resnet.py 6.93 KB
Newer Older
1
2
3
4
5
6
7
8
9
import torch.nn as nn
import torch.utils.model_zoo as model_zoo


__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
           'resnet152']


model_urls = {
10
11
12
13
14
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
15
16
17
18
}


def conv3x3(in_planes, out_planes, stride=1):
19
    """3x3 convolution with padding"""
20
21
22
23
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


24
25
26
27
28
def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


Soumith Chintala's avatar
Soumith Chintala committed
29
class BasicBlock(nn.Module):
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
61
class Bottleneck(nn.Module):
62
63
64
65
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
66
        self.conv1 = conv1x1(inplanes, planes)
67
        self.bn1 = nn.BatchNorm2d(planes)
68
        self.conv2 = conv3x3(planes, planes, stride)
69
        self.bn2 = nn.BatchNorm2d(planes)
70
        self.conv3 = conv1x1(planes, planes * self.expansion)
vfdev's avatar
vfdev committed
71
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
99
class ResNet(nn.Module):
100

101
    def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
102
        super(ResNet, self).__init__()
Amir Arsalan Soltani's avatar
Amir Arsalan Soltani committed
103
        self.inplanes = 64
104
105
106
107
108
109
110
111
112
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
113
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
114
115
116
117
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
118
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
119
            elif isinstance(m, nn.BatchNorm2d):
120
121
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
122

123
124
125
126
127
128
129
130
131
132
        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

133
134
135
136
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
137
                conv1x1(self.inplanes, planes * block.expansion, stride),
138
139
140
141
142
143
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
144
        for _ in range(1, blocks):
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x


167
def resnet18(pretrained=False, **kwargs):
168
169
170
171
172
    """Constructs a ResNet-18 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
173
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
174
175
176
177
178
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
    return model


179
def resnet34(pretrained=False, **kwargs):
180
181
182
183
184
    """Constructs a ResNet-34 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
185
    model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
186
187
188
189
190
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
    return model


191
def resnet50(pretrained=False, **kwargs):
192
193
194
195
196
    """Constructs a ResNet-50 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
197
    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
198
199
200
201
202
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
    return model


203
def resnet101(pretrained=False, **kwargs):
204
205
206
207
208
    """Constructs a ResNet-101 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
209
    model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
Sam Gross's avatar
Sam Gross committed
210
211
212
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
    return model
213
214


215
def resnet152(pretrained=False, **kwargs):
216
217
218
219
220
    """Constructs a ResNet-152 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
221
    model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
222
223
224
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
    return model