test_transforms_tensor.py 28 KB
Newer Older
1
import os
2
3
4
import torch
from torchvision import transforms as T
from torchvision.transforms import functional as F
5
from torchvision.transforms import InterpolationMode
6
7
8
9
10

import numpy as np

import unittest

11
from common_utils import TransformsTester, get_tmp_dir, int_dtypes, float_dtypes
12
13


14
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
15
16


17
class Tester(TransformsTester):
18

19
20
21
    def setUp(self):
        self.device = "cpu"

22
    def _test_functional_op(self, func, fn_kwargs):
23
24
        if fn_kwargs is None:
            fn_kwargs = {}
25
26

        f = getattr(F, func)
27
        tensor, pil_img = self._create_data(height=10, width=10, device=self.device)
28
29
        transformed_tensor = f(tensor, **fn_kwargs)
        transformed_pil_img = f(pil_img, **fn_kwargs)
30
31
        self.compareTensorToPIL(transformed_tensor, transformed_pil_img)

32
    def _test_transform_vs_scripted(self, transform, s_transform, tensor, msg=None):
33
34
35
36
        torch.manual_seed(12)
        out1 = transform(tensor)
        torch.manual_seed(12)
        out2 = s_transform(tensor)
37
        self.assertTrue(out1.equal(out2), msg=msg)
38

39
    def _test_transform_vs_scripted_on_batch(self, transform, s_transform, batch_tensors, msg=None):
40
41
42
43
44
45
46
        torch.manual_seed(12)
        transformed_batch = transform(batch_tensors)

        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            torch.manual_seed(12)
            transformed_img = transform(img_tensor)
47
            self.assertTrue(transformed_img.equal(transformed_batch[i, ...]), msg=msg)
48
49
50

        torch.manual_seed(12)
        s_transformed_batch = s_transform(batch_tensors)
51
        self.assertTrue(transformed_batch.equal(s_transformed_batch), msg=msg)
52

53
    def _test_class_op(self, method, meth_kwargs=None, test_exact_match=True, **match_kwargs):
54
55
        if meth_kwargs is None:
            meth_kwargs = {}
vfdev's avatar
vfdev committed
56
57
58
59
60

        # test for class interface
        f = getattr(T, method)(**meth_kwargs)
        scripted_fn = torch.jit.script(f)

61
        tensor, pil_img = self._create_data(26, 34, device=self.device)
vfdev's avatar
vfdev committed
62
63
64
65
66
        # set seed to reproduce the same transformation for tensor and PIL image
        torch.manual_seed(12)
        transformed_tensor = f(tensor)
        torch.manual_seed(12)
        transformed_pil_img = f(pil_img)
67
68
69
70
        if test_exact_match:
            self.compareTensorToPIL(transformed_tensor, transformed_pil_img, **match_kwargs)
        else:
            self.approxEqualTensorToPIL(transformed_tensor.float(), transformed_pil_img, **match_kwargs)
71

vfdev's avatar
vfdev committed
72
73
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
74
        self.assertTrue(transformed_tensor.equal(transformed_tensor_script))
75

76
77
78
        batch_tensors = self._create_data_batch(height=23, width=34, channels=3, num_samples=4, device=self.device)
        self._test_transform_vs_scripted_on_batch(f, scripted_fn, batch_tensors)

79
80
81
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_{}.pt".format(method)))

82
83
84
    def _test_op(self, func, method, fn_kwargs=None, meth_kwargs=None):
        self._test_functional_op(func, fn_kwargs)
        self._test_class_op(method, meth_kwargs)
85
86

    def test_random_horizontal_flip(self):
87
        self._test_op('hflip', 'RandomHorizontalFlip')
88
89

    def test_random_vertical_flip(self):
90
        self._test_op('vflip', 'RandomVerticalFlip')
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    def test_random_invert(self):
        self._test_op('invert', 'RandomInvert')

