test_transforms_tensor.py 29.4 KB
Newer Older
1
import os
2
3
4
import torch
from torchvision import transforms as T
from torchvision.transforms import functional as F
5
from torchvision.transforms import InterpolationMode
6
7
8
9

import numpy as np

import unittest
10
from typing import Sequence
11

12
from common_utils import TransformsTester, get_tmp_dir, int_dtypes, float_dtypes
13
14


15
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
16
17


18
class Tester(TransformsTester):
19

20
21
22
    def setUp(self):
        self.device = "cpu"

23
    def _test_functional_op(self, func, fn_kwargs, test_exact_match=True, **match_kwargs):
24
25
        if fn_kwargs is None:
            fn_kwargs = {}
26
27

        f = getattr(F, func)
28
        tensor, pil_img = self._create_data(height=10, width=10, device=self.device)
29
30
        transformed_tensor = f(tensor, **fn_kwargs)
        transformed_pil_img = f(pil_img, **fn_kwargs)
31
32
33
34
        if test_exact_match:
            self.compareTensorToPIL(transformed_tensor, transformed_pil_img, **match_kwargs)
        else:
            self.approxEqualTensorToPIL(transformed_tensor, transformed_pil_img, **match_kwargs)
35

36
    def _test_transform_vs_scripted(self, transform, s_transform, tensor, msg=None):
37
38
39
40
        torch.manual_seed(12)
        out1 = transform(tensor)
        torch.manual_seed(12)
        out2 = s_transform(tensor)
41
        self.assertTrue(out1.equal(out2), msg=msg)
42

43
    def _test_transform_vs_scripted_on_batch(self, transform, s_transform, batch_tensors, msg=None):
44
45
46
47
48
49
50
        torch.manual_seed(12)
        transformed_batch = transform(batch_tensors)

        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            torch.manual_seed(12)
            transformed_img = transform(img_tensor)
51
            self.assertTrue(transformed_img.equal(transformed_batch[i, ...]), msg=msg)
52
53
54

        torch.manual_seed(12)
        s_transformed_batch = s_transform(batch_tensors)
55
        self.assertTrue(transformed_batch.equal(s_transformed_batch), msg=msg)
56

57
    def _test_class_op(self, method, meth_kwargs=None, test_exact_match=True, **match_kwargs):
58
59
        if meth_kwargs is None:
            meth_kwargs = {}
vfdev's avatar
vfdev committed
60
61
62
63
64

        # test for class interface
        f = getattr(T, method)(**meth_kwargs)
        scripted_fn = torch.jit.script(f)

65
        tensor, pil_img = self._create_data(26, 34, device=self.device)
vfdev's avatar
vfdev committed
66
67
68
69
70
        # set seed to reproduce the same transformation for tensor and PIL image
        torch.manual_seed(12)
        transformed_tensor = f(tensor)
        torch.manual_seed(12)
        transformed_pil_img = f(pil_img)
71
72
73
74
        if test_exact_match:
            self.compareTensorToPIL(transformed_tensor, transformed_pil_img, **match_kwargs)
        else:
            self.approxEqualTensorToPIL(transformed_tensor.float(), transformed_pil_img, **match_kwargs)
75

vfdev's avatar
vfdev committed
76
77
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
78
        self.assertTrue(transformed_tensor.equal(transformed_tensor_script))
79

80
81
82
        batch_tensors = self._create_data_batch(height=23, width=34, channels=3, num_samples=4, device=self.device)
        self._test_transform_vs_scripted_on_batch(f, scripted_fn, batch_tensors)

83
84
85
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_{}.pt".format(method)))

86
87
88
    def _test_op(self, func, method, fn_kwargs=None, meth_kwargs=None, test_exact_match=True, **match_kwargs):
        self._test_functional_op(func, fn_kwargs, test_exact_match=test_exact_match, **match_kwargs)
        self._test_class_op(method, meth_kwargs, test_exact_match=test_exact_match, **match_kwargs)
89
90

    def test_random_horizontal_flip(self):
91
        self._test_op('hflip', 'RandomHorizontalFlip')
92
93

    def test_random_vertical_flip(self):
94
        self._test_op('vflip', 'RandomVerticalFlip')
95

