test_transforms_tensor.py 9.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import torch
from torchvision import transforms as T
from torchvision.transforms import functional as F
from PIL import Image

import numpy as np

import unittest


class Tester(unittest.TestCase):
    def _create_data(self, height=3, width=3, channels=3):
        tensor = torch.randint(0, 255, (channels, height, width), dtype=torch.uint8)
        pil_img = Image.fromarray(tensor.permute(1, 2, 0).contiguous().numpy())
        return tensor, pil_img

    def compareTensorToPIL(self, tensor, pil_image):
        pil_tensor = torch.as_tensor(np.array(pil_image).transpose((2, 0, 1)))
        self.assertTrue(tensor.equal(pil_tensor))

21
22
23
24
25
26
27
28
    def _test_functional_geom_op(self, func, fn_kwargs):
        if fn_kwargs is None:
            fn_kwargs = {}
        tensor, pil_img = self._create_data(height=10, width=10)
        transformed_tensor = getattr(F, func)(tensor, **fn_kwargs)
        transformed_pil_img = getattr(F, func)(pil_img, **fn_kwargs)
        self.compareTensorToPIL(transformed_tensor, transformed_pil_img)

vfdev's avatar
vfdev committed
29
    def _test_class_geom_op(self, method, meth_kwargs=None):
30
31
        if meth_kwargs is None:
            meth_kwargs = {}
vfdev's avatar
vfdev committed
32

33
        tensor, pil_img = self._create_data(height=10, width=10)
vfdev's avatar
vfdev committed
34
35
36
37
38
39
40
41
42
        # test for class interface
        f = getattr(T, method)(**meth_kwargs)
        scripted_fn = torch.jit.script(f)

        # set seed to reproduce the same transformation for tensor and PIL image
        torch.manual_seed(12)
        transformed_tensor = f(tensor)
        torch.manual_seed(12)
        transformed_pil_img = f(pil_img)
43
        self.compareTensorToPIL(transformed_tensor, transformed_pil_img)
44

vfdev's avatar
vfdev committed
45
46
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
47
        self.assertTrue(transformed_tensor.equal(transformed_tensor_script))
48

vfdev's avatar
vfdev committed
49
50
51
    def _test_geom_op(self, func, method, fn_kwargs=None, meth_kwargs=None):
        self._test_functional_geom_op(func, fn_kwargs)
        self._test_class_geom_op(method, meth_kwargs)
52
53

    def test_random_horizontal_flip(self):
54
        self._test_geom_op('hflip', 'RandomHorizontalFlip')
55
56

    def test_random_vertical_flip(self):
57
        self._test_geom_op('vflip', 'RandomVerticalFlip')
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    def test_adjustments(self):
        fns = ['adjust_brightness', 'adjust_contrast', 'adjust_saturation']
        for _ in range(20):
            factor = 3 * torch.rand(1).item()
            tensor, _ = self._create_data()
            pil_img = T.ToPILImage()(tensor)

            for func in fns:
                adjusted_tensor = getattr(F, func)(tensor, factor)
                adjusted_pil_img = getattr(F, func)(pil_img, factor)

                adjusted_pil_tensor = T.ToTensor()(adjusted_pil_img)
                scripted_fn = torch.jit.script(getattr(F, func))
                adjusted_tensor_script = scripted_fn(tensor, factor)

                if not tensor.dtype.is_floating_point:
                    adjusted_tensor = adjusted_tensor.to(torch.float) / 255
                    adjusted_tensor_script = adjusted_tensor_script.to(torch.float) / 255

                # F uses uint8 and F_t uses float, so there is a small
                # difference in values caused by (at most 5) truncations.
                max_diff = (adjusted_tensor - adjusted_pil_tensor).abs().max()
                max_diff_scripted = (adjusted_tensor - adjusted_tensor_script).abs().max()
                self.assertLess(max_diff, 5 / 255 + 1e-5)
                self.assertLess(max_diff_scripted, 5 / 255 + 1e-5)

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    def test_pad(self):

