test_transforms_tensor.py 26.2 KB
Newer Older
1
import os
2
3
4
import torch
from torchvision import transforms as T
from torchvision.transforms import functional as F
5
from torchvision.transforms import InterpolationMode
6
7
8
9
10

import numpy as np

import unittest

11
from common_utils import TransformsTester, get_tmp_dir, int_dtypes, float_dtypes
12
13


14
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
15
16


17
class Tester(TransformsTester):
18

19
20
21
    def setUp(self):
        self.device = "cpu"

22
    def _test_functional_op(self, func, fn_kwargs):
23
24
        if fn_kwargs is None:
            fn_kwargs = {}
25
26

        f = getattr(F, func)
27
        tensor, pil_img = self._create_data(height=10, width=10, device=self.device)
28
29
        transformed_tensor = f(tensor, **fn_kwargs)
        transformed_pil_img = f(pil_img, **fn_kwargs)
30
31
        self.compareTensorToPIL(transformed_tensor, transformed_pil_img)

32
    def _test_transform_vs_scripted(self, transform, s_transform, tensor, msg=None):
33
34
35
36
        torch.manual_seed(12)
        out1 = transform(tensor)
        torch.manual_seed(12)
        out2 = s_transform(tensor)
37
        self.assertTrue(out1.equal(out2), msg=msg)
38

39
    def _test_transform_vs_scripted_on_batch(self, transform, s_transform, batch_tensors, msg=None):
40
41
42
43
44
45
46
        torch.manual_seed(12)
        transformed_batch = transform(batch_tensors)

        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            torch.manual_seed(12)
            transformed_img = transform(img_tensor)
47
            self.assertTrue(transformed_img.equal(transformed_batch[i, ...]), msg=msg)
48
49
50

        torch.manual_seed(12)
        s_transformed_batch = s_transform(batch_tensors)
51
        self.assertTrue(transformed_batch.equal(s_transformed_batch), msg=msg)
52

53
    def _test_class_op(self, method, meth_kwargs=None, test_exact_match=True, **match_kwargs):
54
55
        if meth_kwargs is None:
            meth_kwargs = {}
vfdev's avatar
vfdev committed
56
57
58
59
60

        # test for class interface
        f = getattr(T, method)(**meth_kwargs)
        scripted_fn = torch.jit.script(f)

61
        tensor, pil_img = self._create_data(26, 34, device=self.device)
vfdev's avatar
vfdev committed
62
63
64
65
66
        # set seed to reproduce the same transformation for tensor and PIL image
        torch.manual_seed(12)
        transformed_tensor = f(tensor)
        torch.manual_seed(12)
        transformed_pil_img = f(pil_img)
67
68
69
70
        if test_exact_match:
            self.compareTensorToPIL(transformed_tensor, transformed_pil_img, **match_kwargs)
        else:
            self.approxEqualTensorToPIL(transformed_tensor.float(), transformed_pil_img, **match_kwargs)
71

vfdev's avatar
vfdev committed
72
73
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
74
        self.assertTrue(transformed_tensor.equal(transformed_tensor_script))
75

76
77
78
        batch_tensors = self._create_data_batch(height=23, width=34, channels=3, num_samples=4, device=self.device)
        self._test_transform_vs_scripted_on_batch(f, scripted_fn, batch_tensors)

79
80
81
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_{}.pt".format(method)))

82
83
84
    def _test_op(self, func, method, fn_kwargs=None, meth_kwargs=None):
        self._test_functional_op(func, fn_kwargs)
        self._test_class_op(method, meth_kwargs)
85
86

    def test_random_horizontal_flip(self):
87
        self._test_op('hflip', 'RandomHorizontalFlip')
88
89

    def test_random_vertical_flip(self):
90
        self._test_op('vflip', 'RandomVerticalFlip')
91

vfdev's avatar
vfdev committed
92
93
94
    def test_color_jitter(self):

        tol = 1.0 + 1e-10
95
        for f in [0.1, 0.5, 1.0, 1.34, (0.3, 0.7), [0.4, 0.5]]:
vfdev's avatar
vfdev committed
96
97
98
99
100
            meth_kwargs = {"brightness": f}
            self._test_class_op(
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
            )

101
        for f in [0.2, 0.5, 1.0, 1.5, (0.3, 0.7), [0.4, 0.5]]:
vfdev's avatar
vfdev committed
102
103
104
105
106
            meth_kwargs = {"contrast": f}
            self._test_class_op(
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
            )

107
        for f in [0.5, 0.75, 1.0, 1.25, (0.3, 0.7), [0.3, 0.4]]:
vfdev's avatar
vfdev committed
108
109
110
111
            meth_kwargs = {"saturation": f}
            self._test_class_op(
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
            )
112

113
114
115
        for f in [0.2, 0.5, (-0.2, 0.3), [-0.4, 0.5]]:
            meth_kwargs = {"hue": f}
            self._test_class_op(
vfdev's avatar
vfdev committed
116
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=16.1, agg_method="max"
117
118
119
120
121
            )

        # All 4 parameters together
        meth_kwargs = {"brightness": 0.2, "contrast": 0.2, "saturation": 0.2, "hue": 0.2}
        self._test_class_op(
vfdev's avatar
vfdev committed
122
            "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=12.1, agg_method="max"
123
124
        )

125
    def test_pad(self):
126
127
        for m in ["constant", "edge", "reflect", "symmetric"]:
            fill = 127 if m == "constant" else 0
128
            for mul in [1, -1]:
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
                # Test functional.pad (PIL and Tensor) with padding as single int
                self._test_functional_op(
                    "pad", fn_kwargs={"padding": mul * 2, "fill": fill, "padding_mode": m}
                )
                # Test functional.pad and transforms.Pad with padding as [int, ]
                fn_kwargs = meth_kwargs = {"padding": [mul * 2, ], "fill": fill, "padding_mode": m}
                self._test_op(
                    "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
                )
                # Test functional.pad and transforms.Pad with padding as list
                fn_kwargs = meth_kwargs = {"padding": [mul * 4, 4], "fill": fill, "padding_mode": m}
                self._test_op(
                    "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
                )
                # Test functional.pad and transforms.Pad with padding as tuple
                fn_kwargs = meth_kwargs = {"padding": (mul * 2, 2, 2, mul * 2), "fill": fill, "padding_mode": m}
                self._test_op(
                    "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
                )
148

vfdev's avatar
vfdev committed
149
150
151
152
    def test_crop(self):
        fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
        # Test transforms.RandomCrop with size and padding as tuple
        meth_kwargs = {"size": (4, 5), "padding": (4, 4), "pad_if_needed": True, }
153
        self._test_op(
vfdev's avatar
vfdev committed
154
155
156
            'crop', 'RandomCrop', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

vfdev's avatar
vfdev committed
157
158
159
160
161
162
163
164
165
166
167
168
169
        sizes = [5, [5, ], [6, 6]]
        padding_configs = [
            {"padding_mode": "constant", "fill": 0},
            {"padding_mode": "constant", "fill": 10},
            {"padding_mode": "constant", "fill": 20},
            {"padding_mode": "edge"},
            {"padding_mode": "reflect"},
        ]

        for size in sizes:
            for padding_config in padding_configs:
                config = dict(padding_config)
                config["size"] = size
170
                self._test_class_op("RandomCrop", config)
vfdev's avatar
vfdev committed
171
172
173
174

    def test_center_crop(self):
        fn_kwargs = {"output_size": (4, 5)}
        meth_kwargs = {"size": (4, 5), }
175
        self._test_op(
vfdev's avatar
vfdev committed
176
177
178
179
            "center_crop", "CenterCrop", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = {"output_size": (5,)}
        meth_kwargs = {"size": (5, )}
180
        self._test_op(
vfdev's avatar
vfdev committed
181
182
            "center_crop", "CenterCrop", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
183
        tensor = torch.randint(0, 255, (3, 10, 10), dtype=torch.uint8, device=self.device)
vfdev's avatar
vfdev committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        # Test torchscript of transforms.CenterCrop with size as int
        f = T.CenterCrop(size=5)
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

        # Test torchscript of transforms.CenterCrop with size as [int, ]
        f = T.CenterCrop(size=[5, ])
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

        # Test torchscript of transforms.CenterCrop with size as tuple
        f = T.CenterCrop(size=(6, 6))
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

199
200
201
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_center_crop.pt"))

202
    def _test_op_list_output(self, func, method, out_length, fn_kwargs=None, meth_kwargs=None):
vfdev's avatar
vfdev committed
203
204
205
206
        if fn_kwargs is None:
            fn_kwargs = {}
        if meth_kwargs is None:
            meth_kwargs = {}
207
208
209
210

        fn = getattr(F, func)
        scripted_fn = torch.jit.script(fn)