    def test_random_posterize(self):
        fn_kwargs = meth_kwargs = {"bits": 4}
        self._test_op(
            'posterize', 'RandomPosterize', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_random_solarize(self):
        fn_kwargs = meth_kwargs = {"threshold": 192.0}
        self._test_op(
            'solarize', 'RandomSolarize', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_random_adjust_sharpness(self):
        fn_kwargs = meth_kwargs = {"sharpness_factor": 2.0}
        self._test_op(
            'adjust_sharpness', 'RandomAdjustSharpness', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_random_autocontrast(self):
        self._test_op('autocontrast', 'RandomAutocontrast')

    def test_random_equalize(self):
        self._test_op('equalize', 'RandomEqualize')

vfdev's avatar
vfdev committed
119
120
121
    def test_color_jitter(self):

        tol = 1.0 + 1e-10
122
        for f in [0.1, 0.5, 1.0, 1.34, (0.3, 0.7), [0.4, 0.5]]:
vfdev's avatar
vfdev committed
123
124
125
126
127
            meth_kwargs = {"brightness": f}
            self._test_class_op(
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
            )

128
        for f in [0.2, 0.5, 1.0, 1.5, (0.3, 0.7), [0.4, 0.5]]:
vfdev's avatar
vfdev committed
129
130
131
132
133
            meth_kwargs = {"contrast": f}
            self._test_class_op(
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
            )

134
        for f in [0.5, 0.75, 1.0, 1.25, (0.3, 0.7), [0.3, 0.4]]:
vfdev's avatar
vfdev committed
135
136
137
138
            meth_kwargs = {"saturation": f}
            self._test_class_op(
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
            )
139

140
141
142
        for f in [0.2, 0.5, (-0.2, 0.3), [-0.4, 0.5]]:
            meth_kwargs = {"hue": f}
            self._test_class_op(
vfdev's avatar
vfdev committed
143
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=16.1, agg_method="max"
144
145
146
147
148
            )

        # All 4 parameters together
        meth_kwargs = {"brightness": 0.2, "contrast": 0.2, "saturation": 0.2, "hue": 0.2}
        self._test_class_op(
vfdev's avatar
vfdev committed
149
            "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=12.1, agg_method="max"
150
151
        )

152
    def test_pad(self):
153
154
        for m in ["constant", "edge", "reflect", "symmetric"]:
            fill = 127 if m == "constant" else 0
155
            for mul in [1, -1]:
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
                # Test functional.pad (PIL and Tensor) with padding as single int
                self._test_functional_op(
                    "pad", fn_kwargs={"padding": mul * 2, "fill": fill, "padding_mode": m}
                )
                # Test functional.pad and transforms.Pad with padding as [int, ]
                fn_kwargs = meth_kwargs = {"padding": [mul * 2, ], "fill": fill, "padding_mode": m}
                self._test_op(
                    "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
                )
                # Test functional.pad and transforms.Pad with padding as list
                fn_kwargs = meth_kwargs = {"padding": [mul * 4, 4], "fill": fill, "padding_mode": m}
                self._test_op(
                    "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
                )
                # Test functional.pad and transforms.Pad with padding as tuple
                fn_kwargs = meth_kwargs = {"padding": (mul * 2, 2, 2, mul * 2), "fill": fill, "padding_mode": m}
                self._test_op(
                    "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
                )
175

vfdev's avatar
vfdev committed
176
177
178
179
    def test_crop(self):
        fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
        # Test transforms.RandomCrop with size and padding as tuple
        meth_kwargs = {"size": (4, 5), "padding": (4, 4), "pad_if_needed": True, }
180
        self._test_op(
vfdev's avatar
vfdev committed
181
182
183
            'crop', 'RandomCrop', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

vfdev's avatar
vfdev committed
184
185
186
187
188
189
190
191
192
193
194
195
196
        sizes = [5, [5, ], [6, 6]]
        padding_configs = [
            {"padding_mode": "constant", "fill": 0},
            {"padding_mode": "constant", "fill": 10},
            {"padding_mode": "constant", "fill": 20},
            {"padding_mode": "edge"},
            {"padding_mode": "reflect"},
        ]

