        x = torch.rand(3, 32, 46)
        t = T.Resize(size=38)
        y = t(x)
        # If size is an int, smaller edge of the image will be matched to this number.
        # i.e, if height > width, then image will be rescaled to (size * height / width, size).
        self.assertTrue(isinstance(y, torch.Tensor))
        self.assertEqual(y.shape[1], 38)
        self.assertEqual(y.shape[2], int(38 * 46 / 32))

353
        tensor, _ = self._create_data(height=34, width=36, device=self.device)
354
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
vfdev's avatar
vfdev committed
355
356
357
358
359

        for dt in [None, torch.float32, torch.float64]:
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
360
            for size in [32, 34, [32, ], [32, 32], (32, 32), [34, 35]]:
361
362
363
364
                for max_size in (None, 35, 1000):
                    if max_size is not None and isinstance(size, Sequence) and len(size) != 1:
                        continue  # Not supported
                    for interpolation in [BILINEAR, BICUBIC, NEAREST]:
vfdev's avatar
vfdev committed
365

366
367
368
369
                        if isinstance(size, int):
                            script_size = [size, ]
                        else:
                            script_size = size
vfdev's avatar
vfdev committed
370

371
372
373
374
                        transform = T.Resize(size=script_size, interpolation=interpolation, max_size=max_size)
                        s_transform = torch.jit.script(transform)
                        self._test_transform_vs_scripted(transform, s_transform, tensor)
                        self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
vfdev's avatar
vfdev committed
375

376
        with get_tmp_dir() as tmp_dir:
377
            s_transform.save(os.path.join(tmp_dir, "t_resize.pt"))
378

379
    def test_resized_crop(self):
380
381
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
382

383
384
        for scale in [(0.7, 1.2), [0.7, 1.2]]:
            for ratio in [(0.75, 1.333), [0.75, 1.333]]:
385
                for size in [(32, ), [44, ], [32, ], [32, 32], (32, 32), [44, 55]]:
386
387
388
389
390
                    for interpolation in [NEAREST, BILINEAR, BICUBIC]:
                        transform = T.RandomResizedCrop(
                            size=size, scale=scale, ratio=ratio, interpolation=interpolation
                        )
                        s_transform = torch.jit.script(transform)
391
392
                        self._test_transform_vs_scripted(transform, s_transform, tensor)
                        self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
393

394
395
396
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_resized_crop.pt"))

397
    def test_random_affine(self):
398
399
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
400
401
402
403
404
405

        for shear in [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]]:
            for scale in [(0.7, 1.2), [0.7, 1.2]]:
                for translate in [(0.1, 0.2), [0.2, 0.1]]:
                    for degrees in [45, 35.0, (-45, 45), [-90.0, 90.0]]:
                        for interpolation in [NEAREST, BILINEAR]:
406
407
408
409
410
411
                            for fill in [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
                                transform = T.RandomAffine(
                                    degrees=degrees, translate=translate,
                                    scale=scale, shear=shear, interpolation=interpolation, fill=fill
                                )
                                s_transform = torch.jit.script(transform)
412

413
414
                                self._test_transform_vs_scripted(transform, s_transform, tensor)
                                self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
415

416
417
418
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_random_affine.pt"))

419
    def test_random_rotate(self):
420
421
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
422
423
424
425
426

        for center in [(0, 0), [10, 10], None, (56, 44)]:
            for expand in [True, False]:
                for degrees in [45, 35.0, (-45, 45), [-90.0, 90.0]]:
                    for interpolation in [NEAREST, BILINEAR]:
427
428
429
430
431
                        for fill in [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
                            transform = T.RandomRotation(
                                degrees=degrees, interpolation=interpolation, expand=expand, center=center, fill=fill
                            )
                            s_transform = torch.jit.script(transform)
432

433
434
                            self._test_transform_vs_scripted(transform, s_transform, tensor)
                            self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
435

436
437
438
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_random_rotate.pt"))

439
    def test_random_perspective(self):
440
441
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
442
443
444

        for distortion_scale in np.linspace(0.1, 1.0, num=20):
            for interpolation in [NEAREST, BILINEAR]:
445
446
447
448
449
450
451
                for fill in [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
                    transform = T.RandomPerspective(
                        distortion_scale=distortion_scale,
                        interpolation=interpolation,
                        fill=fill
                    )
                    s_transform = torch.jit.script(transform)
452

453
454
                    self._test_transform_vs_scripted(transform, s_transform, tensor)
                    self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
455

456
457
458
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_perspective.pt"))

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
    def test_to_grayscale(self):

        meth_kwargs = {"num_output_channels": 1}
        tol = 1.0 + 1e-10
        self._test_class_op(
            "Grayscale", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
        )

        meth_kwargs = {"num_output_channels": 3}
        self._test_class_op(
            "Grayscale", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
        )

        meth_kwargs = {}
        self._test_class_op(
            "RandomGrayscale", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
        )

477
    def test_normalize(self):
478
        fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
479
480
        tensor, _ = self._create_data(26, 34, device=self.device)

481
482
483
484
        with self.assertRaisesRegex(TypeError, r"Input tensor should be a float tensor"):
            fn(tensor)

        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)
485
486
487
488
489
490
491
        tensor = tensor.to(dtype=torch.float32) / 255.0
        # test for class interface
        scripted_fn = torch.jit.script(fn)

        self._test_transform_vs_scripted(fn, scripted_fn, tensor)
        self._test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

