Unverified Commit 325dfd61 authored by Vasilis Vryniotis's avatar Vasilis Vryniotis Committed by GitHub
Browse files

Fixing the upper bound limit of random pixels in tests to 256. (#3136)

parent f80b83ea
...@@ -21,7 +21,7 @@ def mnist_root(num_images, cls_name): ...@@ -21,7 +21,7 @@ def mnist_root(num_images, cls_name):
return torch.tensor(v, dtype=torch.int32).numpy().tobytes()[::-1] return torch.tensor(v, dtype=torch.int32).numpy().tobytes()[::-1]
def _make_image_file(filename, num_images): def _make_image_file(filename, num_images):
img = torch.randint(0, 255, size=(28 * 28 * num_images,), dtype=torch.uint8) img = torch.randint(0, 256, size=(28 * 28 * num_images,), dtype=torch.uint8)
with open(filename, "wb") as f: with open(filename, "wb") as f:
f.write(_encode(2051)) # magic header f.write(_encode(2051)) # magic header
f.write(_encode(num_images)) f.write(_encode(num_images))
......
...@@ -29,7 +29,7 @@ def get_list_of_videos(num_videos=5, sizes=None, fps=None): ...@@ -29,7 +29,7 @@ def get_list_of_videos(num_videos=5, sizes=None, fps=None):
f = 5 f = 5
else: else:
f = fps[i] f = fps[i]
data = torch.randint(0, 255, (size, 300, 400, 3), dtype=torch.uint8) data = torch.randint(0, 256, (size, 300, 400, 3), dtype=torch.uint8)
name = os.path.join(tmp_dir, "{}.mp4".format(i)) name = os.path.join(tmp_dir, "{}.mp4".format(i))
names.append(name) names.append(name)
io.write_video(name, data, fps=f) io.write_video(name, data, fps=f)
......
...@@ -22,7 +22,7 @@ def get_list_of_videos(num_videos=5, sizes=None, fps=None): ...@@ -22,7 +22,7 @@ def get_list_of_videos(num_videos=5, sizes=None, fps=None):
f = 5 f = 5
else: else:
f = fps[i] f = fps[i]
data = torch.randint(0, 255, (size, 300, 400, 3), dtype=torch.uint8) data = torch.randint(0, 256, (size, 300, 400, 3), dtype=torch.uint8)
name = os.path.join(tmp_dir, "{}.mp4".format(i)) name = os.path.join(tmp_dir, "{}.mp4".format(i))
names.append(name) names.append(name)
io.write_video(name, data, fps=f) io.write_video(name, data, fps=f)
......
...@@ -180,7 +180,7 @@ class Tester(TransformsTester): ...@@ -180,7 +180,7 @@ class Tester(TransformsTester):
self._test_op( self._test_op(
"center_crop", "CenterCrop", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs "center_crop", "CenterCrop", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
) )
tensor = torch.randint(0, 255, (3, 10, 10), dtype=torch.uint8, device=self.device) tensor = torch.randint(0, 256, (3, 10, 10), dtype=torch.uint8, device=self.device)
# Test torchscript of transforms.CenterCrop with size as int # Test torchscript of transforms.CenterCrop with size as int
f = T.CenterCrop(size=5) f = T.CenterCrop(size=5)
scripted_fn = torch.jit.script(f) scripted_fn = torch.jit.script(f)
...@@ -294,7 +294,7 @@ class Tester(TransformsTester): ...@@ -294,7 +294,7 @@ class Tester(TransformsTester):
self.assertEqual(y.shape[2], int(38 * 46 / 32)) self.assertEqual(y.shape[2], int(38 * 46 / 32))
tensor, _ = self._create_data(height=34, width=36, device=self.device) tensor, _ = self._create_data(height=34, width=36, device=self.device)
batch_tensors = torch.randint(0, 255, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device) batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
script_fn = torch.jit.script(F.resize) script_fn = torch.jit.script(F.resize)
for dt in [None, torch.float32, torch.float64]: for dt in [None, torch.float32, torch.float64]:
...@@ -323,8 +323,8 @@ class Tester(TransformsTester): ...@@ -323,8 +323,8 @@ class Tester(TransformsTester):
script_fn.save(os.path.join(tmp_dir, "t_resize.pt")) script_fn.save(os.path.join(tmp_dir, "t_resize.pt"))
def test_resized_crop(self): def test_resized_crop(self):
tensor = torch.randint(0, 255, size=(3, 44, 56), dtype=torch.uint8, device=self.device) tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
batch_tensors = torch.randint(0, 255, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device) batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
for scale in [(0.7, 1.2), [0.7, 1.2]]: for scale in [(0.7, 1.2), [0.7, 1.2]]:
for ratio in [(0.75, 1.333), [0.75, 1.333]]: for ratio in [(0.75, 1.333), [0.75, 1.333]]:
...@@ -341,8 +341,8 @@ class Tester(TransformsTester): ...@@ -341,8 +341,8 @@ class Tester(TransformsTester):
s_transform.save(os.path.join(tmp_dir, "t_resized_crop.pt")) s_transform.save(os.path.join(tmp_dir, "t_resized_crop.pt"))
def test_random_affine(self): def test_random_affine(self):
tensor = torch.randint(0, 255, size=(3, 44, 56), dtype=torch.uint8, device=self.device) tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
batch_tensors = torch.randint(0, 255, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device) batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
for shear in [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]]: for shear in [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]]:
for scale in [(0.7, 1.2), [0.7, 1.2]]: for scale in [(0.7, 1.2), [0.7, 1.2]]:
...@@ -363,8 +363,8 @@ class Tester(TransformsTester): ...@@ -363,8 +363,8 @@ class Tester(TransformsTester):
s_transform.save(os.path.join(tmp_dir, "t_random_affine.pt")) s_transform.save(os.path.join(tmp_dir, "t_random_affine.pt"))
def test_random_rotate(self): def test_random_rotate(self):
tensor = torch.randint(0, 255, size=(3, 44, 56), dtype=torch.uint8, device=self.device) tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
batch_tensors = torch.randint(0, 255, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device) batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
for center in [(0, 0), [10, 10], None, (56, 44)]: for center in [(0, 0), [10, 10], None, (56, 44)]:
for expand in [True, False]: for expand in [True, False]:
...@@ -383,8 +383,8 @@ class Tester(TransformsTester): ...@@ -383,8 +383,8 @@ class Tester(TransformsTester):
s_transform.save(os.path.join(tmp_dir, "t_random_rotate.pt")) s_transform.save(os.path.join(tmp_dir, "t_random_rotate.pt"))
def test_random_perspective(self): def test_random_perspective(self):
tensor = torch.randint(0, 255, size=(3, 44, 56), dtype=torch.uint8, device=self.device) tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
batch_tensors = torch.randint(0, 255, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device) batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
for distortion_scale in np.linspace(0.1, 1.0, num=20): for distortion_scale in np.linspace(0.1, 1.0, num=20):
for interpolation in [NEAREST, BILINEAR]: for interpolation in [NEAREST, BILINEAR]:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment