resnet.py 8.67 KB
Newer Older
1
2
3
4
5
import torch.nn as nn
import torch.utils.model_zoo as model_zoo


__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
6
           'resnet152', 'resnext50_32x4d', 'resnext101_32x8d']
7
8
9


model_urls = {
10
11
12
13
14
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
15
16
17
}


18
def conv3x3(in_planes, out_planes, stride=1, groups=1):
19
    """3x3 convolution with padding"""
20
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
21
                     padding=1, groups=groups, bias=False)
22
23


24
25
26
27
28
def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


Soumith Chintala's avatar
Soumith Chintala committed
29
class BasicBlock(nn.Module):
30
31
    expansion = 1

32
33
    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, norm_layer=None):
34
        super(BasicBlock, self).__init__()
35
36
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
37
38
        if groups != 1 or base_width != 64:
            raise ValueError('BasicBlock only supports groups=1 and base_width=64')
39
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
40
        self.conv1 = conv3x3(inplanes, planes, stride)
41
        self.bn1 = norm_layer(planes)
42
43
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
44
        self.bn2 = norm_layer(planes)
45
46
47
48
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
49
        identity = x
50
51
52
53
54
55
56
57
58

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
59
            identity = self.downsample(x)
60

61
        out += identity
62
63
64
65
66
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
67
class Bottleneck(nn.Module):
68
69
    expansion = 4

70
71
    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, norm_layer=None):
72
        super(Bottleneck, self).__init__()
73
74
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
75
        width = int(planes * (base_width / 64.)) * groups
76
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
77
78
79
80
81
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
        self.conv2 = conv3x3(width, width, stride, groups)
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
82
        self.bn3 = norm_layer(planes * self.expansion)
83
84
85
86
87
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
88
        identity = x
89
90
91
92
93
94
95
96
97
98
99
100
101

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
102
            identity = self.downsample(x)
103

104
        out += identity
105
106
107
108
109
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
110
class ResNet(nn.Module):
111

112
    def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
Francisco Massa's avatar
Francisco Massa committed
113
                 groups=1, width_per_group=64, norm_layer=None):
114
        super(ResNet, self).__init__()
115
116
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
117
118
119
120
121

        self.inplanes = 64
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
122
                               bias=False)
123
        self.bn1 = norm_layer(self.inplanes)
124
125
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
126
127
128
129
        self.layer1 = self._make_layer(block, 64, layers[0], norm_layer=norm_layer)
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, norm_layer=norm_layer)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, norm_layer=norm_layer)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2, norm_layer=norm_layer)
130
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
131
        self.fc = nn.Linear(512 * block.expansion, num_classes)
132
133
134

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
135
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
136
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
137
138
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
139

140
141
142
143
144
145
146
147
148
149
        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

150
    def _make_layer(self, block, planes, blocks, stride=1, norm_layer=None):
151
152
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
153
154
155
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
156
                conv1x1(self.inplanes, planes * block.expansion, stride),
157
                norm_layer(planes * block.expansion),
158
159
160
            )

        layers = []
161
162
        layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
                            self.base_width, norm_layer))
163
        self.inplanes = planes * block.expansion
164
        for _ in range(1, blocks):
165
166
            layers.append(block(self.inplanes, planes, groups=self.groups,
                                base_width=self.base_width, norm_layer=norm_layer))
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x


188
def resnet18(pretrained=False, **kwargs):
189
190
191
192
193
    """Constructs a ResNet-18 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
194
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
195
196
197
198
199
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
    return model


200
def resnet34(pretrained=False, **kwargs):
201
202
203
204
205
    """Constructs a ResNet-34 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
206
    model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
207
208
209
210
211
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
    return model


212
def resnet50(pretrained=False, **kwargs):
213
214
215
216
217
    """Constructs a ResNet-50 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
218
    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
219
220
221
222
223
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
    return model


224
def resnet101(pretrained=False, **kwargs):
225
226
227
228
229
    """Constructs a ResNet-101 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
230
    model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
Sam Gross's avatar
Sam Gross committed
231
232
233
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
    return model
234
235


236
def resnet152(pretrained=False, **kwargs):
237
238
239
240
241
    """Constructs a ResNet-152 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
242
    model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
243
244
245
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
    return model
246
247
248


def resnext50_32x4d(pretrained=False, **kwargs):
249
    model = ResNet(Bottleneck, [3, 4, 6, 3], groups=32, width_per_group=4, **kwargs)
Francisco Massa's avatar
Francisco Massa committed
250
    # if pretrained:
251
    #     model.load_state_dict(model_zoo.load_url(model_urls['resnext50_32x4d']))
252
253
254
255
    return model


def resnext101_32x8d(pretrained=False, **kwargs):
256
    model = ResNet(Bottleneck, [3, 4, 23, 3], groups=32, width_per_group=8, **kwargs)
Francisco Massa's avatar
Francisco Massa committed
257
    # if pretrained:
258
    #     model.load_state_dict(model_zoo.load_url(model_urls['resnext101_32x8d']))
259
    return model