492
493
494
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    def test_linear_transformation(self):
        c, h, w = 3, 24, 32

        tensor, _ = self._create_data(h, w, channels=c, device=self.device)

        matrix = torch.rand(c * h * w, c * h * w, device=self.device)
        mean_vector = torch.rand(c * h * w, device=self.device)

        fn = T.LinearTransformation(matrix, mean_vector)
        scripted_fn = torch.jit.script(fn)

        self._test_transform_vs_scripted(fn, scripted_fn, tensor)

        batch_tensors = torch.rand(4, c, h, w, device=self.device)
        # We skip some tests from _test_transform_vs_scripted_on_batch as
        # results for scripted and non-scripted transformations are not exactly the same
        torch.manual_seed(12)
        transformed_batch = fn(batch_tensors)
        torch.manual_seed(12)
        s_transformed_batch = scripted_fn(batch_tensors)
515
        assert_equal(transformed_batch, s_transformed_batch)
516

517
518
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))
panning's avatar
panning committed
519
520
    #pan
    @pytest.mark.skipif(os.environ.get('PYTORCH_TEST_WITH_ROCM'), reason=('skip on rocm'))
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
    def test_compose(self):
        tensor, _ = self._create_data(26, 34, device=self.device)
        tensor = tensor.to(dtype=torch.float32) / 255.0

        transforms = T.Compose([
            T.CenterCrop(10),
            T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ])
        s_transforms = torch.nn.Sequential(*transforms.transforms)

        scripted_fn = torch.jit.script(s_transforms)
        torch.manual_seed(12)
        transformed_tensor = transforms(tensor)
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
536
        assert_equal(transformed_tensor, transformed_tensor_script, msg="{}".format(transforms))
537
538
539
540
541
542
543

        t = T.Compose([
            lambda x: x,
        ])
        with self.assertRaisesRegex(RuntimeError, r"Could not get name of python class object"):
            torch.jit.script(t)

544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
    def test_random_apply(self):
        tensor, _ = self._create_data(26, 34, device=self.device)
        tensor = tensor.to(dtype=torch.float32) / 255.0

        transforms = T.RandomApply([
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ], p=0.4)
        s_transforms = T.RandomApply(torch.nn.ModuleList([
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ]), p=0.4)

        scripted_fn = torch.jit.script(s_transforms)
        torch.manual_seed(12)
        transformed_tensor = transforms(tensor)
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
562
        assert_equal(transformed_tensor, transformed_tensor_script, msg="{}".format(transforms))
563
564
565
566
567
568
569
570
571
572

        if torch.device(self.device).type == "cpu":
            # Can't check this twice, otherwise
            # "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
            transforms = T.RandomApply([
                T.ColorJitter(),
            ], p=0.3)
            with self.assertRaisesRegex(RuntimeError, r"Module 'RandomApply' has no attribute 'transforms'"):
                torch.jit.script(transforms)

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
    def test_gaussian_blur(self):
        tol = 1.0 + 1e-10
        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": 3, "sigma": 0.75},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": 23, "sigma": [0.1, 2.0]},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": 23, "sigma": (0.1, 2.0)},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": [23], "sigma": 0.75},
            test_exact_match=False, agg_method="max", tol=tol
        )

vfdev's avatar
vfdev committed
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
    def test_random_erasing(self):
        img = torch.rand(3, 60, 60)

        # Test Set 0: invalid value
        random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0)
        with self.assertRaises(ValueError, msg="If value is a sequence, it should have either a single value or 3"):
            random_erasing(img)

        tensor, _ = self._create_data(24, 32, channels=3, device=self.device)
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        test_configs = [
            {"value": 0.2},
            {"value": "random"},
            {"value": (0.2, 0.2, 0.2)},
            {"value": "random", "ratio": (0.1, 0.2)},
        ]

        for config in test_configs:
            fn = T.RandomErasing(**config)
            scripted_fn = torch.jit.script(fn)
            self._test_transform_vs_scripted(fn, scripted_fn, tensor)
            self._test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

629
630
631
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_random_erasing.pt"))

632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
    def test_convert_image_dtype(self):
        tensor, _ = self._create_data(26, 34, device=self.device)
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        for in_dtype in int_dtypes() + float_dtypes():
            in_tensor = tensor.to(in_dtype)
            in_batch_tensors = batch_tensors.to(in_dtype)
            for out_dtype in int_dtypes() + float_dtypes():

                fn = T.ConvertImageDtype(dtype=out_dtype)
                scripted_fn = torch.jit.script(fn)

                if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or \
                        (in_dtype == torch.float64 and out_dtype == torch.int64):
                    with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"):
                        self._test_transform_vs_scripted(fn, scripted_fn, in_tensor)
                    with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"):
                        self._test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
                    continue

                self._test_transform_vs_scripted(fn, scripted_fn, in_tensor)
                self._test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)

        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_convert_dtype.pt"))

658
659
660
661
    def test_autoaugment(self):
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)

662
        s_transform = None
663
664
        for policy in T.AutoAugmentPolicy:
            for fill in [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
665
666
                transform = T.AutoAugment(policy=policy, fill=fill)
                s_transform = torch.jit.script(transform)
667
668
669
670
                for _ in range(100):
                    self._test_transform_vs_scripted(transform, s_transform, tensor)
                    self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

671
672
673
        if s_transform is not None:
            with get_tmp_dir() as tmp_dir:
                s_transform.save(os.path.join(tmp_dir, "t_autoaugment.pt"))
674

675

676
677
678
679
@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):

    def setUp(self):
panning's avatar
panning committed
680
681
682
        #pan
        #torch.set_deterministic(False)
        torch.use_deterministic_algorithms(False)
683
684
685
        self.device = "cuda"


686
687
if __name__ == '__main__':
    unittest.main()