resnet.py 38.8 KB
Newer Older
1
from functools import partial
2
from typing import Any, Callable, List, Optional, Type, Union
3

4
import torch
5
import torch.nn as nn
6
7
from torch import Tensor

8
from ..transforms._presets import ImageClassification
9
from ..utils import _log_api_usage_once
10
from ._api import register_model, Weights, WeightsEnum
11
from ._meta import _IMAGENET_CATEGORIES
12
from ._utils import _ovewrite_named_param, handle_legacy_interface
13
14


15
16
__all__ = [
    "ResNet",
17
18
19
20
21
22
23
    "ResNet18_Weights",
    "ResNet34_Weights",
    "ResNet50_Weights",
    "ResNet101_Weights",
    "ResNet152_Weights",
    "ResNeXt50_32X4D_Weights",
    "ResNeXt101_32X8D_Weights",
24
    "ResNeXt101_64X4D_Weights",
25
26
    "Wide_ResNet50_2_Weights",
    "Wide_ResNet101_2_Weights",
27
28
29
30
31
32
33
    "resnet18",
    "resnet34",
    "resnet50",
    "resnet101",
    "resnet152",
    "resnext50_32x4d",
    "resnext101_32x8d",
34
    "resnext101_64x4d",
35
36
37
    "wide_resnet50_2",
    "wide_resnet101_2",
]
38
39


40
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
41
    """3x3 convolution with padding"""
42
43
44
45
46
47
48
49
50
51
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        groups=groups,
        bias=False,
        dilation=dilation,
    )
52
53


54
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
55
56
57
58
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


Soumith Chintala's avatar
Soumith Chintala committed
59
class BasicBlock(nn.Module):
60
61
62
63
64
65
66
67
68
69
70
    expansion: int = 1

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
71
        norm_layer: Optional[Callable[..., nn.Module]] = None,
72
    ) -> None:
73
        super().__init__()
74
75
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
76
        if groups != 1 or base_width != 64:
77
            raise ValueError("BasicBlock only supports groups=1 and base_width=64")
78
79
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
80
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
81
        self.conv1 = conv3x3(inplanes, planes, stride)
82
        self.bn1 = norm_layer(planes)
83
84
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
85
        self.bn2 = norm_layer(planes)
86
87
88
        self.downsample = downsample
        self.stride = stride

89
    def forward(self, x: Tensor) -> Tensor:
90
        identity = x
91
92
93
94
95
96
97
98
99

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
100
            identity = self.downsample(x)
101

102
        out += identity
103
104
105
106
107
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
108
class Bottleneck(nn.Module):
109
110
111
112
113
114
    # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
    # while original implementation places the stride at the first 1x1 convolution(self.conv1)
    # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
    # This variant is also known as ResNet V1.5 and improves accuracy according to
    # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.

115
116
117
118
119
120
121
122
123
124
125
    expansion: int = 4

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
126
        norm_layer: Optional[Callable[..., nn.Module]] = None,
127
    ) -> None:
128
        super().__init__()
129
130
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
131
        width = int(planes * (base_width / 64.0)) * groups
132
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
133
134
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
135
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
136
137
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
138
        self.bn3 = norm_layer(planes * self.expansion)
139
140
141
142
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

143
    def forward(self, x: Tensor) -> Tensor:
144
        identity = x
145
146
147
148
149
150
151
152
153
154
155
156
157

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
158
            identity = self.downsample(x)
159

160
        out += identity
161
162
163
164
165
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
166
class ResNet(nn.Module):
167
168
169
170
171
172
173
174
175
    def __init__(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        layers: List[int],
        num_classes: int = 1000,
        zero_init_residual: bool = False,
        groups: int = 1,
        width_per_group: int = 64,
        replace_stride_with_dilation: Optional[List[bool]] = None,
176
        norm_layer: Optional[Callable[..., nn.Module]] = None,
177
    ) -> None:
178
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
179
        _log_api_usage_once(self)
180
181
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
182
        self._norm_layer = norm_layer
183
184

        self.inplanes = 64
185
186
187
188
189
190
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
191
192
            raise ValueError(
                "replace_stride_with_dilation should be None "
193
                f"or a 3-element tuple, got {replace_stride_with_dilation}"
194
            )
195
196
        self.groups = groups
        self.base_width = width_per_group
197
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
198
        self.bn1 = norm_layer(self.inplanes)
199
200
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
201
        self.layer1 = self._make_layer(block, 64, layers[0])
202
203
204
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
205
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
206
        self.fc = nn.Linear(512 * block.expansion, num_classes)
207
208
209

