Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
1531bf5e
Commit
1531bf5e
authored
Jan 06, 2017
by
Sam Gross
Browse files
Add ResNet, AlexNet, and VGG model definitions and model zoo
parent
3ed48310
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
325 additions
and
0 deletions
+325
-0
torchvision/__init__.py
torchvision/__init__.py
+4
-0
torchvision/models/__init__.py
torchvision/models/__init__.py
+3
-0
torchvision/models/alexnet.py
torchvision/models/alexnet.py
+55
-0
torchvision/models/resnet.py
torchvision/models/resnet.py
+179
-0
torchvision/models/vgg.py
torchvision/models/vgg.py
+84
-0
No files found.
torchvision/__init__.py
View file @
1531bf5e
from
torchvision
import
models
from
torchvision
import
datasets
from
torchvision
import
transforms
from
torchvision
import
utils
torchvision/models/__init__.py
0 → 100644
View file @
1531bf5e
from
.alexnet
import
*
from
.resnet
import
*
from
.vgg
import
*
torchvision/models/alexnet.py
0 → 100644
View file @
1531bf5e
import
torch.nn
as
nn
import
torch.utils.model_zoo
as
model_zoo
__all__
=
[
'AlexNet'
,
'alexnet'
]
model_urls
=
{
'alexnet'
:
'https://s3.amazonaws.com/pytorch/models/alexnet-owt-4df8aa71.pth'
,
}
class
AlexNet
(
nn
.
Container
):
def
__init__
(
self
,
num_classes
=
1000
):
super
(
AlexNet
,
self
).
__init__
()
self
.
features
=
nn
.
Sequential
(
nn
.
Conv2d
(
3
,
64
,
kernel_size
=
11
,
stride
=
4
,
padding
=
2
),
nn
.
ReLU
(
inplace
=
True
),
nn
.
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
),
nn
.
Conv2d
(
64
,
192
,
kernel_size
=
5
,
padding
=
2
),
nn
.
ReLU
(
inplace
=
True
),
nn
.
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
),
nn
.
Conv2d
(
192
,
384
,
kernel_size
=
3
,
padding
=
1
),
nn
.
ReLU
(
inplace
=
True
),
nn
.
Conv2d
(
384
,
256
,
kernel_size
=
3
,
padding
=
1
),
nn
.
ReLU
(
inplace
=
True
),
nn
.
Conv2d
(
256
,
256
,
kernel_size
=
3
,
padding
=
1
),
nn
.
ReLU
(
inplace
=
True
),
nn
.
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
),
)
self
.
classifier
=
nn
.
Sequential
(
nn
.
Dropout
(),
nn
.
Linear
(
256
*
6
*
6
,
4096
),
nn
.
ReLU
(
inplace
=
True
),
nn
.
Dropout
(),
nn
.
Linear
(
4096
,
4096
),
nn
.
ReLU
(
inplace
=
True
),
nn
.
Linear
(
4096
,
num_classes
),
)
def
forward
(
self
,
x
):
x
=
self
.
features
(
x
)
x
=
x
.
view
(
x
.
size
(
0
),
256
*
6
*
6
)
x
=
self
.
classifier
(
x
)
return
x
def
alexnet
(
pretrained
=
False
):
r
"""AlexNet model architecture from the "One weird trick" paper.
https://arxiv.org/abs/1404.5997
"""
model
=
AlexNet
()
if
pretrained
:
model
.
load_state_dict
(
model_zoo
.
load_url
(
model_urls
[
'alexnet'
]))
return
model
torchvision/models/resnet.py
0 → 100644
View file @
1531bf5e
import
torch.nn
as
nn
import
math
import
torch.utils.model_zoo
as
model_zoo
__all__
=
[
'ResNet'
,
'resnet18'
,
'resnet34'
,
'resnet50'
,
'resnet101'
,
'resnet152'
]
model_urls
=
{
'resnet18'
:
'https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth'
,
'resnet34'
:
'https://s3.amazonaws.com/pytorch/models/resnet34-333f7ec4.pth'
,
'resnet50'
:
'https://s3.amazonaws.com/pytorch/models/resnet50-19c8e357.pth'
,
}
def
conv3x3
(
in_planes
,
out_planes
,
stride
=
1
):
"3x3 convolution with padding"
return
nn
.
Conv2d
(
in_planes
,
out_planes
,
kernel_size
=
3
,
stride
=
stride
,
padding
=
1
,
bias
=
False
)
class
BasicBlock
(
nn
.
Container
):
expansion
=
1
def
__init__
(
self
,
inplanes
,
planes
,
stride
=
1
,
downsample
=
None
):
super
(
BasicBlock
,
self
).
__init__
()
self
.
conv1
=
conv3x3
(
inplanes
,
planes
,
stride
)
self
.
bn1
=
nn
.
BatchNorm2d
(
planes
)
self
.
relu
=
nn
.
ReLU
(
inplace
=
True
)
self
.
conv2
=
conv3x3
(
planes
,
planes
)
self
.
bn2
=
nn
.
