test_transforms_tensor.py 12.6 KB
Newer Older
1
2
3
4
import torch
from torchvision import transforms as T
from torchvision.transforms import functional as F
from PIL import Image
vfdev's avatar
vfdev committed
5
from PIL.Image import NEAREST, BILINEAR, BICUBIC
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

import numpy as np

import unittest


class Tester(unittest.TestCase):
    def _create_data(self, height=3, width=3, channels=3):
        tensor = torch.randint(0, 255, (channels, height, width), dtype=torch.uint8)
        pil_img = Image.fromarray(tensor.permute(1, 2, 0).contiguous().numpy())
        return tensor, pil_img

    def compareTensorToPIL(self, tensor, pil_image):
        pil_tensor = torch.as_tensor(np.array(pil_image).transpose((2, 0, 1)))
        self.assertTrue(tensor.equal(pil_tensor))

22
23
24
25
26
27
28
29
    def _test_functional_geom_op(self, func, fn_kwargs):
        if fn_kwargs is None:
            fn_kwargs = {}
        tensor, pil_img = self._create_data(height=10, width=10)
        transformed_tensor = getattr(F, func)(tensor, **fn_kwargs)
        transformed_pil_img = getattr(F, func)(pil_img, **fn_kwargs)
        self.compareTensorToPIL(transformed_tensor, transformed_pil_img)

vfdev's avatar
vfdev committed
30
    def _test_class_geom_op(self, method, meth_kwargs=None):
31
32
        if meth_kwargs is None:
            meth_kwargs = {}
vfdev's avatar
vfdev committed
33

34
        tensor, pil_img = self._create_data(height=10, width=10)
vfdev's avatar
vfdev committed
35
36
37
38
39
40
41
42
43
        # test for class interface
        f = getattr(T, method)(**meth_kwargs)
        scripted_fn = torch.jit.script(f)

        # set seed to reproduce the same transformation for tensor and PIL image
        torch.manual_seed(12)
        transformed_tensor = f(tensor)
        torch.manual_seed(12)
        transformed_pil_img = f(pil_img)
44
        self.compareTensorToPIL(transformed_tensor, transformed_pil_img)
45

vfdev's avatar
vfdev committed
46
47
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
48
        self.assertTrue(transformed_tensor.equal(transformed_tensor_script))
49

vfdev's avatar
vfdev committed
50
51
52
    def _test_geom_op(self, func, method, fn_kwargs=None, meth_kwargs=None):
        self._test_functional_geom_op(func, fn_kwargs)
        self._test_class_geom_op(method, meth_kwargs)
53
54

    def test_random_horizontal_flip(self):
55
        self._test_geom_op('hflip', 'RandomHorizontalFlip')
56
57

    def test_random_vertical_flip(self):
58
        self._test_geom_op('vflip', 'RandomVerticalFlip')
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    def test_adjustments(self):
        fns = ['adjust_brightness', 'adjust_contrast', 'adjust_saturation']
        for _ in range(20):
            factor = 3 * torch.rand(1).item()
            tensor, _ = self._create_data()
            pil_img = T.ToPILImage()(tensor)

            for func in fns:
                adjusted_tensor = getattr(F, func)(tensor, factor)
                adjusted_pil_img = getattr(F, func)(pil_img, factor)

                adjusted_pil_tensor = T.ToTensor()(adjusted_pil_img)
                scripted_fn = torch.jit.script(getattr(F, func))
                adjusted_tensor_script = scripted_fn(tensor, factor)

                if not tensor.dtype.is_floating_point:
                    adjusted_tensor = adjusted_tensor.to(torch.float) / 255
                    adjusted_tensor_script = adjusted_tensor_script.to(torch.float) / 255

                # F uses uint8 and F_t uses float, so there is a small
                # difference in values caused by (at most 5) truncations.
                max_diff = (adjusted_tensor - adjusted_pil_tensor).abs().max()
                max_diff_scripted = (adjusted_tensor - adjusted_tensor_script).abs().max()
                self.assertLess(max_diff, 5 / 255 + 1e-5)
                self.assertLess(max_diff_scripted, 5 / 255 + 1e-5)

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    def test_pad(self):

        # Test functional.pad (PIL and Tensor) with padding as single int
        self._test_functional_geom_op(
            "pad", fn_kwargs={"padding": 2, "fill": 0, "padding_mode": "constant"}
        )
        # Test functional.pad and transforms.Pad with padding as [int, ]
        fn_kwargs = meth_kwargs = {"padding": [2, ], "fill": 0, "padding_mode": "constant"}
        self._test_geom_op(
            "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        # Test functional.pad and transforms.Pad with padding as list
        fn_kwargs = meth_kwargs = {"padding": [4, 4], "fill": 0, "padding_mode": "constant"}
        self._test_geom_op(
            "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        # Test functional.pad and transforms.Pad with padding as tuple
        fn_kwargs = meth_kwargs = {"padding": (2, 2, 2, 2), "fill": 127, "padding_mode": "constant"}
        self._test_geom_op(
            "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

vfdev's avatar
vfdev committed
108
109
110
111
112
113
114
115
    def test_crop(self):
        fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
        # Test transforms.RandomCrop with size and padding as tuple
        meth_kwargs = {"size": (4, 5), "padding": (4, 4), "pad_if_needed": True, }
        self._test_geom_op(
            'crop', 'RandomCrop', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

vfdev's avatar
vfdev committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        sizes = [5, [5, ], [6, 6]]
        padding_configs = [
            {"padding_mode": "constant", "fill": 0},
            {"padding_mode": "constant", "fill": 10},
            {"padding_mode": "constant", "fill": 20},
            {"padding_mode": "edge"},
            {"padding_mode": "reflect"},
        ]

        for size in sizes:
            for padding_config in padding_configs:
                config = dict(padding_config)
                config["size"] = size
                self._test_class_geom_op("RandomCrop", config)
vfdev's avatar
vfdev committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

    def test_center_crop(self):
        fn_kwargs = {"output_size": (4, 5)}
        meth_kwargs = {"size": (4, 5), }
        self._test_geom_op(
            "center_crop", "CenterCrop", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = {"output_size": (5,)}
        meth_kwargs = {"size": (5, )}
        self._test_geom_op(
            "center_crop", "CenterCrop", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        tensor = torch.randint(0, 255, (3, 10, 10), dtype=torch.uint8)
        # Test torchscript of transforms.CenterCrop with size as int
        f = T.CenterCrop(size=5)
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