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    def test_random_invert(self):
        self._test_op('invert', 'RandomInvert')

    def test_random_posterize(self):
        fn_kwargs = meth_kwargs = {"bits": 4}
        self._test_op(
            'posterize', 'RandomPosterize', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_random_solarize(self):
        fn_kwargs = meth_kwargs = {"threshold": 192.0}
        self._test_op(
            'solarize', 'RandomSolarize', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_random_adjust_sharpness(self):
        fn_kwargs = meth_kwargs = {"sharpness_factor": 2.0}
        self._test_op(
            'adjust_sharpness', 'RandomAdjustSharpness', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_random_autocontrast(self):
118
119
120
121
        # We check the max abs difference because on some (very rare) pixels, the actual value may be different
        # between PIL and tensors due to floating approximations.
        self._test_op('autocontrast', 'RandomAutocontrast', test_exact_match=False, agg_method='max',
                      tol=(1 + 1e-5), allowed_percentage_diff=.05)
122
123
124
125

    def test_random_equalize(self):
        self._test_op('equalize', 'RandomEqualize')

vfdev's avatar
vfdev committed
126
127
128
    def test_color_jitter(self):

        tol = 1.0 + 1e-10
129
        for f in [0.1, 0.5, 1.0, 1.34, (0.3, 0.7), [0.4, 0.5]]:
vfdev's avatar
vfdev committed
130
131
132
133
134
            meth_kwargs = {"brightness": f}
            self._test_class_op(
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
            )

135
        for f in [0.2, 0.5, 1.0, 1.5, (0.3, 0.7), [0.4, 0.5]]:
vfdev's avatar
vfdev committed
136
137
138
139
140
            meth_kwargs = {"contrast": f}
            self._test_class_op(
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
            )

141
        for f in [0.5, 0.75, 1.0, 1.25, (0.3, 0.7), [0.3, 0.4]]:
vfdev's avatar
vfdev committed
142
143
144
145
            meth_kwargs = {"saturation": f}
            self._test_class_op(
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
            )
146

147
148
149
        for f in [0.2, 0.5, (-0.2, 0.3), [-0.4, 0.5]]:
            meth_kwargs = {"hue": f}
            self._test_class_op(
vfdev's avatar
vfdev committed
150
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=16.1, agg_method="max"
151
152
153
154
155
            )

        # All 4 parameters together
        meth_kwargs = {"brightness": 0.2, "contrast": 0.2, "saturation": 0.2, "hue": 0.2}
        self._test_class_op(
vfdev's avatar
vfdev committed
156
            "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=12.1, agg_method="max"
157
158
        )

159
    def test_pad(self):
160
161
        for m in ["constant", "edge", "reflect", "symmetric"]:
            fill = 127 if m == "constant" else 0
162
            for mul in [1, -1]:
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
                # Test functional.pad (PIL and Tensor) with padding as single int
                self._test_functional_op(
                    "pad", fn_kwargs={"padding": mul * 2, "fill": fill, "padding_mode": m}
                )
                # Test functional.pad and transforms.Pad with padding as [int, ]
                fn_kwargs = meth_kwargs = {"padding": [mul * 2, ], "fill": fill, "padding_mode": m}
                self._test_op(
                    "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
                )
                # Test functional.pad and transforms.Pad with padding as list
                fn_kwargs = meth_kwargs = {"padding": [mul * 4, 4], "fill": fill, "padding_mode": m}
                self._test_op(
                    "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
                )
                # Test functional.pad and transforms.Pad with padding as tuple
                fn_kwargs = meth_kwargs = {"padding": (mul * 2, 2, 2, mul * 2), "fill": fill, "padding_mode": m}
                self._test_op(
                    "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
                )
182

vfdev's avatar
vfdev committed
183
184
185
186
    def test_crop(self):
        fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
        # Test transforms.RandomCrop with size and padding as tuple
        meth_kwargs = {"size": (4, 5), "padding": (4, 4), "pad_if_needed": True, }
187
        self._test_op(
vfdev's avatar
vfdev committed
188
189
190
            'crop', 'RandomCrop', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        # Test transforms.functional.crop including outside the image area
        fn_kwargs = {"top": -2, "left": 3, "height": 4, "width": 5}  # top
        self._test_functional_op('crop', fn_kwargs=fn_kwargs)