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
210
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
211
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
212
213
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
214

215
216
217
218
219
        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
220
                if isinstance(m, Bottleneck) and m.bn3.weight is not None:
221
                    nn.init.constant_(m.bn3.weight, 0)  # type: ignore[arg-type]
222
                elif isinstance(m, BasicBlock) and m.bn2.weight is not None:
223
                    nn.init.constant_(m.bn2.weight, 0)  # type: ignore[arg-type]
224

225
226
227
228
229
230
231
232
    def _make_layer(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        planes: int,
        blocks: int,
        stride: int = 1,
        dilate: bool = False,
    ) -> nn.Sequential:
233
        norm_layer = self._norm_layer
234
        downsample = None
235
236
237
238
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
239
240
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
241
                conv1x1(self.inplanes, planes * block.expansion, stride),
242
                norm_layer(planes * block.expansion),
243
244
245
            )

        layers = []
246
247
248
249
250
        layers.append(
            block(
                self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
            )
        )
251
        self.inplanes = planes * block.expansion
252
        for _ in range(1, blocks):
253
254
255
256
257
258
259
260
261
262
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm_layer=norm_layer,
                )
            )
263
264
265

        return nn.Sequential(*layers)

266
    def _forward_impl(self, x: Tensor) -> Tensor:
267
        # See note [TorchScript super()]
268
269
270
271
272
273
274
275
276
277
278
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
279
        x = torch.flatten(x, 1)
280
281
282
283
        x = self.fc(x)

        return x

284
    def forward(self, x: Tensor) -> Tensor:
285
        return self._forward_impl(x)
286

287

288
289
290
def _resnet(
    block: Type[Union[BasicBlock, Bottleneck]],
    layers: List[int],
291
    weights: Optional[WeightsEnum],
292
    progress: bool,
293
    **kwargs: Any,
294
) -> ResNet:
295
296
297
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

298
    model = ResNet(block, layers, **kwargs)
299
300
301
302

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

303
304
305
    return model


306
307
308
309
310
311
312
313
314
315
316
317
318
319
_COMMON_META = {
    "min_size": (1, 1),
    "categories": _IMAGENET_CATEGORIES,
}


class ResNet18_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet18-f37072fd.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 11689512,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
320
321
322
323
324
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 69.758,
                    "acc@5": 89.078,
                }
325
            },
326
327
            "_ops": 1.814,
            "_weight_size": 44.661,
328
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
329
330
331
332
333
334
335
336
337
338
339
340
341
        },
    )
    DEFAULT = IMAGENET1K_V1


class ResNet34_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet34-b627a593.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 21797672,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
342
343
344
345
346
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 73.314,
                    "acc@5": 91.420,
                }
347
            },
348
349
            "_ops": 3.664,
            "_weight_size": 83.275,
350
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
351
352
353
354
355
356
357
358
359
360
361
362
363
        },
    )
    DEFAULT = IMAGENET1K_V1


