"vscode:/vscode.git/clone" did not exist on "c1270aabc5354c429aecab0934f0f394ff1961bb"
resnet.py 28.4 KB
Newer Older
1
from functools import partial
2
3
from typing import Type, Any, Callable, Union, List, Optional

4
import torch
5
import torch.nn as nn
6
7
from torch import Tensor

8
from ..transforms._presets import ImageClassification
9
from ..utils import _log_api_usage_once
10
11
12
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
from ._utils import handle_legacy_interface, _ovewrite_named_param
13
14


15
16
__all__ = [
    "ResNet",
17
18
19
20
21
22
23
24
25
    "ResNet18_Weights",
    "ResNet34_Weights",
    "ResNet50_Weights",
    "ResNet101_Weights",
    "ResNet152_Weights",
    "ResNeXt50_32X4D_Weights",
    "ResNeXt101_32X8D_Weights",
    "Wide_ResNet50_2_Weights",
    "Wide_ResNet101_2_Weights",
26
27
28
29
30
31
32
33
34
35
    "resnet18",
    "resnet34",
    "resnet50",
    "resnet101",
    "resnet152",
    "resnext50_32x4d",
    "resnext101_32x8d",
    "wide_resnet50_2",
    "wide_resnet101_2",
]
36
37


38
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
39
    """3x3 convolution with padding"""
40
41
42
43
44
45
46
47
48
49
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        groups=groups,
        bias=False,
        dilation=dilation,
    )
50
51


52
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
53
54
55
56
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


Soumith Chintala's avatar
Soumith Chintala committed
57
class BasicBlock(nn.Module):
58
59
60
61
62
63
64
65
66
67
68
    expansion: int = 1

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
69
        norm_layer: Optional[Callable[..., nn.Module]] = None,
70
    ) -> None:
71
        super().__init__()
72
73
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
74
        if groups != 1 or base_width != 64:
75
            raise ValueError("BasicBlock only supports groups=1 and base_width=64")
76
77
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
78
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
79
        self.conv1 = conv3x3(inplanes, planes, stride)
80
        self.bn1 = norm_layer(planes)
81
82
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
83
        self.bn2 = norm_layer(planes)
84
85
86
        self.downsample = downsample
        self.stride = stride

87
    def forward(self, x: Tensor) -> Tensor:
88
        identity = x
89
90
91
92
93
94
95
96
97

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
98
            identity = self.downsample(x)
99

100
        out += identity
101
102
103
104
105
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
106
class Bottleneck(nn.Module):
107
108
109
110
111
112
    # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
    # while original implementation places the stride at the first 1x1 convolution(self.conv1)
    # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
    # This variant is also known as ResNet V1.5 and improves accuracy according to
    # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.

113
114
115
116
117
118
119
120
121
122
123
    expansion: int = 4

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
124
        norm_layer: Optional[Callable[..., nn.Module]] = None,
125
    ) -> None:
126
        super().__init__()
127
128
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
129
        width = int(planes * (base_width / 64.0)) * groups
130
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
131
132
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
133
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
134
135
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
136
        self.bn3 = norm_layer(planes * self.expansion)
137
138
139
140
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

141
    def forward(self, x: Tensor) -> Tensor:
142
        identity = x
143
144
145
146
147
148
149
150
151
152
153
154
155

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
156
            identity = self.downsample(x)
157

158
        out += identity
159
160
161
162
163
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
164
class ResNet(nn.Module):
165
166
167
168
169
170
171
172
173
    def __init__(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        layers: List[int],
        num_classes: int = 1000,
        zero_init_residual: bool = False,
        groups: int = 1,
        width_per_group: int = 64,
        replace_stride_with_dilation: Optional[List[bool]] = None,
174
        norm_layer: Optional[Callable[..., nn.Module]] = None,
175
    ) -> None:
176
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
177
        _log_api_usage_once(self)
178
179
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
180
        self._norm_layer = norm_layer
181
182

        self.inplanes = 64
183
184
185
186
187
188
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
189
190
            raise ValueError(
                "replace_stride_with_dilation should be None "
191
                f"or a 3-element tuple, got {replace_stride_with_dilation}"
192
            )
193
194
        self.groups = groups
        self.base_width = width_per_group
195
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
196
        self.bn1 = norm_layer(self.inplanes)
197
198
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
199
        self.layer1 = self._make_layer(block, 64, layers[0])
200
201
202
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
203
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
204
        self.fc = nn.Linear(512 * block.expansion, num_classes)
205
206
207

