resnet.py 37.4 KB
Newer Older
1
from functools import partial
2
from typing import Any, Callable, List, Optional, Type, Union
3

4
import torch
5
import torch.nn as nn
6
7
from torch import Tensor

8
from ..transforms._presets import ImageClassification
9
from ..utils import _log_api_usage_once
10
from ._api import Weights, WeightsEnum
11
from ._meta import _IMAGENET_CATEGORIES
12
from ._utils import _ovewrite_named_param, handle_legacy_interface
13
14


15
16
__all__ = [
    "ResNet",
17
18
19
20
21
22
23
    "ResNet18_Weights",
    "ResNet34_Weights",
    "ResNet50_Weights",
    "ResNet101_Weights",
    "ResNet152_Weights",
    "ResNeXt50_32X4D_Weights",
    "ResNeXt101_32X8D_Weights",
24
    "ResNeXt101_64X4D_Weights",
25
26
    "Wide_ResNet50_2_Weights",
    "Wide_ResNet101_2_Weights",
27
28
29
30
31
32
33
    "resnet18",
    "resnet34",
    "resnet50",
    "resnet101",
    "resnet152",
    "resnext50_32x4d",
    "resnext101_32x8d",
34
    "resnext101_64x4d",
35
36
37
    "wide_resnet50_2",
    "wide_resnet101_2",
]
38
39


40
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
41
    """3x3 convolution with padding"""
42
43
44
45
46
47
48
49
50
51
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        groups=groups,
        bias=False,
        dilation=dilation,
    )
52
53


54
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
55
56
57
58
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


Soumith Chintala's avatar
Soumith Chintala committed
59
class BasicBlock(nn.Module):
60
61
62
63
64
65
66
67
68
69
70
    expansion: int = 1

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
71
        norm_layer: Optional[Callable[..., nn.Module]] = None,
72
    ) -> None:
73
        super().__init__()
74
75
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
76
        if groups != 1 or base_width != 64:
77
            raise ValueError("BasicBlock only supports groups=1 and base_width=64")
78
79
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
80
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
81
        self.conv1 = conv3x3(inplanes, planes, stride)
82
        self.bn1 = norm_layer(planes)
83
84
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
85
        self.bn2 = norm_layer(planes)
86
87
88
        self.downsample = downsample
        self.stride = stride

89
    def forward(self, x: Tensor) -> Tensor:
90
        identity = x
91
92
93
94
95
96
97
98
99

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
100
            identity = self.downsample(x)
101

102
        out += identity
103
104
105
106
107
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
108
class Bottleneck(nn.Module):
109
110
111
112
113
114
    # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
    # while original implementation places the stride at the first 1x1 convolution(self.conv1)
    # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
    # This variant is also known as ResNet V1.5 and improves accuracy according to
    # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.

115
116
117
118
119
120
121
122
123
124
125
    expansion: int = 4

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
126
        norm_layer: Optional[Callable[..., nn.Module]] = None,
127
    ) -> None:
128
        super().__init__()
129
130
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
131
        width = int(planes * (base_width / 64.0)) * groups
132
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
133
134
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
135
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
136
137
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
138
        self.bn3 = norm_layer(planes * self.expansion)
139
140
141
142
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

143
    def forward(self, x: Tensor) -> Tensor:
144
        identity = x
145
146
147
148
149
150
151
152
153
154
155
156
157

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
158
            identity = self.downsample(x)
159