        fn_kwargs = {"top": 1, "left": -3, "height": 4, "width": 5}  # left
        self._test_functional_op('crop', fn_kwargs=fn_kwargs)

        fn_kwargs = {"top": 7, "left": 3, "height": 4, "width": 5}  # bottom
        self._test_functional_op('crop', fn_kwargs=fn_kwargs)

        fn_kwargs = {"top": 3, "left": 8, "height": 4, "width": 5}  # right
        self._test_functional_op('crop', fn_kwargs=fn_kwargs)

        fn_kwargs = {"top": -3, "left": -3, "height": 15, "width": 15}  # all
        self._test_functional_op('crop', fn_kwargs=fn_kwargs)

vfdev's avatar
vfdev committed
207
208
209
210
211
212
213
214
215
216
217
218
219
        sizes = [5, [5, ], [6, 6]]
        padding_configs = [
            {"padding_mode": "constant", "fill": 0},
            {"padding_mode": "constant", "fill": 10},
            {"padding_mode": "constant", "fill": 20},
            {"padding_mode": "edge"},
            {"padding_mode": "reflect"},
        ]

        for size in sizes:
            for padding_config in padding_configs:
                config = dict(padding_config)
                config["size"] = size
220
                self._test_class_op("RandomCrop", config)
vfdev's avatar
vfdev committed
221
222
223
224

    def test_center_crop(self):
        fn_kwargs = {"output_size": (4, 5)}
        meth_kwargs = {"size": (4, 5), }
225
        self._test_op(
vfdev's avatar
vfdev committed
226
227
228
229
            "center_crop", "CenterCrop", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = {"output_size": (5,)}
        meth_kwargs = {"size": (5, )}
230
        self._test_op(
vfdev's avatar
vfdev committed
231
232
            "center_crop", "CenterCrop", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
233
        tensor = torch.randint(0, 256, (3, 10, 10), dtype=torch.uint8, device=self.device)
vfdev's avatar
vfdev committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        # Test torchscript of transforms.CenterCrop with size as int
        f = T.CenterCrop(size=5)
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

        # Test torchscript of transforms.CenterCrop with size as [int, ]
        f = T.CenterCrop(size=[5, ])
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

        # Test torchscript of transforms.CenterCrop with size as tuple
        f = T.CenterCrop(size=(6, 6))
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

249
250
251
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_center_crop.pt"))

252
    def _test_op_list_output(self, func, method, out_length, fn_kwargs=None, meth_kwargs=None):
vfdev's avatar
vfdev committed
253
254
255
256
        if fn_kwargs is None:
            fn_kwargs = {}
        if meth_kwargs is None:
            meth_kwargs = {}
257
258
259
260

        fn = getattr(F, func)
        scripted_fn = torch.jit.script(fn)

261
        tensor, pil_img = self._create_data(height=20, width=20, device=self.device)
262
263
        transformed_t_list = fn(tensor, **fn_kwargs)
        transformed_p_list = fn(pil_img, **fn_kwargs)
vfdev's avatar
vfdev committed
264
265
266
267
268
269
270
271
272
273
274
275
276
        self.assertEqual(len(transformed_t_list), len(transformed_p_list))
        self.assertEqual(len(transformed_t_list), out_length)
        for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
            self.compareTensorToPIL(transformed_tensor, transformed_pil_img)

        transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
        self.assertEqual(len(transformed_t_list), len(transformed_t_list_script))
        self.assertEqual(len(transformed_t_list_script), out_length)
        for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
            self.assertTrue(transformed_tensor.equal(transformed_tensor_script),
                            msg="{} vs {}".format(transformed_tensor, transformed_tensor_script))

        # test for class interface
277
278
        fn = getattr(T, method)(**meth_kwargs)
        scripted_fn = torch.jit.script(fn)
vfdev's avatar
vfdev committed
279
280
281
        output = scripted_fn(tensor)
        self.assertEqual(len(output), len(transformed_t_list_script))

282
283
284
285
286
287
288
289
290
291
292
293
294
        # test on batch of tensors
        batch_tensors = self._create_data_batch(height=23, width=34, channels=3, num_samples=4, device=self.device)
        torch.manual_seed(12)
        transformed_batch_list = fn(batch_tensors)

        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            torch.manual_seed(12)
            transformed_img_list = fn(img_tensor)
            for transformed_img, transformed_batch in zip(transformed_img_list, transformed_batch_list):
                self.assertTrue(transformed_img.equal(transformed_batch[i, ...]),
                                msg="{} vs {}".format(transformed_img, transformed_batch[i, ...]))