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
208
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
209
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
210
211
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
212

213
214
215
216
217
218
        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
219
                    nn.init.constant_(m.bn3.weight, 0)  # type: ignore[arg-type]
220
                elif isinstance(m, BasicBlock):
221
                    nn.init.constant_(m.bn2.weight, 0)  # type: ignore[arg-type]
222

223
224
225
226
227
228
229
230
    def _make_layer(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        planes: int,
        blocks: int,
        stride: int = 1,
        dilate: bool = False,
    ) -> nn.Sequential:
231
        norm_layer = self._norm_layer
232
        downsample = None
233
234
235
236
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
237
238
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
239
                conv1x1(self.inplanes, planes * block.expansion, stride),
240
                norm_layer(planes * block.expansion),
241
242
243
            )

        layers = []
244
245
246
247
248
        layers.append(
            block(
                self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
            )
        )
249
        self.inplanes = planes * block.expansion
250
        for _ in range(1, blocks):
251
252
253
254
255
256
257
258
259
260
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm_layer=norm_layer,
                )
            )
261
262
263

        return nn.Sequential(*layers)

264
    def _forward_impl(self, x: Tensor) -> Tensor:
265
        # See note [TorchScript super()]
266
267
268
269
270
271
272
273
274
275
276
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
277
        x = torch.flatten(x, 1)
278
279
280
281
        x = self.fc(x)

        return x

282
    def forward(self, x: Tensor) -> Tensor:
283
        return self._forward_impl(x)
284

285

286
287
288
def _resnet(
    block: Type[Union[BasicBlock, Bottleneck]],
    layers: List[int],
289
    weights: Optional[WeightsEnum],
290
    progress: bool,
291
    **kwargs: Any,
292
) -> ResNet:
293
294
295
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

296
    model = ResNet(block, layers, **kwargs)
297
298
299
300

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

301
302
303
    return model


304
305
306
307
308
309
310
311
312
313
314
315
316
317
_COMMON_META = {
    "min_size": (1, 1),
    "categories": _IMAGENET_CATEGORIES,
}


class ResNet18_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet18-f37072fd.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 11689512,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
318
319
320
321
            "metrics": {
                "acc@1": 69.758,
                "acc@5": 89.078,
            },
322
323
324
325
326
327
328
329
330
331
332
333
334
        },
    )
    DEFAULT = IMAGENET1K_V1


class ResNet34_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet34-b627a593.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 21797672,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
335
336
337
338
            "metrics": {
                "acc@1": 73.314,
                "acc@5": 91.420,
            },
339
340
341
342
343
344
345
346
347
348
349
350
351
        },
    )
    DEFAULT = IMAGENET1K_V1