211
        tensor, pil_img = self._create_data(height=20, width=20, device=self.device)
212
213
        transformed_t_list = fn(tensor, **fn_kwargs)
        transformed_p_list = fn(pil_img, **fn_kwargs)
vfdev's avatar
vfdev committed
214
215
216
217
218
219
220
221
222
223
224
225
226
        self.assertEqual(len(transformed_t_list), len(transformed_p_list))
        self.assertEqual(len(transformed_t_list), out_length)
        for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
            self.compareTensorToPIL(transformed_tensor, transformed_pil_img)

        transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
        self.assertEqual(len(transformed_t_list), len(transformed_t_list_script))
        self.assertEqual(len(transformed_t_list_script), out_length)
        for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
            self.assertTrue(transformed_tensor.equal(transformed_tensor_script),
                            msg="{} vs {}".format(transformed_tensor, transformed_tensor_script))

        # test for class interface
227
228
        fn = getattr(T, method)(**meth_kwargs)
        scripted_fn = torch.jit.script(fn)
vfdev's avatar
vfdev committed
229
230
231
        output = scripted_fn(tensor)
        self.assertEqual(len(output), len(transformed_t_list_script))

232
233
234
235
236
237
238
239
240
241
242
243
244
        # test on batch of tensors
        batch_tensors = self._create_data_batch(height=23, width=34, channels=3, num_samples=4, device=self.device)
        torch.manual_seed(12)
        transformed_batch_list = fn(batch_tensors)

        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            torch.manual_seed(12)
            transformed_img_list = fn(img_tensor)
            for transformed_img, transformed_batch in zip(transformed_img_list, transformed_batch_list):
                self.assertTrue(transformed_img.equal(transformed_batch[i, ...]),
                                msg="{} vs {}".format(transformed_img, transformed_batch[i, ...]))

245
246
247
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_op_list_{}.pt".format(method)))

vfdev's avatar
vfdev committed
248
249
    def test_five_crop(self):
        fn_kwargs = meth_kwargs = {"size": (5,)}
250
        self._test_op_list_output(
vfdev's avatar
vfdev committed
251
252
253
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [5, ]}
254
        self._test_op_list_output(
vfdev's avatar
vfdev committed
255
256
257
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": (4, 5)}
258
        self._test_op_list_output(
vfdev's avatar
vfdev committed
259
260
261
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [4, 5]}
262
        self._test_op_list_output(
vfdev's avatar
vfdev committed
263
264
265
266
267
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_ten_crop(self):
        fn_kwargs = meth_kwargs = {"size": (5,)}
268
        self._test_op_list_output(
vfdev's avatar
vfdev committed
269
270
271
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [5, ]}
272
        self._test_op_list_output(
vfdev's avatar
vfdev committed
273
274
275
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": (4, 5)}
276
        self._test_op_list_output(
vfdev's avatar
vfdev committed
277
278
279
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [4, 5]}
280
        self._test_op_list_output(
vfdev's avatar
vfdev committed
281
282
283
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

vfdev's avatar
vfdev committed
284
    def test_resize(self):
285
286
287
288
289
290
291
292
293
294
295

        # TODO: Minimal check for bug-fix, improve this later
        x = torch.rand(3, 32, 46)
        t = T.Resize(size=38)
        y = t(x)
        # If size is an int, smaller edge of the image will be matched to this number.
        # i.e, if height > width, then image will be rescaled to (size * height / width, size).
        self.assertTrue(isinstance(y, torch.Tensor))
        self.assertEqual(y.shape[1], 38)
        self.assertEqual(y.shape[2], int(38 * 46 / 32))

296
        tensor, _ = self._create_data(height=34, width=36, device=self.device)
297
        batch_tensors = torch.randint(0, 255, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
vfdev's avatar
vfdev committed
298
299
300
301
302
303
        script_fn = torch.jit.script(F.resize)

        for dt in [None, torch.float32, torch.float64]:
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
304
            for size in [32, 34, [32, ], [32, 32], (32, 32), [34, 35]]:
vfdev's avatar
vfdev committed
305
306
307
308
309
310
311
312
313
314
315
316
317
                for interpolation in [BILINEAR, BICUBIC, NEAREST]:

                    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation)

                    if isinstance(size, int):
                        script_size = [size, ]
                    else:
                        script_size = size

                    s_resized_tensor = script_fn(tensor, size=script_size, interpolation=interpolation)
                    self.assertTrue(s_resized_tensor.equal(resized_tensor))

                    transform = T.Resize(size=script_size, interpolation=interpolation)
318
319
320
                    s_transform = torch.jit.script(transform)
                    self._test_transform_vs_scripted(transform, s_transform, tensor)
                    self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
vfdev's avatar
vfdev committed
321