160
        out += identity
161
162
163
164
165
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
166
class ResNet(nn.Module):
167
168
169
170
171
172
173
174
175
    def __init__(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        layers: List[int],
        num_classes: int = 1000,
        zero_init_residual: bool = False,
        groups: int = 1,
        width_per_group: int = 64,
        replace_stride_with_dilation: Optional[List[bool]] = None,
176
        norm_layer: Optional[Callable[..., nn.Module]] = None,
177
    ) -> None:
178
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
179
        _log_api_usage_once(self)
180
181
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
182
        self._norm_layer = norm_layer
183
184

        self.inplanes = 64
185
186
187
188
189
190
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
191
192
            raise ValueError(
                "replace_stride_with_dilation should be None "
193
                f"or a 3-element tuple, got {replace_stride_with_dilation}"
194
            )
195
196
        self.groups = groups
        self.base_width = width_per_group
197
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
198
        self.bn1 = norm_layer(self.inplanes)
199
200
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
201
        self.layer1 = self._make_layer(block, 64, layers[0])
202
203
204
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
205
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
206
        self.fc = nn.Linear(512 * block.expansion, num_classes)
207
208
209

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
210
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
211
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
212
213
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
214

215
216
217
218
219
        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
220
                if isinstance(m, Bottleneck) and m.bn3.weight is not None:
221
                    nn.init.constant_(m.bn3.weight, 0)  # type: ignore[arg-type]
222
                elif isinstance(m, BasicBlock) and m.bn2.weight is not None:
223
                    nn.init.constant_(m.bn2.weight, 0)  # type: ignore[arg-type]
224

225
226
227
228
229
230
231
232
    def _make_layer(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        planes: int,
        blocks: int,
        stride: int = 1,
        dilate: bool = False,
    ) -> nn.Sequential:
233
        norm_layer = self._norm_layer
234
        downsample = None
235
236
237
238
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
239
240
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
241
                conv1x1(self.inplanes, planes * block.expansion, stride),
242
                norm_layer(planes * block.expansion),
243
244
245
            )

        layers = []
246
247
248
249
250
        layers.append(
            block(
                self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
            )
        )
251
        self.inplanes = planes * block.expansion
252
        for _ in range(1, blocks):
253
254
255
256
257
258
259
260
261
262
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm_layer=norm_layer,
                )
            )
263
264
265

        return nn.Sequential(*layers)

266
    def _forward_impl(self, x: Tensor) -> Tensor:
267
        # See note [TorchScript super()]
268
269
270
271
272
273
274
275
276
277
278
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
279
        x = torch.flatten(x, 1)
280
281
282
283
        x = self.fc(x)

        return x

284
    def forward(self, x: Tensor) -> Tensor:
285
        return self._forward_impl(x)
286

287

288
289
290
def _resnet(
    block: Type[Union[BasicBlock, Bottleneck]],
    layers: List[int],
291
    weights: Optional[WeightsEnum],
292
    progress: bool,
293
    **kwargs: Any,
294
) -> ResNet:
295
296
297
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

298
    model = ResNet(block, layers, **kwargs)
299
300
301
302

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

303
304
305
    return model


306
307
308
309
310
311
312
313
314
315
316
317
318
319
_COMMON_META = {
    "min_size": (1, 1),
    "categories": _IMAGENET_CATEGORIES,
}


class ResNet18_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet18-f37072fd.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 11689512,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
320
321
322
323
324
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 69.758,
                    "acc@5": 89.078,
                }
325
            },
326
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
327
328
329
330
331
332
333
334
335
336
337
338
339
        },
    )
    DEFAULT = IMAGENET1K_V1


class ResNet34_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet34-b627a593.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 21797672,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
340
341
342
343
344
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 73.314,
                    "acc@5": 91.420,
                }
345
            },
346
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
347
348
349
350
351
352
353
354
355
356
357
358
359
        },
    )
    DEFAULT = IMAGENET1K_V1