class ResNet50_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet50-0676ba61.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 25557032,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
352
353
354
355
            "metrics": {
                "acc@1": 76.130,
                "acc@5": 92.862,
            },
356
357
358
359
360
361
362
363
364
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnet50-11ad3fa6.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 25557032,
            "recipe": "https://github.com/pytorch/vision/issues/3995#issuecomment-1013906621",
365
366
367
368
            "metrics": {
                "acc@1": 80.858,
                "acc@5": 95.434,
            },
369
370
371
372
373
374
375
376
377
378
379
380
381
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNet101_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet101-63fe2227.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 44549160,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
382
383
384
385
            "metrics": {
                "acc@1": 77.374,
                "acc@5": 93.546,
            },
386
387
388
389
390
391
392
393
394
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnet101-cd907fc2.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 44549160,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
395
396
397
398
            "metrics": {
                "acc@1": 81.886,
                "acc@5": 95.780,
            },
399
400
401
402
403
404
405
406
407
408
409
410
411
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNet152_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet152-394f9c45.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 60192808,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
412
413
414
415
            "metrics": {
                "acc@1": 78.312,
                "acc@5": 94.046,
            },
416
417
418
419
420
421
422
423
424
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnet152-f82ba261.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 60192808,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
425
426
427
428
            "metrics": {
                "acc@1": 82.284,
                "acc@5": 96.002,
            },
429
430
431
432
433
434
435
436
437
438
439
440
441
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNeXt50_32X4D_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 25028904,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
442
443
444
445
            "metrics": {
                "acc@1": 77.618,
                "acc@5": 93.698,
            },
446
447
448
449
450
451
452
453
454
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnext50_32x4d-1a0047aa.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 25028904,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
455
456
457
458
            "metrics": {
                "acc@1": 81.198,
                "acc@5": 95.340,
            },
459
460
461
462
463
464
465
466
467
468
469
470
471
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNeXt101_32X8D_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 88791336,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
472
473
474
475
            "metrics": {
                "acc@1": 79.312,
                "acc@5": 94.526,
            },
476
477
478
479
480
481
482
483
484
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnext101_32x8d-110c445d.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 88791336,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
485
486
487
488
            "metrics": {
                "acc@1": 82.834,
                "acc@5": 96.228,
            },
489
490
491
492
493
494
495
496
497
498
499
500
501
        },
    )
    DEFAULT = IMAGENET1K_V2


class Wide_ResNet50_2_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 68883240,
            "recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
502
503
504
505
            "metrics": {
                "acc@1": 78.468,
                "acc@5": 94.086,
            },
506
507
508
509
510
511
512
513
514
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/wide_resnet50_2-9ba9bcbe.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 68883240,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
515
516
517
518
            "metrics": {
                "acc@1": 81.602,
                "acc@5": 95.758,
            },
519
520
521
522
523
524
525
526
527
528
529
530
531
        },
    )
    DEFAULT = IMAGENET1K_V2


class Wide_ResNet101_2_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 126886696,
            "recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
532
533
534
535
            "metrics": {
                "acc@1": 78.848,
                "acc@5": 94.284,
            },
536
537
538
539
540
541
542
543
544
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/wide_resnet101_2-d733dc28.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 126886696,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
545
546
547
548
            "metrics": {
                "acc@1": 82.510,
                "acc@5": 96.020,
            },
549
550
551
552
553
554
555
        },
    )
    DEFAULT = IMAGENET1K_V2


@handle_legacy_interface(weights=("pretrained", ResNet18_Weights.IMAGENET1K_V1))
def resnet18(*, weights: Optional[ResNet18_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
556
    """ResNet-18 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
557
558

    Args:
559
560
561
562
563
564
565
566
567
568
569
570
571
572
        weights (:class:`~torchvision.models.ResNet18_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet18_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet18_Weights
        :members:
573
    """
574
575
576
    weights = ResNet18_Weights.verify(weights)

    return _resnet(BasicBlock, [2, 2, 2, 2], weights, progress, **kwargs)
577
578


579
580
@handle_legacy_interface(weights=("pretrained", ResNet34_Weights.IMAGENET1K_V1))
def resnet34(*, weights: Optional[ResNet34_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
581
    """ResNet-34 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
582
583

    Args:
584
585
586
587
588
589
590
591
592
593
594
595
596
597
        weights (:class:`~torchvision.models.ResNet34_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet34_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet34_Weights
        :members:
598
    """
599
    weights = ResNet34_Weights.verify(weights)
600

601
    return _resnet(BasicBlock, [3, 4, 6, 3], weights, progress, **kwargs)
602

603
604
605

@handle_legacy_interface(weights=("pretrained", ResNet50_Weights.IMAGENET1K_V1))
def resnet50(*, weights: Optional[ResNet50_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
606
    """ResNet-50 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
607
608

    Args:
609
610
611
612
613
614
615
616
617
618
619
620
621
622
        weights (:class:`~torchvision.models.ResNet50_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet50_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet50_Weights
        :members:
623
    """
624
625
626
    weights = ResNet50_Weights.verify(weights)

    return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
627
628


629
630
@handle_legacy_interface(weights=("pretrained", ResNet101_Weights.IMAGENET1K_V1))
def resnet101(*, weights: Optional[ResNet101_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
631
    """ResNet-101 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
632
633