322
323
324
        with get_tmp_dir() as tmp_dir:
            script_fn.save(os.path.join(tmp_dir, "t_resize.pt"))

325
    def test_resized_crop(self):
326
        tensor = torch.randint(0, 255, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
327
        batch_tensors = torch.randint(0, 255, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
328

329
330
        for scale in [(0.7, 1.2), [0.7, 1.2]]:
            for ratio in [(0.75, 1.333), [0.75, 1.333]]:
331
                for size in [(32, ), [44, ], [32, ], [32, 32], (32, 32), [44, 55]]:
332
333
334
335
336
                    for interpolation in [NEAREST, BILINEAR, BICUBIC]:
                        transform = T.RandomResizedCrop(
                            size=size, scale=scale, ratio=ratio, interpolation=interpolation
                        )
                        s_transform = torch.jit.script(transform)
337
338
                        self._test_transform_vs_scripted(transform, s_transform, tensor)
                        self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
339

340
341
342
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_resized_crop.pt"))

343
    def test_random_affine(self):
344
        tensor = torch.randint(0, 255, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
345
        batch_tensors = torch.randint(0, 255, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
346
347
348
349
350
351

        for shear in [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]]:
            for scale in [(0.7, 1.2), [0.7, 1.2]]:
                for translate in [(0.1, 0.2), [0.2, 0.1]]:
                    for degrees in [45, 35.0, (-45, 45), [-90.0, 90.0]]:
                        for interpolation in [NEAREST, BILINEAR]:
352
353
354
355
356
357
                            for fill in [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
                                transform = T.RandomAffine(
                                    degrees=degrees, translate=translate,
                                    scale=scale, shear=shear, interpolation=interpolation, fill=fill
                                )
                                s_transform = torch.jit.script(transform)
358

359
360
                                self._test_transform_vs_scripted(transform, s_transform, tensor)
                                self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
361

362
363
364
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_random_affine.pt"))

365
    def test_random_rotate(self):
366
        tensor = torch.randint(0, 255, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
367
        batch_tensors = torch.randint(0, 255, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
368
369
370
371
372

        for center in [(0, 0), [10, 10], None, (56, 44)]:
            for expand in [True, False]:
                for degrees in [45, 35.0, (-45, 45), [-90.0, 90.0]]:
                    for interpolation in [NEAREST, BILINEAR]:
373
374
375
376
377
                        for fill in [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
                            transform = T.RandomRotation(
                                degrees=degrees, interpolation=interpolation, expand=expand, center=center, fill=fill
                            )
                            s_transform = torch.jit.script(transform)
378

379
380
                            self._test_transform_vs_scripted(transform, s_transform, tensor)
                            self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
381

382
383
384
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_random_rotate.pt"))

385
    def test_random_perspective(self):
386
        tensor = torch.randint(0, 255, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
387
        batch_tensors = torch.randint(0, 255, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
388
389
390

        for distortion_scale in np.linspace(0.1, 1.0, num=20):
            for interpolation in [NEAREST, BILINEAR]:
391
392
393
394
395
396
397
                for fill in [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
                    transform = T.RandomPerspective(
                        distortion_scale=distortion_scale,
                        interpolation=interpolation,
                        fill=fill
                    )
                    s_transform = torch.jit.script(transform)
398

399
400
                    self._test_transform_vs_scripted(transform, s_transform, tensor)
                    self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
401

402
403
404
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_perspective.pt"))

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    def test_to_grayscale(self):

        meth_kwargs = {"num_output_channels": 1}
        tol = 1.0 + 1e-10
        self._test_class_op(
            "Grayscale", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
        )

        meth_kwargs = {"num_output_channels": 3}
        self._test_class_op(
            "Grayscale", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
        )

        meth_kwargs = {}
        self._test_class_op(
            "RandomGrayscale", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
        )

423
424
425
426
427
428
429
430
431
432
433
434
    def test_normalize(self):
        tensor, _ = self._create_data(26, 34, device=self.device)
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        tensor = tensor.to(dtype=torch.float32) / 255.0
        # test for class interface
        fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        scripted_fn = torch.jit.script(fn)

        self._test_transform_vs_scripted(fn, scripted_fn, tensor)
        self._test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