class ResNet50_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet50-0676ba61.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 25557032,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
360
361
362
363
364
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 76.130,
                    "acc@5": 92.862,
                }
365
            },
366
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
367
368
369
370
371
372
373
374
375
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnet50-11ad3fa6.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 25557032,
            "recipe": "https://github.com/pytorch/vision/issues/3995#issuecomment-1013906621",
376
377
378
379
380
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 80.858,
                    "acc@5": 95.434,
                }
381
            },
382
            "_docs": """
383
384
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
385
            """,
386
387
388
389
390
391
392
393
394
395
396
397
398
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNet101_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet101-63fe2227.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 44549160,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
399
400
401
402
403
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 77.374,
                    "acc@5": 93.546,
                }
404
            },
405
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
406
407
408
409
410
411
412
413
414
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnet101-cd907fc2.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 44549160,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
415
416
417
418
419
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 81.886,
                    "acc@5": 95.780,
                }
420
            },
421
422
423
424
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
425
426
427
428
429
430
431
432
433
434
435
436
437
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNet152_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet152-394f9c45.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 60192808,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
438
439
440
441
442
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 78.312,
                    "acc@5": 94.046,
                }
443
            },
444
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
445
446
447
448
449
450
451
452
453
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnet152-f82ba261.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 60192808,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
454
455
456
457
458
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 82.284,
                    "acc@5": 96.002,
                }
459
            },
460
461
462
463
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
464
465
466
467
468
469
470
471
472
473
474
475
476
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNeXt50_32X4D_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 25028904,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
477
478
479
480
481
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 77.618,
                    "acc@5": 93.698,
                }
482
            },
483
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
484
485
486
487
488
489
490
491
492
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnext50_32x4d-1a0047aa.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 25028904,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
493
494
495
496
497
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 81.198,
                    "acc@5": 95.340,
                }
498
            },
499
500
501
502
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
503
504
505
506
507
508
509
510
511
512
513
514
515
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNeXt101_32X8D_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 88791336,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
516
517
518
519
520
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 79.312,
                    "acc@5": 94.526,
                }
521
            },
522
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
523
524
525
526
527
528
529
530
531
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnext101_32x8d-110c445d.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 88791336,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
532
533
534
535
536
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 82.834,
                    "acc@5": 96.228,
                }
537
            },
538
539
540
541
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
542
543
544
545
546
        },
    )
    DEFAULT = IMAGENET1K_V2


547
548
549
550
551
552
553
554
class ResNeXt101_64X4D_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnext101_64x4d-173b62eb.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 83455272,
            "recipe": "https://github.com/pytorch/vision/pull/5935",
555
556
557
558
559
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 83.246,
                    "acc@5": 96.454,
                }
560
            },
561
562
563
564
            "_docs": """
                These weights were trained from scratch by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
565
566
567
568
569
        },
    )
    DEFAULT = IMAGENET1K_V1


570
571
572
573
574
575
576
577
class Wide_ResNet50_2_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 68883240,
            "recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
578
579
580
581
582
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 78.468,
                    "acc@5": 94.086,
                }
583
            },
584
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
585
586
587
588
589
590
591
592
593
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/wide_resnet50_2-9ba9bcbe.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 68883240,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
594
595
596
597
598
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 81.602,
                    "acc@5": 95.758,
                }
599
            },
600
601
602
603
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
604
605
606
607
608
609
610
611
612
613
614
615
616
        },
    )
    DEFAULT = IMAGENET1K_V2


class Wide_ResNet101_2_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 126886696,
            "recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
617
618
619
620
621
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 78.848,
                    "acc@5": 94.284,
                }
622
            },
623
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
624
625
626
627
628
629
630
631
632
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/wide_resnet101_2-d733dc28.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 126886696,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
633
634
635
636
637
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 82.510,
                    "acc@5": 96.020,
                }
638
            },
639
640
641
642
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
643
644
645
646
647
648
649
        },
    )
    DEFAULT = IMAGENET1K_V2


@handle_legacy_interface(weights=("pretrained", ResNet18_Weights.IMAGENET1K_V1))
def resnet18(*, weights: Optional[ResNet18_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
650
    """ResNet-18 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
651
652

    Args:
653
654
655
656
657
658
659
660
661
662
663
664
665
666
        weights (:class:`~torchvision.models.ResNet18_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet18_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet18_Weights
        :members:
667
    """
668
669
670
    weights = ResNet18_Weights.verify(weights)

    return _resnet(BasicBlock, [2, 2, 2, 2], weights, progress, **kwargs)
671
672


673
674
@handle_legacy_interface(weights=("pretrained", ResNet34_Weights.IMAGENET1K_V1))
def resnet34(*, weights: Optional[ResNet34_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
675
    """ResNet-34 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
676
677