    Args:
634
635
636
637
638
639
640
641
642
643
644
645
646
647
        weights (:class:`~torchvision.models.ResNet101_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet101_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet101_Weights
        :members:
648
    """
649
    weights = ResNet101_Weights.verify(weights)
650

651
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
652

653
654
655

@handle_legacy_interface(weights=("pretrained", ResNet152_Weights.IMAGENET1K_V1))
def resnet152(*, weights: Optional[ResNet152_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
656
    """ResNet-152 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
657
658

    Args:
659
660
661
662
663
664
665
666
667
668
669
670
671
672
        weights (:class:`~torchvision.models.ResNet152_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet152_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet152_Weights
        :members:
673
    """
674
675
676
    weights = ResNet152_Weights.verify(weights)

    return _resnet(Bottleneck, [3, 8, 36, 3], weights, progress, **kwargs)
677
678


679
680
681
682
@handle_legacy_interface(weights=("pretrained", ResNeXt50_32X4D_Weights.IMAGENET1K_V1))
def resnext50_32x4d(
    *, weights: Optional[ResNeXt50_32X4D_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
683
684
    """ResNeXt-50 32x4d model from
    `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.
685
686

    Args:
687
688
689
690
691
692
693
694
695
696
697
698
699
        weights (:class:`~torchvision.models.ResNeXt50_32X4D_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNext50_32X4D_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.ResNeXt50_32X4D_Weights
        :members:
700
    """
701
    weights = ResNeXt50_32X4D_Weights.verify(weights)
702

703
704
705
    _ovewrite_named_param(kwargs, "groups", 32)
    _ovewrite_named_param(kwargs, "width_per_group", 4)
    return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
706

707
708
709
710
711

@handle_legacy_interface(weights=("pretrained", ResNeXt101_32X8D_Weights.IMAGENET1K_V1))
def resnext101_32x8d(
    *, weights: Optional[ResNeXt101_32X8D_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
712
713
    """ResNeXt-101 32x8d model from
    `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.
714
715

    Args:
716
717
718
719
720
721
722
723
724
725
726
727
728
        weights (:class:`~torchvision.models.ResNeXt101_32X8D_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNeXt101_32X8D_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.ResNeXt101_32X8D_Weights
        :members:
729
    """
730
    weights = ResNeXt101_32X8D_Weights.verify(weights)
731

732
733
734
    _ovewrite_named_param(kwargs, "groups", 32)
    _ovewrite_named_param(kwargs, "width_per_group", 8)
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
735

736
737
738
739
740

@handle_legacy_interface(weights=("pretrained", Wide_ResNet50_2_Weights.IMAGENET1K_V1))
def wide_resnet50_2(
    *, weights: Optional[Wide_ResNet50_2_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
741
    r"""Wide ResNet-50-2 model from
742
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
743
744
745
746
747
748
749

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
750
        weights (Wide_ResNet50_2_Weights, optional): The pretrained weights for the model
751
752
        progress (bool): If True, displays a progress bar of the download to stderr
    """
753
754
755
756
    weights = Wide_ResNet50_2_Weights.verify(weights)

    _ovewrite_named_param(kwargs, "width_per_group", 64 * 2)
    return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
757
758


759
760
761
762
@handle_legacy_interface(weights=("pretrained", Wide_ResNet101_2_Weights.IMAGENET1K_V1))
def wide_resnet101_2(
    *, weights: Optional[Wide_ResNet101_2_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
763
    r"""Wide ResNet-101-2 model from
764
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
765
766
767
768
769
770
771

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
772
        weights (Wide_ResNet101_2_Weights, optional): The pretrained weights for the model
773
774
        progress (bool): If True, displays a progress bar of the download to stderr
    """
775
776
777
778
    weights = Wide_ResNet101_2_Weights.verify(weights)

    _ovewrite_named_param(kwargs, "width_per_group", 64 * 2)
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)