class ResNet50_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet50-0676ba61.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 25557032,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
364
365
366
367
368
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 76.130,
                    "acc@5": 92.862,
                }
369
            },
370
371
            "_ops": 4.089,
            "_weight_size": 97.781,
372
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
373
374
375
376
377
378
379
380
381
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnet50-11ad3fa6.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 25557032,
            "recipe": "https://github.com/pytorch/vision/issues/3995#issuecomment-1013906621",
382
383
384
385
386
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 80.858,
                    "acc@5": 95.434,
                }
387
            },
388
389
            "_ops": 4.089,
            "_weight_size": 97.79,
390
            "_docs": """
391
392
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
393
            """,
394
395
396
397
398
399
400
401
402
403
404
405
406
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNet101_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet101-63fe2227.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 44549160,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
407
408
409
410
411
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 77.374,
                    "acc@5": 93.546,
                }
412
            },
413
414
            "_ops": 7.801,
            "_weight_size": 170.511,
415
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
416
417
418
419
420
421
422
423
424
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnet101-cd907fc2.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 44549160,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
425
426
427
428
429
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 81.886,
                    "acc@5": 95.780,
                }
430
            },
431
432
            "_ops": 7.801,
            "_weight_size": 170.53,
433
434
435
436
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
437
438
439
440
441
442
443
444
445
446
447
448
449
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNet152_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet152-394f9c45.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 60192808,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
450
451
452
453
454
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 78.312,
                    "acc@5": 94.046,
                }
455
            },
456
457
            "_ops": 11.514,
            "_weight_size": 230.434,
458
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
459
460
461
462
463
464
465
466
467
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnet152-f82ba261.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 60192808,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
468
469
470
471
472
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 82.284,
                    "acc@5": 96.002,
                }
473
            },
474
475
            "_ops": 11.514,
            "_weight_size": 230.474,
476
477
478
479
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
480
481
482
483
484
485
486
487
488
489
490
491
492
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNeXt50_32X4D_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 25028904,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
493
494
495
496
497
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 77.618,
                    "acc@5": 93.698,
                }
498
            },
499
500
            "_ops": 4.23,
            "_weight_size": 95.789,
501
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
502
503
504
505
506
507
508
509
510
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnext50_32x4d-1a0047aa.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 25028904,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
511
512
513
514
515
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 81.198,
                    "acc@5": 95.340,
                }
516
            },
517
518
            "_ops": 4.23,
            "_weight_size": 95.833,
519
520
521
522
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
523
524
525
526
527
528
529
530
531
532
533
534
535
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNeXt101_32X8D_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 88791336,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
536
537
538
539
540
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 79.312,
                    "acc@5": 94.526,
                }
541
            },
542
543
            "_ops": 16.414,
            "_weight_size": 339.586,
544
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
545
546
547
548
549
550
551
552
553
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnext101_32x8d-110c445d.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 88791336,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
554
555
556
557
558
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 82.834,
                    "acc@5": 96.228,
                }
559
            },
560
561
            "_ops": 16.414,
            "_weight_size": 339.673,
562
563
564
565
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
566
567
568
569
570
        },
    )
    DEFAULT = IMAGENET1K_V2


571
572
573
574
575
576
577
578
class ResNeXt101_64X4D_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnext101_64x4d-173b62eb.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 83455272,
            "recipe": "https://github.com/pytorch/vision/pull/5935",
579
580
581
582
583
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 83.246,
                    "acc@5": 96.454,
                }
584
            },
585
586
            "_ops": 15.46,
            "_weight_size": 319.318,
587
588
589
590
            "_docs": """
                These weights were trained from scratch by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
591
592
593
594
595
        },
    )
    DEFAULT = IMAGENET1K_V1


596
597
598
599
600
601
602
603
class Wide_ResNet50_2_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 68883240,
            "recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
604
605
606
607
608
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 78.468,
                    "acc@5": 94.086,
                }
609
            },
610
611
            "_ops": 11.398,
            "_weight_size": 131.82,
612
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
613
614
615
616
617
618
619
620
621
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/wide_resnet50_2-9ba9bcbe.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 68883240,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
622
623
624
625
626
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 81.602,
                    "acc@5": 95.758,
                }
627
            },
628
629
            "_ops": 11.398,
            "_weight_size": 263.124,
630
631
632
633
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
634
635
636
637
638
639
640
641
642
643
644
645
646
        },
    )
    DEFAULT = IMAGENET1K_V2


class Wide_ResNet101_2_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 126886696,
            "recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
647
648
649
650
651
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 78.848,
                    "acc@5": 94.284,
                }
652
            },
653
654
            "_ops": 22.753,
            "_weight_size": 242.896,
655
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
656
657
658
659
660
661
662
663
664
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/wide_resnet101_2-d733dc28.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 126886696,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
665
666
667
668
669
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 82.510,
                    "acc@5": 96.020,
                }
670
            },
671
672
            "_ops": 22.753,
            "_weight_size": 484.747,
673
674
675
676
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
677
678
679
680
681
        },
    )
    DEFAULT = IMAGENET1K_V2


682
@register_model()
683
684
@handle_legacy_interface(weights=("pretrained", ResNet18_Weights.IMAGENET1K_V1))
def resnet18(*, weights: Optional[ResNet18_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
685
    """ResNet-18 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
686
687