        for size in sizes:
            for padding_config in padding_configs:
                config = dict(padding_config)
                config["size"] = size
197
                self._test_class_op("RandomCrop", config)
vfdev's avatar
vfdev committed
198
199
200
201

    def test_center_crop(self):
        fn_kwargs = {"output_size": (4, 5)}
        meth_kwargs = {"size": (4, 5), }
202
        self._test_op(
vfdev's avatar
vfdev committed
203
204
205
206
            "center_crop", "CenterCrop", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = {"output_size": (5,)}
        meth_kwargs = {"size": (5, )}
207
        self._test_op(
vfdev's avatar
vfdev committed
208
209
            "center_crop", "CenterCrop", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
210
        tensor = torch.randint(0, 256, (3, 10, 10), dtype=torch.uint8, device=self.device)
vfdev's avatar
vfdev committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        # Test torchscript of transforms.CenterCrop with size as int
        f = T.CenterCrop(size=5)
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

        # Test torchscript of transforms.CenterCrop with size as [int, ]
        f = T.CenterCrop(size=[5, ])
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

        # Test torchscript of transforms.CenterCrop with size as tuple
        f = T.CenterCrop(size=(6, 6))
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

226
227
228
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_center_crop.pt"))

229
    def _test_op_list_output(self, func, method, out_length, fn_kwargs=None, meth_kwargs=None):
vfdev's avatar
vfdev committed
230
231
232
233
        if fn_kwargs is None:
            fn_kwargs = {}
        if meth_kwargs is None:
            meth_kwargs = {}
234
235
236
237

        fn = getattr(F, func)
        scripted_fn = torch.jit.script(fn)

238
        tensor, pil_img = self._create_data(height=20, width=20, device=self.device)
239
240
        transformed_t_list = fn(tensor, **fn_kwargs)
        transformed_p_list = fn(pil_img, **fn_kwargs)
vfdev's avatar
vfdev committed
241
242
243
244
245
246
247
248
249
250
251
252
253
        self.assertEqual(len(transformed_t_list), len(transformed_p_list))
        self.assertEqual(len(transformed_t_list), out_length)
        for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
            self.compareTensorToPIL(transformed_tensor, transformed_pil_img)

        transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
        self.assertEqual(len(transformed_t_list), len(transformed_t_list_script))
        self.assertEqual(len(transformed_t_list_script), out_length)
        for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
            self.assertTrue(transformed_tensor.equal(transformed_tensor_script),
                            msg="{} vs {}".format(transformed_tensor, transformed_tensor_script))

        # test for class interface
254
255
        fn = getattr(T, method)(**meth_kwargs)
        scripted_fn = torch.jit.script(fn)
vfdev's avatar
vfdev committed
256
257
258
        output = scripted_fn(tensor)
        self.assertEqual(len(output), len(transformed_t_list_script))

259
260
261
262
263
264
265
266
267
268
269
270
271
        # test on batch of tensors
        batch_tensors = self._create_data_batch(height=23, width=34, channels=3, num_samples=4, device=self.device)
        torch.manual_seed(12)
        transformed_batch_list = fn(batch_tensors)

        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            torch.manual_seed(12)
            transformed_img_list = fn(img_tensor)
            for transformed_img, transformed_batch in zip(transformed_img_list, transformed_batch_list):
                self.assertTrue(transformed_img.equal(transformed_batch[i, ...]),
                                msg="{} vs {}".format(transformed_img, transformed_batch[i, ...]))