BatchNorm2d
(
planes
)
self
.
downsample
=
downsample
self
.
stride
=
stride
def
forward
(
self
,
x
):
residual
=
x
out
=
self
.
conv1
(
x
)
out
=
self
.
bn1
(
out
)
out
=
self
.
relu
(
out
)
out
=
self
.
conv2
(
out
)
out
=
self
.
bn2
(
out
)
if
self
.
downsample
is
not
None
:
residual
=
self
.
downsample
(
x
)
out
+=
residual
out
=
self
.
relu
(
out
)
return
out
class
Bottleneck
(
nn
.
Container
):
expansion
=
4
def
__init__
(
self
,
inplanes
,
planes
,
stride
=
1
,
downsample
=
None
):
super
(
Bottleneck
,
self
).
__init__
()
self
.
conv1
=
nn
.
Conv2d
(
inplanes
,
planes
,
kernel_size
=
1
,
bias
=
False
)
self
.
bn1
=
nn
.
BatchNorm2d
(
planes
)
self
.
conv2
=
nn
.
Conv2d
(
planes
,
planes
,
kernel_size
=
3
,
stride
=
stride
,
padding
=
1
,
bias
=
False
)
self
.
bn2
=
nn
.
BatchNorm2d
(
planes
)
self
.
conv3
=
nn
.
Conv2d
(
planes
,
planes
*
4
,
kernel_size
=
1
,
bias
=
False
)
self
.
bn3
=
nn
.
BatchNorm2d
(
planes
*
4
)
self
.
relu
=
nn
.
ReLU
(
inplace
=
True
)
self
.
downsample
=
downsample
self
.
stride
=
stride
def
forward
(
self
,
x
):
residual
=
x
out
=
self
.
conv1
(
x
)
out
=
self
.
bn1
(
out
)
out
=
self
.
relu
(
out
)
out
=
self
.
conv2
(
out
)
out
=
self
.
bn2
(
out
)
out
=
self
.
relu
(
out
)
out
=
self
.
conv3
(
out
)
out
=
self
.
bn3
(
out
)
if
self
.
downsample
is
not
None
:
residual
=
self
.
downsample
(
x
)
out
+=
residual
out
=
self
.
relu
(
out
)
return
out
class
ResNet
(
nn
.
Container
):
def
__init__
(
self
,
block
,
layers
,
num_classes
=
1000
):
self
.
inplanes
=
64
super
(
ResNet
,
self
).
__init__
()
self
.
conv1
=
nn
.
Conv2d
(
3
,
64
,
kernel_size
=
7
,
stride
=
2
,
padding
=
3
,
bias
=
False
)
self
.
bn1
=
nn
.
BatchNorm2d
(
64
)
self
.
relu
=
nn
.
ReLU
(
inplace
=
True
)
self
.
maxpool
=
nn
.
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
layer1
=
self
.
_make_layer
(
block
,
64
,
layers
[
0
])
self
.
layer2
=
self
.
_make_layer
(
block
,
128
,
layers
[
1
],
stride
=
2
)
self
.
layer3
=
self
.
_make_layer
(
block
,
256
,
layers
[
2
],
stride
=
2
)
self
.
layer4
=
self
.
_make_layer
(
block
,
512
,
layers
[
3
],
stride
=
2
)
self
.
avgpool
=
nn
.
AvgPool2d
(
7
)
self
.
fc
=
nn
.
Linear
(
512
*
block
.
expansion
,
num_classes
)
for
m
in
self
.
modules
():
if
isinstance
(
m
,
nn
.
Conv2d
):
n
=
m
.
kernel_size
[
0
]
*
m
.
kernel_size
[
1
]
*
m
.
out_channels
m
.
weight
.
data
.
normal_
(
0
,
math
.
sqrt
(
2.
/
n
))
elif
isinstance
(
m
,
nn
.
BatchNorm2d
):
m
.
weight
.
data
.
fill_
(
1
)
m
.
bias
.
data
.
zero_
()
def
_make_layer
(
self
,
block
,
planes
,
blocks
,
stride
=
1
):
downsample
=
None
if
stride
!=
1
or
self
.
inplanes
!=
planes
*
block
.
expansion
:
downsample
=
nn
.
Sequential
(
nn
.
Conv2d
(
self
.
inplanes
,
planes
*
block
.
expansion
,
kernel_size
=
1
,
stride
=
stride
,
bias
=
False
),
nn
.
BatchNorm2d
(
planes
*
block
.
expansion
),
)
layers
=
[]
layers
.
append
(
block
(
self
.
inplanes
,
planes
,
stride
,
downsample
))
self
.
inplanes
=
planes
*
block
.
expansion
for
i
in
range
(
1
,
blocks
):
layers
.
append
(
block
(
self
.
inplanes
,
planes
))
return
nn
.