    Args:
688
689
690
691
692
693
694
695
696
697
698
699
700
701
        weights (:class:`~torchvision.models.ResNet18_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet18_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet18_Weights
        :members:
702
    """
703
704
705
    weights = ResNet18_Weights.verify(weights)

    return _resnet(BasicBlock, [2, 2, 2, 2], weights, progress, **kwargs)
706
707


708
@register_model()
709
710
@handle_legacy_interface(weights=("pretrained", ResNet34_Weights.IMAGENET1K_V1))
def resnet34(*, weights: Optional[ResNet34_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
711
    """ResNet-34 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
712
713

    Args:
714
715
716
717
718
719
720
721
722
723
724
725
726
727
        weights (:class:`~torchvision.models.ResNet34_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet34_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet34_Weights
        :members:
728
    """
729
    weights = ResNet34_Weights.verify(weights)
730

731
    return _resnet(BasicBlock, [3, 4, 6, 3], weights, progress, **kwargs)
732

733

734
@register_model()
735
736
@handle_legacy_interface(weights=("pretrained", ResNet50_Weights.IMAGENET1K_V1))
def resnet50(*, weights: Optional[ResNet50_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
737
    """ResNet-50 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
738

739
740
741
742
743
744
    .. note::
       The bottleneck of TorchVision places the stride for downsampling to the second 3x3
       convolution while the original paper places it to the first 1x1 convolution.
       This variant improves the accuracy and is known as `ResNet V1.5
       <https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_.

745
    Args:
746
747
748
749
750
751
752
753
754
755
756
757
758
759
        weights (:class:`~torchvision.models.ResNet50_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet50_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet50_Weights
        :members:
760
    """
761
762
763
    weights = ResNet50_Weights.verify(weights)

    return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
764
765


766
@register_model()
767
768
@handle_legacy_interface(weights=("pretrained", ResNet101_Weights.IMAGENET1K_V1))
def resnet101(*, weights: Optional[ResNet101_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
769
    """ResNet-101 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
770

771
772
773
774
775
776
    .. note::
       The bottleneck of TorchVision places the stride for downsampling to the second 3x3
       convolution while the original paper places it to the first 1x1 convolution.
       This variant improves the accuracy and is known as `ResNet V1.5
       <https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_.

777
    Args:
778
779
780
781
782
783
784
785
786
787
788
789
790
791
        weights (:class:`~torchvision.models.ResNet101_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet101_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet101_Weights
        :members:
792
    """
793
    weights = ResNet101_Weights.verify(weights)
794

795
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
796

797

798
@register_model()
799
800
@handle_legacy_interface(weights=("pretrained", ResNet152_Weights.IMAGENET1K_V1))
def resnet152(*, weights: Optional[ResNet152_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
801
    """ResNet-152 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
802

803
804
805
806
807
808
    .. note::
       The bottleneck of TorchVision places the stride for downsampling to the second 3x3
       convolution while the original paper places it to the first 1x1 convolution.
       This variant improves the accuracy and is known as `ResNet V1.5
       <https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_.

809
    Args:
810
811
812
813
814
815
816
817
818
819
820
821
822
823
        weights (:class:`~torchvision.models.ResNet152_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet152_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet152_Weights
        :members:
824
    """
825
826
827
    weights = ResNet152_Weights.verify(weights)

    return _resnet(Bottleneck, [3, 8, 36, 3], weights, progress, **kwargs)
828
829


830
@register_model()
831
832
833
834
@handle_legacy_interface(weights=("pretrained", ResNeXt50_32X4D_Weights.IMAGENET1K_V1))
def resnext50_32x4d(
    *, weights: Optional[ResNeXt50_32X4D_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
835
836
    """ResNeXt-50 32x4d model from
    `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.
837
838

    Args:
839
840
841
842
843
844
845
846
847
848
849
850
851
        weights (:class:`~torchvision.models.ResNeXt50_32X4D_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNext50_32X4D_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.ResNeXt50_32X4D_Weights
        :members:
852
    """
853
    weights = ResNeXt50_32X4D_Weights.verify(weights)
854

855
856
857
    _ovewrite_named_param(kwargs, "groups", 32)
    _ovewrite_named_param(kwargs, "width_per_group", 4)
    return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
858