272
273
274
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_op_list_{}.pt".format(method)))

vfdev's avatar
vfdev committed
275
276
    def test_five_crop(self):
        fn_kwargs = meth_kwargs = {"size": (5,)}
277
        self._test_op_list_output(
vfdev's avatar
vfdev committed
278
279
280
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [5, ]}
281
        self._test_op_list_output(
vfdev's avatar
vfdev committed
282
283
284
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": (4, 5)}
285
        self._test_op_list_output(
vfdev's avatar
vfdev committed
286
287
288
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [4, 5]}
289
        self._test_op_list_output(
vfdev's avatar
vfdev committed
290
291
292
293
294
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_ten_crop(self):
        fn_kwargs = meth_kwargs = {"size": (5,)}
295
        self._test_op_list_output(
vfdev's avatar
vfdev committed
296
297
298
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [5, ]}
299
        self._test_op_list_output(
vfdev's avatar
vfdev committed
300
301
302
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": (4, 5)}
303
        self._test_op_list_output(
vfdev's avatar
vfdev committed
304
305
306
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [4, 5]}
307
        self._test_op_list_output(
vfdev's avatar
vfdev committed
308
309
310
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

vfdev's avatar
vfdev committed
311
    def test_resize(self):
312
313
314
315
316
317
318
319
320
321
322

        # TODO: Minimal check for bug-fix, improve this later
        x = torch.rand(3, 32, 46)
        t = T.Resize(size=38)
        y = t(x)
        # If size is an int, smaller edge of the image will be matched to this number.
        # i.e, if height > width, then image will be rescaled to (size * height / width, size).
        self.assertTrue(isinstance(y, torch.Tensor))
        self.assertEqual(y.shape[1], 38)
        self.assertEqual(y.shape[2], int(38 * 46 / 32))

323
        tensor, _ = self._create_data(height=34, width=36, device=self.device)
324
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
vfdev's avatar
vfdev committed
325
326
327
328
329
330
        script_fn = torch.jit.script(F.resize)

        for dt in [None, torch.float32, torch.float64]:
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
331
            for size in [32, 34, [32, ], [32, 32], (32, 32), [34, 35]]:
vfdev's avatar
vfdev committed
332
333
334
335
336
337
338
339
340
341
342
343
344
                for interpolation in [BILINEAR, BICUBIC, NEAREST]:

                    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation)

                    if isinstance(size, int):
                        script_size = [size, ]
                    else:
                        script_size = size

                    s_resized_tensor = script_fn(tensor, size=script_size, interpolation=interpolation)
                    self.assertTrue(s_resized_tensor.equal(resized_tensor))

                    transform = T.Resize(size=script_size, interpolation=interpolation)
345
346
347
                    s_transform = torch.jit.script(transform)
                    self._test_transform_vs_scripted(transform, s_transform, tensor)
                    self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
vfdev's avatar
vfdev committed
348

349
350
351
        with get_tmp_dir() as tmp_dir:
            script_fn.save(os.path.join(tmp_dir, "t_resize.pt"))

352
    def test_resized_crop(self):
353
354
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
355

356
357
        for scale in [(0.7, 1.2), [0.7, 1.2]]:
            for ratio in [(0.75, 1.333), [0.75, 1.333]]:
358
                for size in [(32, ), [44, ], [32, ], [32, 32], (32, 32), [44, 55]]:
359
360
361
362
363
                    for interpolation in [NEAREST, BILINEAR, BICUBIC]:
                        transform = T.RandomResizedCrop(
                            size=size, scale=scale, ratio=ratio, interpolation=interpolation
                        )
                        s_transform = torch.jit.script(transform)
364
365
                        self._test_transform_vs_scripted(transform, s_transform, tensor)
                        self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
366

367
368
369
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_resized_crop.pt"))

370
    def test_random_affine(self):
371
372
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
373
374
375
376
377
378

        for shear in [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]]:
            for scale in [(0.7, 1.2), [0.7, 1.2]]:
                for translate in [(0.1, 0.2), [0.2, 0.1]]:
                    for degrees in [45, 35.0, (-45, 45), [-90.0, 90.0]]:
                        for interpolation in [NEAREST, BILINEAR]:
379
380
381
382
383
384
                            for fill in [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
                                transform = T.RandomAffine(
                                    degrees=degrees, translate=translate,
                                    scale=scale, shear=shear, interpolation=interpolation, fill=fill
                                )
                                s_transform = torch.jit.script(transform)
385