    Args:
678
679
680
681
682
683
684
685
686
687
688
689
690
691
        weights (:class:`~torchvision.models.ResNet34_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet34_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet34_Weights
        :members:
692
    """
693
    weights = ResNet34_Weights.verify(weights)
694

695
    return _resnet(BasicBlock, [3, 4, 6, 3], weights, progress, **kwargs)
696

697
698
699

@handle_legacy_interface(weights=("pretrained", ResNet50_Weights.IMAGENET1K_V1))
def resnet50(*, weights: Optional[ResNet50_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
700
    """ResNet-50 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
701

702
703
704
705
706
707
    .. note::
       The bottleneck of TorchVision places the stride for downsampling to the second 3x3
       convolution while the original paper places it to the first 1x1 convolution.
       This variant improves the accuracy and is known as `ResNet V1.5
       <https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_.

708
    Args:
709
710
711
712
713
714
715
716
717
718
719
720
721
722
        weights (:class:`~torchvision.models.ResNet50_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet50_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet50_Weights
        :members:
723
    """
724
725
726
    weights = ResNet50_Weights.verify(weights)

    return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
727
728


729
730
@handle_legacy_interface(weights=("pretrained", ResNet101_Weights.IMAGENET1K_V1))
def resnet101(*, weights: Optional[ResNet101_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
731
    """ResNet-101 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
732

733
734
735
736
737
738
    .. note::
       The bottleneck of TorchVision places the stride for downsampling to the second 3x3
       convolution while the original paper places it to the first 1x1 convolution.
       This variant improves the accuracy and is known as `ResNet V1.5
       <https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_.

739
    Args:
740
741
742
743
744
745
746
747
748
749
750
751
752
753
        weights (:class:`~torchvision.models.ResNet101_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet101_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet101_Weights
        :members:
754
    """
755
    weights = ResNet101_Weights.verify(weights)
756

757
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
758

759
760
761

@handle_legacy_interface(weights=("pretrained", ResNet152_Weights.IMAGENET1K_V1))
def resnet152(*, weights: Optional[ResNet152_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
762
    """ResNet-152 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
763

764
765
766
767
768
769
    .. note::
       The bottleneck of TorchVision places the stride for downsampling to the second 3x3
       convolution while the original paper places it to the first 1x1 convolution.
       This variant improves the accuracy and is known as `ResNet V1.5
       <https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_.

770
    Args:
771
772
773
774
775
776
777
778
779
780
781
782
783
784
        weights (:class:`~torchvision.models.ResNet152_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet152_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet152_Weights
        :members:
785
    """
786
787
788
    weights = ResNet152_Weights.verify(weights)

    return _resnet(Bottleneck, [3, 8, 36, 3], weights, progress, **kwargs)
789
790


791
792
793
794
@handle_legacy_interface(weights=("pretrained", ResNeXt50_32X4D_Weights.IMAGENET1K_V1))
def resnext50_32x4d(
    *, weights: Optional[ResNeXt50_32X4D_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
795
796
    """ResNeXt-50 32x4d model from
    `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.
797
798

    Args:
799
800
801
802
803
804
805
806
807
808
809
810
811
        weights (:class:`~torchvision.models.ResNeXt50_32X4D_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNext50_32X4D_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.ResNeXt50_32X4D_Weights
        :members:
812
    """
813
    weights = ResNeXt50_32X4D_Weights.verify(weights)
814

815
816
817
    _ovewrite_named_param(kwargs, "groups", 32)
    _ovewrite_named_param(kwargs, "width_per_group", 4)
    return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
818

819
820
821
822
823

@handle_legacy_interface(weights=("pretrained", ResNeXt101_32X8D_Weights.IMAGENET1K_V1))
def resnext101_32x8d(
    *, weights: Optional[ResNeXt101_32X8D_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
824
825
    """ResNeXt-101 32x8d model from
    `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.
826
827

    Args:
828
829
830
831
832
833
834
835
836
837
838
839
840
        weights (:class:`~torchvision.models.ResNeXt101_32X8D_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNeXt101_32X8D_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.ResNeXt101_32X8D_Weights
        :members:
841
    """
842
    weights = ResNeXt101_32X8D_Weights.verify(weights)
843

844
845
846
    _ovewrite_named_param(kwargs, "groups", 32)
    _ovewrite_named_param(kwargs, "width_per_group", 8)
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
847

848

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
def resnext101_64x4d(
    *, weights: Optional[ResNeXt101_64X4D_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
    """ResNeXt-101 64x4d model from
    `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.

    Args:
        weights (:class:`~torchvision.models.ResNeXt101_64X4D_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNeXt101_64X4D_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.ResNeXt101_64X4D_Weights
        :members:
    """
    weights = ResNeXt101_64X4D_Weights.verify(weights)

    _ovewrite_named_param(kwargs, "groups", 64)
    _ovewrite_named_param(kwargs, "width_per_group", 4)
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)


877
878
879
880
@handle_legacy_interface(weights=("pretrained", Wide_ResNet50_2_Weights.IMAGENET1K_V1))
def wide_resnet50_2(
    *, weights: Optional[Wide_ResNet50_2_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
881
882
    """Wide ResNet-50-2 model from
    `Wide Residual Networks <https://arxiv.org/abs/1605.07146>`_.
883
884
885
886
887
888
889

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
890
891
892
893
894
895
896
897
898
899
900
901
902
        weights (:class:`~torchvision.models.Wide_ResNet50_2_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.Wide_ResNet50_2_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.Wide_ResNet50_2_Weights
        :members:
903
    """
904
905
906
907
    weights = Wide_ResNet50_2_Weights.verify(weights)

    _ovewrite_named_param(kwargs, "width_per_group", 64 * 2)
    return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
908
909


910
911
912
913
@handle_legacy_interface(weights=("pretrained", Wide_ResNet101_2_Weights.IMAGENET1K_V1))
def wide_resnet101_2(
    *, weights: Optional[Wide_ResNet101_2_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
914
915
    """Wide ResNet-101-2 model from
    `Wide Residual Networks <https://arxiv.org/abs/1605.07146>`_.
916
917
918

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
919
920
    convolutions is the same, e.g. last block in ResNet-101 has 2048-512-2048
    channels, and in Wide ResNet-101-2 has 2048-1024-2048.
921
922

    Args:
923
924
925
926
927
928
929
930
931
932
933
934
935
        weights (:class:`~torchvision.models.Wide_ResNet101_2_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.Wide_ResNet101_2_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.Wide_ResNet101_2_Weights
        :members:
936
    """
937
938
939
940
    weights = Wide_ResNet101_2_Weights.verify(weights)

    _ovewrite_named_param(kwargs, "width_per_group", 64 * 2)
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959


# The dictionary below is internal implementation detail and will be removed in v0.15
from ._utils import _ModelURLs


model_urls = _ModelURLs(
    {
        "resnet18": ResNet18_Weights.IMAGENET1K_V1.url,
        "resnet34": ResNet34_Weights.IMAGENET1K_V1.url,
        "resnet50": ResNet50_Weights.IMAGENET1K_V1.url,
        "resnet101": ResNet101_Weights.IMAGENET1K_V1.url,
        "resnet152": ResNet152_Weights.IMAGENET1K_V1.url,
        "resnext50_32x4d": ResNeXt50_32X4D_Weights.IMAGENET1K_V1.url,
        "resnext101_32x8d": ResNeXt101_32X8D_Weights.IMAGENET1K_V1.url,
        "wide_resnet50_2": Wide_ResNet50_2_Weights.IMAGENET1K_V1.url,
        "wide_resnet101_2": Wide_ResNet101_2_Weights.IMAGENET1K_V1.url,
    }
)