859

860
@register_model()
861
862
863
864
@handle_legacy_interface(weights=("pretrained", ResNeXt101_32X8D_Weights.IMAGENET1K_V1))
def resnext101_32x8d(
    *, weights: Optional[ResNeXt101_32X8D_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
865
866
    """ResNeXt-101 32x8d model from
    `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.
867
868

    Args:
869
870
871
872
873
874
875
876
877
878
879
880
881
        weights (:class:`~torchvision.models.ResNeXt101_32X8D_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNeXt101_32X8D_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.ResNeXt101_32X8D_Weights
        :members:
882
    """
883
    weights = ResNeXt101_32X8D_Weights.verify(weights)
884

885
886
887
    _ovewrite_named_param(kwargs, "groups", 32)
    _ovewrite_named_param(kwargs, "width_per_group", 8)
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
888

889

890
@register_model()
891
@handle_legacy_interface(weights=("pretrained", ResNeXt101_64X4D_Weights.IMAGENET1K_V1))
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
def resnext101_64x4d(
    *, weights: Optional[ResNeXt101_64X4D_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
    """ResNeXt-101 64x4d model from
    `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.

    Args:
        weights (:class:`~torchvision.models.ResNeXt101_64X4D_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNeXt101_64X4D_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.ResNeXt101_64X4D_Weights
        :members:
    """
    weights = ResNeXt101_64X4D_Weights.verify(weights)

    _ovewrite_named_param(kwargs, "groups", 64)
    _ovewrite_named_param(kwargs, "width_per_group", 4)
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)


920
@register_model()
921
922
923
924
@handle_legacy_interface(weights=("pretrained", Wide_ResNet50_2_Weights.IMAGENET1K_V1))
def wide_resnet50_2(
    *, weights: Optional[Wide_ResNet50_2_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
925
926
    """Wide ResNet-50-2 model from
    `Wide Residual Networks <https://arxiv.org/abs/1605.07146>`_.
927
928
929
930
931
932
933

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
934
935
936
937
938
939
940
941
942
943
944
945
946
        weights (:class:`~torchvision.models.Wide_ResNet50_2_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.Wide_ResNet50_2_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.Wide_ResNet50_2_Weights
        :members:
947
    """
948
949
950
951
    weights = Wide_ResNet50_2_Weights.verify(weights)

    _ovewrite_named_param(kwargs, "width_per_group", 64 * 2)
    return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
952
953


954
@register_model()
955
956
957
958
@handle_legacy_interface(weights=("pretrained", Wide_ResNet101_2_Weights.IMAGENET1K_V1))
def wide_resnet101_2(
    *, weights: Optional[Wide_ResNet101_2_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
959
960
    """Wide ResNet-101-2 model from
    `Wide Residual Networks <https://arxiv.org/abs/1605.07146>`_.
961
962
963

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
964
965
    convolutions is the same, e.g. last block in ResNet-101 has 2048-512-2048
    channels, and in Wide ResNet-101-2 has 2048-1024-2048.
966
967

    Args:
968
969
970
971
972
973
974
975
976
977
978
979
980
        weights (:class:`~torchvision.models.Wide_ResNet101_2_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.Wide_ResNet101_2_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.Wide_ResNet101_2_Weights
        :members:
981
    """
982
983
984
985
    weights = Wide_ResNet101_2_Weights.verify(weights)

    _ovewrite_named_param(kwargs, "width_per_group", 64 * 2)
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004


# The dictionary below is internal implementation detail and will be removed in v0.15
from ._utils import _ModelURLs


model_urls = _ModelURLs(
    {
        "resnet18": ResNet18_Weights.IMAGENET1K_V1.url,
        "resnet34": ResNet34_Weights.IMAGENET1K_V1.url,
        "resnet50": ResNet50_Weights.IMAGENET1K_V1.url,
        "resnet101": ResNet101_Weights.IMAGENET1K_V1.url,
        "resnet152": ResNet152_Weights.IMAGENET1K_V1.url,
        "resnext50_32x4d": ResNeXt50_32X4D_Weights.IMAGENET1K_V1.url,
        "resnext101_32x8d": ResNeXt101_32X8D_Weights.IMAGENET1K_V1.url,
        "wide_resnet50_2": Wide_ResNet50_2_Weights.IMAGENET1K_V1.url,
        "wide_resnet101_2": Wide_ResNet101_2_Weights.IMAGENET1K_V1.url,
    }
)