295
296
297
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_op_list_{}.pt".format(method)))

vfdev's avatar
vfdev committed
298
299
    def test_five_crop(self):
        fn_kwargs = meth_kwargs = {"size": (5,)}
300
        self._test_op_list_output(
vfdev's avatar
vfdev committed
301
302
303
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [5, ]}
304
        self._test_op_list_output(
vfdev's avatar
vfdev committed
305
306
307
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": (4, 5)}
308
        self._test_op_list_output(
vfdev's avatar
vfdev committed
309
310
311
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [4, 5]}
312
        self._test_op_list_output(
vfdev's avatar
vfdev committed
313
314
315
316
317
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_ten_crop(self):
        fn_kwargs = meth_kwargs = {"size": (5,)}
318
        self._test_op_list_output(
vfdev's avatar
vfdev committed
319
320
321
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [5, ]}
322
        self._test_op_list_output(
vfdev's avatar
vfdev committed
323
324
325
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": (4, 5)}
326
        self._test_op_list_output(
vfdev's avatar
vfdev committed
327
328
329
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [4, 5]}
330
        self._test_op_list_output(
vfdev's avatar
vfdev committed
331
332
333
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

vfdev's avatar
vfdev committed
334
    def test_resize(self):
335
336
337
338
339
340
341
342
343
344
345

        # TODO: Minimal check for bug-fix, improve this later
        x = torch.rand(3, 32, 46)
        t = T.Resize(size=38)
        y = t(x)
        # If size is an int, smaller edge of the image will be matched to this number.
        # i.e, if height > width, then image will be rescaled to (size * height / width, size).
        self.assertTrue(isinstance(y, torch.Tensor))
        self.assertEqual(y.shape[1], 38)
        self.assertEqual(y.shape[2], int(38 * 46 / 32))

346
        tensor, _ = self._create_data(height=34, width=36, device=self.device)
347
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
vfdev's avatar
vfdev committed
348
349
350
351
352

        for dt in [None, torch.float32, torch.float64]:
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
353
            for size in [32, 34, [32, ], [32, 32], (32, 32), [34, 35]]:
354
355
356
357
                for max_size in (None, 35, 1000):
                    if max_size is not None and isinstance(size, Sequence) and len(size) != 1:
                        continue  # Not supported
                    for interpolation in [BILINEAR, BICUBIC, NEAREST]:
vfdev's avatar
vfdev committed
358

359
360
361
362
                        if isinstance(size, int):
                            script_size = [size, ]
                        else:
                            script_size = size
vfdev's avatar
vfdev committed
363

364
365
366
367
                        transform = T.Resize(size=script_size, interpolation=interpolation, max_size=max_size)
                        s_transform = torch.jit.script(transform)
                        self._test_transform_vs_scripted(transform, s_transform, tensor)
                        self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
vfdev's avatar
vfdev committed
368

369
        with get_tmp_dir() as tmp_dir:
370
            s_transform.save(os.path.join(tmp_dir, "t_resize.pt"))
371

372
    def test_resized_crop(self):
373
374
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
375

376
377
        for scale in [(0.7, 1.2), [0.7, 1.2]]:
            for ratio in [(0.75, 1.333), [0.75, 1.333]]:
378
                for size in [(32, ), [44, ], [32, ], [32, 32], (32, 32), [44, 55]]:
379
380
381
382
383
                    for interpolation in [NEAREST, BILINEAR, BICUBIC]:
                        transform = T.RandomResizedCrop(
                            size=size, scale=scale, ratio=ratio, interpolation=interpolation
                        )
                        s_transform = torch.jit.script(transform)
384
385
                        self._test_transform_vs_scripted(transform, s_transform, tensor)
                        self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
386

387
388
389
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_resized_crop.pt"))