435
436
437
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    def test_linear_transformation(self):
        c, h, w = 3, 24, 32

        tensor, _ = self._create_data(h, w, channels=c, device=self.device)

        matrix = torch.rand(c * h * w, c * h * w, device=self.device)
        mean_vector = torch.rand(c * h * w, device=self.device)

        fn = T.LinearTransformation(matrix, mean_vector)
        scripted_fn = torch.jit.script(fn)

        self._test_transform_vs_scripted(fn, scripted_fn, tensor)

        batch_tensors = torch.rand(4, c, h, w, device=self.device)
        # We skip some tests from _test_transform_vs_scripted_on_batch as
        # results for scripted and non-scripted transformations are not exactly the same
        torch.manual_seed(12)
455
        torch.set_deterministic(True)
456
457
458
459
460
        transformed_batch = fn(batch_tensors)
        torch.manual_seed(12)
        s_transformed_batch = scripted_fn(batch_tensors)
        self.assertTrue(transformed_batch.equal(s_transformed_batch))

461
462
463
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    def test_compose(self):
        tensor, _ = self._create_data(26, 34, device=self.device)
        tensor = tensor.to(dtype=torch.float32) / 255.0

        transforms = T.Compose([
            T.CenterCrop(10),
            T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ])
        s_transforms = torch.nn.Sequential(*transforms.transforms)

        scripted_fn = torch.jit.script(s_transforms)
        torch.manual_seed(12)
        transformed_tensor = transforms(tensor)
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
        self.assertTrue(transformed_tensor.equal(transformed_tensor_script), msg="{}".format(transforms))

        t = T.Compose([
            lambda x: x,
        ])
        with self.assertRaisesRegex(RuntimeError, r"Could not get name of python class object"):
            torch.jit.script(t)

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
    def test_random_apply(self):
        tensor, _ = self._create_data(26, 34, device=self.device)
        tensor = tensor.to(dtype=torch.float32) / 255.0

        transforms = T.RandomApply([
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ], p=0.4)
        s_transforms = T.RandomApply(torch.nn.ModuleList([
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ]), p=0.4)

        scripted_fn = torch.jit.script(s_transforms)
        torch.manual_seed(12)
        transformed_tensor = transforms(tensor)
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
        self.assertTrue(transformed_tensor.equal(transformed_tensor_script), msg="{}".format(transforms))

        if torch.device(self.device).type == "cpu":
            # Can't check this twice, otherwise
            # "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
            transforms = T.RandomApply([
                T.ColorJitter(),
            ], p=0.3)
            with self.assertRaisesRegex(RuntimeError, r"Module 'RandomApply' has no attribute 'transforms'"):
                torch.jit.script(transforms)

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
    def test_gaussian_blur(self):
        tol = 1.0 + 1e-10
        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": 3, "sigma": 0.75},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": 23, "sigma": [0.1, 2.0]},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": 23, "sigma": (0.1, 2.0)},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": [23], "sigma": 0.75},
            test_exact_match=False, agg_method="max", tol=tol
        )

vfdev's avatar
vfdev committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
    def test_random_erasing(self):
        img = torch.rand(3, 60, 60)

        # Test Set 0: invalid value
        random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0)
        with self.assertRaises(ValueError, msg="If value is a sequence, it should have either a single value or 3"):
            random_erasing(img)

        tensor, _ = self._create_data(24, 32, channels=3, device=self.device)
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        test_configs = [
            {"value": 0.2},
            {"value": "random"},
            {"value": (0.2, 0.2, 0.2)},
            {"value": "random", "ratio": (0.1, 0.2)},
        ]

        for config in test_configs:
            fn = T.RandomErasing(**config)
            scripted_fn = torch.jit.script(fn)
            self._test_transform_vs_scripted(fn, scripted_fn, tensor)
            self._test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

572
573
574
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_random_erasing.pt"))

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
    def test_convert_image_dtype(self):
        tensor, _ = self._create_data(26, 34, device=self.device)
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        for in_dtype in int_dtypes() + float_dtypes():
            in_tensor = tensor.to(in_dtype)
            in_batch_tensors = batch_tensors.to(in_dtype)
            for out_dtype in int_dtypes() + float_dtypes():

                fn = T.ConvertImageDtype(dtype=out_dtype)
                scripted_fn = torch.jit.script(fn)

                if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or \
                        (in_dtype == torch.float64 and out_dtype == torch.int64):
                    with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"):
                        self._test_transform_vs_scripted(fn, scripted_fn, in_tensor)
                    with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"):
                        self._test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
                    continue

                self._test_transform_vs_scripted(fn, scripted_fn, in_tensor)
                self._test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)

        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_convert_dtype.pt"))

601

602
603
604
605
606
607
608
@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):

    def setUp(self):
        self.device = "cuda"


609
610
if __name__ == '__main__':
    unittest.main()