386
387
                                self._test_transform_vs_scripted(transform, s_transform, tensor)
                                self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
388

389
390
391
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_random_affine.pt"))

392
    def test_random_rotate(self):
393
394
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
395
396
397
398
399

        for center in [(0, 0), [10, 10], None, (56, 44)]:
            for expand in [True, False]:
                for degrees in [45, 35.0, (-45, 45), [-90.0, 90.0]]:
                    for interpolation in [NEAREST, BILINEAR]:
400
401
402
403
404
                        for fill in [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
                            transform = T.RandomRotation(
                                degrees=degrees, interpolation=interpolation, expand=expand, center=center, fill=fill
                            )
                            s_transform = torch.jit.script(transform)
405

406
407
                            self._test_transform_vs_scripted(transform, s_transform, tensor)
                            self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
408

409
410
411
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_random_rotate.pt"))

412
    def test_random_perspective(self):
413
414
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
415
416
417

        for distortion_scale in np.linspace(0.1, 1.0, num=20):
            for interpolation in [NEAREST, BILINEAR]:
418
419
420
421
422
423
424
                for fill in [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
                    transform = T.RandomPerspective(
                        distortion_scale=distortion_scale,
                        interpolation=interpolation,
                        fill=fill
                    )
                    s_transform = torch.jit.script(transform)
425

426
427
                    self._test_transform_vs_scripted(transform, s_transform, tensor)
                    self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
428

429
430
431
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_perspective.pt"))

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
    def test_to_grayscale(self):

        meth_kwargs = {"num_output_channels": 1}
        tol = 1.0 + 1e-10
        self._test_class_op(
            "Grayscale", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
        )

        meth_kwargs = {"num_output_channels": 3}
        self._test_class_op(
            "Grayscale", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
        )

        meth_kwargs = {}
        self._test_class_op(
            "RandomGrayscale", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
        )

450
451
452
453
454
455
456
457
458
459
460
461
    def test_normalize(self):
        tensor, _ = self._create_data(26, 34, device=self.device)
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        tensor = tensor.to(dtype=torch.float32) / 255.0
        # test for class interface
        fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        scripted_fn = torch.jit.script(fn)

        self._test_transform_vs_scripted(fn, scripted_fn, tensor)
        self._test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

462
463
464
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    def test_linear_transformation(self):
        c, h, w = 3, 24, 32

        tensor, _ = self._create_data(h, w, channels=c, device=self.device)

        matrix = torch.rand(c * h * w, c * h * w, device=self.device)
        mean_vector = torch.rand(c * h * w, device=self.device)

        fn = T.LinearTransformation(matrix, mean_vector)
        scripted_fn = torch.jit.script(fn)

        self._test_transform_vs_scripted(fn, scripted_fn, tensor)

        batch_tensors = torch.rand(4, c, h, w, device=self.device)
        # We skip some tests from _test_transform_vs_scripted_on_batch as
        # results for scripted and non-scripted transformations are not exactly the same
        torch.manual_seed(12)
        transformed_batch = fn(batch_tensors)
        torch.manual_seed(12)
        s_transformed_batch = scripted_fn(batch_tensors)
        self.assertTrue(transformed_batch.equal(s_transformed_batch))

487
488
489
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
    def test_compose(self):
        tensor, _ = self._create_data(26, 34, device=self.device)
        tensor = tensor.to(dtype=torch.float32) / 255.0

        transforms = T.Compose([
            T.CenterCrop(10),
            T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ])
        s_transforms = torch.nn.Sequential(*transforms.transforms)

        scripted_fn = torch.jit.script(s_transforms)
        torch.manual_seed(12)
        transformed_tensor = transforms(tensor)
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
        self.assertTrue(transformed_tensor.equal(transformed_tensor_script), msg="{}".format(transforms))

        t = T.Compose([
            lambda x: x,
        ])
        with self.assertRaisesRegex(RuntimeError, r"Could not get name of python class object"):
            torch.jit.script(t)