        # Test torchscript of transforms.CenterCrop with size as [int, ]
        f = T.CenterCrop(size=[5, ])
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

        # Test torchscript of transforms.CenterCrop with size as tuple
        f = T.CenterCrop(size=(6, 6))
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

    def _test_geom_op_list_output(self, func, method, out_length, fn_kwargs=None, meth_kwargs=None):
        if fn_kwargs is None:
            fn_kwargs = {}
        if meth_kwargs is None:
            meth_kwargs = {}
        tensor, pil_img = self._create_data(height=20, width=20)
        transformed_t_list = getattr(F, func)(tensor, **fn_kwargs)
        transformed_p_list = getattr(F, func)(pil_img, **fn_kwargs)
        self.assertEqual(len(transformed_t_list), len(transformed_p_list))
        self.assertEqual(len(transformed_t_list), out_length)
        for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
            self.compareTensorToPIL(transformed_tensor, transformed_pil_img)

        scripted_fn = torch.jit.script(getattr(F, func))
        transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
        self.assertEqual(len(transformed_t_list), len(transformed_t_list_script))
        self.assertEqual(len(transformed_t_list_script), out_length)
        for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
            self.assertTrue(transformed_tensor.equal(transformed_tensor_script),
                            msg="{} vs {}".format(transformed_tensor, transformed_tensor_script))

        # test for class interface
        f = getattr(T, method)(**meth_kwargs)
        scripted_fn = torch.jit.script(f)
        output = scripted_fn(tensor)
        self.assertEqual(len(output), len(transformed_t_list_script))

    def test_five_crop(self):
        fn_kwargs = meth_kwargs = {"size": (5,)}
        self._test_geom_op_list_output(
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [5, ]}
        self._test_geom_op_list_output(
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": (4, 5)}
        self._test_geom_op_list_output(
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [4, 5]}
        self._test_geom_op_list_output(
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_ten_crop(self):
        fn_kwargs = meth_kwargs = {"size": (5,)}
        self._test_geom_op_list_output(
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [5, ]}
        self._test_geom_op_list_output(
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": (4, 5)}
        self._test_geom_op_list_output(
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [4, 5]}
        self._test_geom_op_list_output(
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

vfdev's avatar
vfdev committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    def test_resize(self):
        tensor, _ = self._create_data(height=34, width=36)
        script_fn = torch.jit.script(F.resize)

        for dt in [None, torch.float32, torch.float64]:
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
            for size in [32, [32, ], [32, 32], (32, 32), ]:
                for interpolation in [BILINEAR, BICUBIC, NEAREST]:

                    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation)

                    if isinstance(size, int):
                        script_size = [size, ]
                    else:
                        script_size = size

                    s_resized_tensor = script_fn(tensor, size=script_size, interpolation=interpolation)
                    self.assertTrue(s_resized_tensor.equal(resized_tensor))

                    transform = T.Resize(size=script_size, interpolation=interpolation)
                    resized_tensor = transform(tensor)
                    script_transform = torch.jit.script(transform)
                    s_resized_tensor = script_transform(tensor)
                    self.assertTrue(s_resized_tensor.equal(resized_tensor))

248
249
250
    def test_resized_crop(self):
        tensor = torch.randint(0, 255, size=(3, 44, 56), dtype=torch.uint8)

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        for scale in [(0.7, 1.2), [0.7, 1.2]]:
            for ratio in [(0.75, 1.333), [0.75, 1.333]]:
                for size in [(32, ), [32, ], [32, 32], (32, 32)]:
                    for interpolation in [NEAREST, BILINEAR, BICUBIC]:
                        transform = T.RandomResizedCrop(
                            size=size, scale=scale, ratio=ratio, interpolation=interpolation
                        )
                        s_transform = torch.jit.script(transform)

                        torch.manual_seed(12)
                        out1 = transform(tensor)
                        torch.manual_seed(12)
                        out2 = s_transform(tensor)
                        self.assertTrue(out1.equal(out2))

    def test_random_affine(self):
        tensor = torch.randint(0, 255, size=(3, 44, 56), dtype=torch.uint8)

        for shear in [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]]:
            for scale in [(0.7, 1.2), [0.7, 1.2]]:
                for translate in [(0.1, 0.2), [0.2, 0.1]]:
                    for degrees in [45, 35.0, (-45, 45), [-90.0, 90.0]]:
                        for interpolation in [NEAREST, BILINEAR]:
                            transform = T.RandomAffine(
                                degrees=degrees, translate=translate,
                                scale=scale, shear=shear, resample=interpolation
                            )
                            s_transform = torch.jit.script(transform)

                            torch.manual_seed(12)
                            out1 = transform(tensor)
                            torch.manual_seed(12)
                            out2 = s_transform(tensor)
                            self.assertTrue(out1.equal(out2))
285

286
287
288

if __name__ == '__main__':
    unittest.main()