390
    def test_random_affine(self):
391
392
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
393
394
395
396
397
398

        for shear in [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]]:
            for scale in [(0.7, 1.2), [0.7, 1.2]]:
                for translate in [(0.1, 0.2), [0.2, 0.1]]:
                    for degrees in [45, 35.0, (-45, 45), [-90.0, 90.0]]:
                        for interpolation in [NEAREST, BILINEAR]:
399
400
401
402
403
404
                            for fill in [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
                                transform = T.RandomAffine(
                                    degrees=degrees, translate=translate,
                                    scale=scale, shear=shear, interpolation=interpolation, fill=fill
                                )
                                s_transform = torch.jit.script(transform)
405

406
407
                                self._test_transform_vs_scripted(transform, s_transform, tensor)
                                self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
408

409
410
411
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_random_affine.pt"))

412
    def test_random_rotate(self):
413
414
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
415
416
417
418
419

        for center in [(0, 0), [10, 10], None, (56, 44)]:
            for expand in [True, False]:
                for degrees in [45, 35.0, (-45, 45), [-90.0, 90.0]]:
                    for interpolation in [NEAREST, BILINEAR]:
420
421
422
423
424
                        for fill in [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
                            transform = T.RandomRotation(
                                degrees=degrees, interpolation=interpolation, expand=expand, center=center, fill=fill
                            )
                            s_transform = torch.jit.script(transform)
425

426
427
                            self._test_transform_vs_scripted(transform, s_transform, tensor)
                            self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
428

429
430
431
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_random_rotate.pt"))

432
    def test_random_perspective(self):
433
434
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
435
436
437

        for distortion_scale in np.linspace(0.1, 1.0, num=20):
            for interpolation in [NEAREST, BILINEAR]:
438
439
440
441
442
443
444
                for fill in [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
                    transform = T.RandomPerspective(
                        distortion_scale=distortion_scale,
                        interpolation=interpolation,
                        fill=fill
                    )
                    s_transform = torch.jit.script(transform)
445

446
447
                    self._test_transform_vs_scripted(transform, s_transform, tensor)
                    self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
448

449
450
451
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_perspective.pt"))

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    def test_to_grayscale(self):

        meth_kwargs = {"num_output_channels": 1}
        tol = 1.0 + 1e-10
        self._test_class_op(
            "Grayscale", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
        )

        meth_kwargs = {"num_output_channels": 3}
        self._test_class_op(
            "Grayscale", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
        )

        meth_kwargs = {}
        self._test_class_op(
            "RandomGrayscale", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
        )

470
    def test_normalize(self):
471
        fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
472
473
        tensor, _ = self._create_data(26, 34, device=self.device)

474
475
476
477
        with self.assertRaisesRegex(TypeError, r"Input tensor should be a float tensor"):
            fn(tensor)

        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)
478
479
480
481
482
483
484
        tensor = tensor.to(dtype=torch.float32) / 255.0
        # test for class interface
        scripted_fn = torch.jit.script(fn)

        self._test_transform_vs_scripted(fn, scripted_fn, tensor)
        self._test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

485
486
487
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
    def test_linear_transformation(self):
        c, h, w = 3, 24, 32

        tensor, _ = self._create_data(h, w, channels=c, device=self.device)

        matrix = torch.rand(c * h * w, c * h * w, device=self.device)
        mean_vector = torch.rand(c * h * w, device=self.device)

        fn = T.LinearTransformation(matrix, mean_vector)
        scripted_fn = torch.jit.script(fn)

        self._test_transform_vs_scripted(fn, scripted_fn, tensor)

        batch_tensors = torch.rand(4, c, h, w, device=self.device)
        # We skip some tests from _test_transform_vs_scripted_on_batch as
        # results for scripted and non-scripted transformations are not exactly the same
        torch.manual_seed(12)
        transformed_batch = fn(batch_tensors)
        torch.manual_seed(12)
        s_transformed_batch = scripted_fn(batch_tensors)
        self.assertTrue(transformed_batch.equal(s_transformed_batch))

510
511
512
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))

513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
    def test_compose(self):
        tensor, _ = self._create_data(26, 34, device=self.device)
        tensor = tensor.to(dtype=torch.float32) / 255.0

        transforms = T.Compose([
            T.CenterCrop(10),
            T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ])
        s_transforms = torch.nn.Sequential(*transforms.transforms)

        scripted_fn = torch.jit.script(s_transforms)
        torch.manual_seed(12)
        transformed_tensor = transforms(tensor)
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
        self.assertTrue(transformed_tensor.equal(transformed_tensor_script), msg="{}".format(transforms))

        t = T.Compose([
            lambda x: x,
        ])
        with self.assertRaisesRegex(RuntimeError, r"Could not get name of python class object"):
            torch.jit.script(t)

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
    def test_random_apply(self):
        tensor, _ = self._create_data(26, 34, device=self.device)
        tensor = tensor.to(dtype=torch.float32) / 255.0

        transforms = T.RandomApply([
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ], p=0.4)
        s_transforms = T.RandomApply(torch.nn.ModuleList([
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ]), p=0.4)

        scripted_fn = torch.jit.script(s_transforms)
        torch.manual_seed(12)
        transformed_tensor = transforms(tensor)
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
        self.assertTrue(transformed_tensor.equal(transformed_tensor_script), msg="{}".format(transforms))

        if torch.device(self.device).type == "cpu":
            # Can't check this twice, otherwise
            # "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
            transforms = T.RandomApply([
                T.ColorJitter(),
            ], p=0.3)
            with self.assertRaisesRegex(RuntimeError, r"Module 'RandomApply' has no attribute 'transforms'"):
                torch.jit.script(transforms)

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
    def test_gaussian_blur(self):
        tol = 1.0 + 1e-10
        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": 3, "sigma": 0.75},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": 23, "sigma": [0.1, 2.0]},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": 23, "sigma": (0.1, 2.0)},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": [23], "sigma": 0.75},
            test_exact_match=False, agg_method="max", tol=tol
        )

vfdev's avatar
vfdev committed
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
    def test_random_erasing(self):
        img = torch.rand(3, 60, 60)

        # Test Set 0: invalid value
        random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0)
        with self.assertRaises(ValueError, msg="If value is a sequence, it should have either a single value or 3"):
            random_erasing(img)

        tensor, _ = self._create_data(24, 32, channels=3, device=self.device)
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        test_configs = [
            {"value": 0.2},
            {"value": "random"},
            {"value": (0.2, 0.2, 0.2)},
            {"value": "random", "ratio": (0.1, 0.2)},
        ]

        for config in test_configs:
            fn = T.RandomErasing(**config)
            scripted_fn = torch.jit.script(fn)
            self._test_transform_vs_scripted(fn, scripted_fn, tensor)
            self._test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

621
622
623
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_random_erasing.pt"))

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
    def test_convert_image_dtype(self):
        tensor, _ = self._create_data(26, 34, device=self.device)
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        for in_dtype in int_dtypes() + float_dtypes():
            in_tensor = tensor.to(in_dtype)
            in_batch_tensors = batch_tensors.to(in_dtype)
            for out_dtype in int_dtypes() + float_dtypes():

                fn = T.ConvertImageDtype(dtype=out_dtype)
                scripted_fn = torch.jit.script(fn)

                if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or \
                        (in_dtype == torch.float64 and out_dtype == torch.int64):
                    with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"):
                        self._test_transform_vs_scripted(fn, scripted_fn, in_tensor)
                    with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"):
                        self._test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
                    continue

                self._test_transform_vs_scripted(fn, scripted_fn, in_tensor)
                self._test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)

        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_convert_dtype.pt"))

650
651
652
653
    def test_autoaugment(self):
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)

654
        s_transform = None
655
656
        for policy in T.AutoAugmentPolicy:
            for fill in [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
657
658
                transform = T.AutoAugment(policy=policy, fill=fill)
                s_transform = torch.jit.script(transform)
659
660
661
662
                for _ in range(100):
                    self._test_transform_vs_scripted(transform, s_transform, tensor)
                    self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

663
664
665
        if s_transform is not None:
            with get_tmp_dir() as tmp_dir:
                s_transform.save(os.path.join(tmp_dir, "t_autoaugment.pt"))
666

667

668
669
670
671
@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):

    def setUp(self):
672
        torch.set_deterministic(False)
673
674
675
        self.device = "cuda"


676
677
if __name__ == '__main__':
    unittest.main()