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    def test_random_apply(self):
        tensor, _ = self._create_data(26, 34, device=self.device)
        tensor = tensor.to(dtype=torch.float32) / 255.0

        transforms = T.RandomApply([
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ], p=0.4)
        s_transforms = T.RandomApply(torch.nn.ModuleList([
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ]), p=0.4)

        scripted_fn = torch.jit.script(s_transforms)
        torch.manual_seed(12)
        transformed_tensor = transforms(tensor)
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
        self.assertTrue(transformed_tensor.equal(transformed_tensor_script), msg="{}".format(transforms))

        if torch.device(self.device).type == "cpu":
            # Can't check this twice, otherwise
            # "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
            transforms = T.RandomApply([
                T.ColorJitter(),
            ], p=0.3)
            with self.assertRaisesRegex(RuntimeError, r"Module 'RandomApply' has no attribute 'transforms'"):
                torch.jit.script(transforms)

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
    def test_gaussian_blur(self):
        tol = 1.0 + 1e-10
        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": 3, "sigma": 0.75},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": 23, "sigma": [0.1, 2.0]},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": 23, "sigma": (0.1, 2.0)},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": [23], "sigma": 0.75},
            test_exact_match=False, agg_method="max", tol=tol
        )

vfdev's avatar
vfdev committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
    def test_random_erasing(self):
        img = torch.rand(3, 60, 60)

        # Test Set 0: invalid value
        random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0)
        with self.assertRaises(ValueError, msg="If value is a sequence, it should have either a single value or 3"):
            random_erasing(img)

        tensor, _ = self._create_data(24, 32, channels=3, device=self.device)
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        test_configs = [
            {"value": 0.2},
            {"value": "random"},
            {"value": (0.2, 0.2, 0.2)},
            {"value": "random", "ratio": (0.1, 0.2)},
        ]

        for config in test_configs:
            fn = T.RandomErasing(**config)
            scripted_fn = torch.jit.script(fn)
            self._test_transform_vs_scripted(fn, scripted_fn, tensor)
            self._test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

598
599
600
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_random_erasing.pt"))

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
    def test_convert_image_dtype(self):
        tensor, _ = self._create_data(26, 34, device=self.device)
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        for in_dtype in int_dtypes() + float_dtypes():
            in_tensor = tensor.to(in_dtype)
            in_batch_tensors = batch_tensors.to(in_dtype)
            for out_dtype in int_dtypes() + float_dtypes():

                fn = T.ConvertImageDtype(dtype=out_dtype)
                scripted_fn = torch.jit.script(fn)

                if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or \
                        (in_dtype == torch.float64 and out_dtype == torch.int64):
                    with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"):
                        self._test_transform_vs_scripted(fn, scripted_fn, in_tensor)
                    with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"):
                        self._test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
                    continue

                self._test_transform_vs_scripted(fn, scripted_fn, in_tensor)
                self._test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)

        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_convert_dtype.pt"))

627
628
629
630
    def test_autoaugment(self):
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)

631
        s_transform = None
632
633
        for policy in T.AutoAugmentPolicy:
            for fill in [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
634
635
                transform = T.AutoAugment(policy=policy, fill=fill)
                s_transform = torch.jit.script(transform)
636
637
638
639
                for _ in range(100):
                    self._test_transform_vs_scripted(transform, s_transform, tensor)
                    self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

640
641
642
        if s_transform is not None:
            with get_tmp_dir() as tmp_dir:
                s_transform.save(os.path.join(tmp_dir, "t_autoaugment.pt"))
643

644

645
646
647
648
@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):

    def setUp(self):
649
        torch.set_deterministic(False)
650
651
652
        self.device = "cuda"


653
654
if __name__ == '__main__':
    unittest.main()