        # Test functional.pad (PIL and Tensor) with padding as single int
        self._test_functional_geom_op(
            "pad", fn_kwargs={"padding": 2, "fill": 0, "padding_mode": "constant"}
        )
        # Test functional.pad and transforms.Pad with padding as [int, ]
        fn_kwargs = meth_kwargs = {"padding": [2, ], "fill": 0, "padding_mode": "constant"}
        self._test_geom_op(
            "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        # Test functional.pad and transforms.Pad with padding as list
        fn_kwargs = meth_kwargs = {"padding": [4, 4], "fill": 0, "padding_mode": "constant"}
        self._test_geom_op(
            "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        # Test functional.pad and transforms.Pad with padding as tuple
        fn_kwargs = meth_kwargs = {"padding": (2, 2, 2, 2), "fill": 127, "padding_mode": "constant"}
        self._test_geom_op(
            "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

vfdev's avatar
vfdev committed
107
108
109
110
111
112
113
114
    def test_crop(self):
        fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
        # Test transforms.RandomCrop with size and padding as tuple
        meth_kwargs = {"size": (4, 5), "padding": (4, 4), "pad_if_needed": True, }
        self._test_geom_op(
            'crop', 'RandomCrop', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

vfdev's avatar
vfdev committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        sizes = [5, [5, ], [6, 6]]
        padding_configs = [
            {"padding_mode": "constant", "fill": 0},
            {"padding_mode": "constant", "fill": 10},
            {"padding_mode": "constant", "fill": 20},
            {"padding_mode": "edge"},
            {"padding_mode": "reflect"},
        ]

        for size in sizes:
            for padding_config in padding_configs:
                config = dict(padding_config)
                config["size"] = size
                self._test_class_geom_op("RandomCrop", config)
vfdev's avatar
vfdev committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

    def test_center_crop(self):
        fn_kwargs = {"output_size": (4, 5)}
        meth_kwargs = {"size": (4, 5), }
        self._test_geom_op(
            "center_crop", "CenterCrop", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = {"output_size": (5,)}
        meth_kwargs = {"size": (5, )}
        self._test_geom_op(
            "center_crop", "CenterCrop", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        tensor = torch.randint(0, 255, (3, 10, 10), dtype=torch.uint8)
        # Test torchscript of transforms.CenterCrop with size as int
        f = T.CenterCrop(size=5)
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

        # Test torchscript of transforms.CenterCrop with size as [int, ]
        f = T.CenterCrop(size=[5, ])
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

        # Test torchscript of transforms.CenterCrop with size as tuple
        f = T.CenterCrop(size=(6, 6))
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

    def _test_geom_op_list_output(self, func, method, out_length, fn_kwargs=None, meth_kwargs=None):
        if fn_kwargs is None:
            fn_kwargs = {}
        if meth_kwargs is None:
            meth_kwargs = {}
        tensor, pil_img = self._create_data(height=20, width=20)
        transformed_t_list = getattr(F, func)(tensor, **fn_kwargs)
        transformed_p_list = getattr(F, func)(pil_img, **fn_kwargs)
        self.assertEqual(len(transformed_t_list), len(transformed_p_list))
        self.assertEqual(len(transformed_t_list), out_length)
        for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
            self.compareTensorToPIL(transformed_tensor, transformed_pil_img)

        scripted_fn = torch.jit.script(getattr(F, func))
        transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
        self.assertEqual(len(transformed_t_list), len(transformed_t_list_script))
        self.assertEqual(len(transformed_t_list_script), out_length)
        for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
            self.assertTrue(transformed_tensor.equal(transformed_tensor_script),
                            msg="{} vs {}".format(transformed_tensor, transformed_tensor_script))

        # test for class interface
        f = getattr(T, method)(**meth_kwargs)
        scripted_fn = torch.jit.script(f)
        output = scripted_fn(tensor)
        self.assertEqual(len(output), len(transformed_t_list_script))

    def test_five_crop(self):
        fn_kwargs = meth_kwargs = {"size": (5,)}
        self._test_geom_op_list_output(
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [5, ]}
        self._test_geom_op_list_output(
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": (4, 5)}
        self._test_geom_op_list_output(
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [4, 5]}
        self._test_geom_op_list_output(
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_ten_crop(self):
        fn_kwargs = meth_kwargs = {"size": (5,)}
        self._test_geom_op_list_output(
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [5, ]}
        self._test_geom_op_list_output(
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": (4, 5)}
        self._test_geom_op_list_output(
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [4, 5]}
        self._test_geom_op_list_output(
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

220
221
222

if __name__ == '__main__':
    unittest.main()