Sequential
(
*
layers
)
def
forward
(
self
,
x
):
x
=
self
.
conv1
(
x
)
x
=
self
.
bn1
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
maxpool
(
x
)
x
=
self
.
layer1
(
x
)
x
=
self
.
layer2
(
x
)
x
=
self
.
layer3
(
x
)
x
=
self
.
layer4
(
x
)
x
=
self
.
avgpool
(
x
)
x
=
x
.
view
(
x
.
size
(
0
),
-
1
)
x
=
self
.
fc
(
x
)
return
x
def
resnet18
(
pretrained
=
False
):
model
=
ResNet
(
BasicBlock
,
[
2
,
2
,
2
,
2
])
if
pretrained
:
model
.
load_state_dict
(
model_zoo
.
load_url
(
model_urls
[
'resnet18'
]))
return
model
def
resnet34
(
pretrained
=
False
):
model
=
ResNet
(
BasicBlock
,
[
3
,
4
,
6
,
3
])
if
pretrained
:
model
.
load_state_dict
(
model_zoo
.
load_url
(
model_urls
[
'resnet34'
]))
return
model
def
resnet50
(
pretrained
=
False
):
model
=
ResNet
(
Bottleneck
,
[
3
,
4
,
6
,
3
])
if
pretrained
:
model
.
load_state_dict
(
model_zoo
.
load_url
(
model_urls
[
'resnet50'
]))
return
model
def
resnet101
():
return
ResNet
(
Bottleneck
,
[
3
,
4
,
23
,
3
])
def
resnet152
():
return
ResNet
(
Bottleneck
,
[
3
,
8
,
36
,
3
])
torchvision/models/vgg.py
0 → 100644
View file @
1531bf5e
import
torch.nn
as
nn
__all__
=
[
'VGG'
,
'vgg11'
,
'vgg11_bn'
,
'vgg13'
,
'vgg13_bn'
,
'vgg16'
,
'vgg16_bn'
,
'vgg19_bn'
,
'vgg19'
,
]
class
VGG
(
nn
.
Container
):
def
__init__
(
self
,
features
):
super
(
VGG
,
self
).
__init__
()
self
.
features
=
features
self
.
classifier
=
nn
.
Sequential
(
nn
.
Dropout
(),
nn
.
Linear
(
512
*
7
*
7
,
4096
),
nn
.
ReLU
(
True
),
nn
.
Dropout
(),
nn
.
Linear
(
4096
,
4096
),
nn
.
ReLU
(
True
),
nn
.
Linear
(
4096
,
1000
),
)
def
forward
(
self
,
x
):
x
=
self
.
features
(
x
)
x
=
x
.
view
(
x
.
size
(
0
),
-
1
)
x
=
self
.
classifier
(
x
)
return
x
def
make_layers
(
cfg
,
batch_norm
=
False
):
layers
=
[]
in_channels
=
3
for
v
in
cfg
:
if
v
==
'M'
:
layers
+=
[
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)]
else
:
conv2d
=
nn
.
Conv2d
(
in_channels
,
v
,
kernel_size
=
3
,
padding
=
1
)
if
batch_norm
:
layers
+=
[
conv2d
,
nn
.
BatchNorm2d
(
v
),
nn
.
ReLU
(
inplace
=
True
)]
else
:
layers
+=
[
conv2d
,
nn
.
ReLU
(
inplace
=
True
)]
in_channels
=
v
return
nn
.
Sequential
(
*
layers
)
cfg
=
{
'A'
:
[
64
,
'M'
,
128
,
'M'
,
256
,
256
,
'M'
,
512
,
512
,
'M'
,
512
,
512
,
'M'
],
'B'
:
[
64
,
64
,
'M'
,
128
,
128
,
'M'
,
256
,
256
,
'M'
,
512
,
512
,
'M'
,
512
,
512
,
'M'
],
'D'
:
[
64
,
64
,
'M'
,
128
,
128
,
'M'
,
256
,
256
,
256
,
'M'
,
512
,
512
,
512
,
'M'
,
512
,
512
,
512
,
'M'
],
'E'
:
[
64
,
64
,
'M'
,
128
,
128
,
'M'
,
256
,
256
,
256
,
256
,
'M'
,
512
,
512
,
512
,
512
,
'M'
,
512
,
512
,
512
,
512
,
'M'
],
}
def
vgg11
():
return
VGG
(
make_layers
(
cfg
[
'A'
]))
def
vgg11_bn
():
return
VGG
(
make_layers
(
cfg
[
'A'
],
batch_norm
=
True
))
def
vgg13
():
return
VGG
(
make_layers
(
cfg
[
'B'
]))
def
vgg13_bn
():
return
VGG
(
make_layers
(
cfg
[
'B'
],
batch_norm
=
True
))
def
vgg16
():
return
VGG
(
make_layers
(
cfg
[
'D'
]))
def
vgg16_bn
():
return
VGG
(
make_layers
(
cfg
[
'D'
],
batch_norm
=
True
))
def
vgg19
():
return
VGG
(
make_layers
(
cfg
[
'E'
]))
def
vgg19_bn
():
return
VGG
(
make_layers
(
cfg
[
'E'
],
batch_norm
=
True
))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment