test_transforms.py 61.4 KB
Newer Older
1
from __future__ import division
2
import os
Philip Meier's avatar
Philip Meier committed
3
import mock
4
5
import torch
import torchvision.transforms as transforms
6
import torchvision.transforms.functional as F
7
from torch._utils_internal import get_file_path_2
8
from numpy.testing import assert_array_almost_equal
9
import unittest
10
import math
11
import random
12
import numpy as np
13
14
15
16
17
18
from PIL import Image
try:
    import accimage
except ImportError:
    accimage = None

19
20
21
22
23
try:
    from scipy import stats
except ImportError:
    stats = None

24
25
GRACE_HOPPER = get_file_path_2(
    os.path.dirname(os.path.abspath(__file__)), 'assets', 'grace_hopper_517x606.jpg')
26

27

28
class Tester(unittest.TestCase):
29

30
31
32
33
    def test_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
34
35
        owidth = random.randint(5, (width - 2) / 2) * 2

36
        img = torch.ones(3, height, width)
37
38
39
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth]
40
41
42
43
44
45
        imgnarrow.fill_(0)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
46
47
        self.assertEqual(result.sum(), 0,
                         "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
48
49
50
51
52
53
54
55
        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum1 = result.sum()
56
57
        self.assertGreater(sum1, 1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
58
        oheight += 1
59
        owidth += 1
60
61
62
63
64
65
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum2 = result.sum()
66
67
68
69
        self.assertGreater(sum2, 0,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
        self.assertGreater(sum2, sum1,
                           "height: {} width: {} oheight: {} owdith: {}".format(height, width, oheight, owidth))
70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    def test_five_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for single_dim in [True, False]:
            crop_h = random.randint(1, h)
            crop_w = random.randint(1, w)
            if single_dim:
                crop_h = min(crop_h, crop_w)
                crop_w = crop_h
                transform = transforms.FiveCrop(crop_h)
            else:
                transform = transforms.FiveCrop((crop_h, crop_w))

            img = torch.FloatTensor(3, h, w).uniform_()
            results = transform(to_pil_image(img))

88
            self.assertEqual(len(results), 5)
89
            for crop in results:
90
                self.assertEqual(crop.size, (crop_w, crop_h))
91
92
93
94
95
96
97
98

            to_pil_image = transforms.ToPILImage()
            tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
            tr = to_pil_image(img[:, 0:crop_h, w - crop_w:])
            bl = to_pil_image(img[:, h - crop_h:, 0:crop_w])
            br = to_pil_image(img[:, h - crop_h:, w - crop_w:])
            center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
            expected_output = (tl, tr, bl, br, center)
99
            self.assertEqual(results, expected_output)
100
101
102
103
104
105
106
107
108
109
110
111

    def test_ten_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for should_vflip in [True, False]:
            for single_dim in [True, False]:
                crop_h = random.randint(1, h)
                crop_w = random.randint(1, w)
                if single_dim:
                    crop_h = min(crop_h, crop_w)
                    crop_w = crop_h
112
113
                    transform = transforms.TenCrop(crop_h,
                                                   vertical_flip=should_vflip)
114
115
                    five_crop = transforms.FiveCrop(crop_h)
                else:
116
117
                    transform = transforms.TenCrop((crop_h, crop_w),
                                                   vertical_flip=should_vflip)
118
119
120
121
122
                    five_crop = transforms.FiveCrop((crop_h, crop_w))

                img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
                results = transform(img)
                expected_output = five_crop(img)
123
124
125
126
127

                # Checking if FiveCrop and TenCrop can be printed as string
                transform.__repr__()
                five_crop.__repr__()

128
129
130
131
132
133
134
                if should_vflip:
                    vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
                    expected_output += five_crop(vflipped_img)
                else:
                    hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
                    expected_output += five_crop(hflipped_img)

135
136
                self.assertEqual(len(results), 10)
                self.assertEqual(results, expected_output)
137

138
139
140
141
142
143
144
145
    def test_randomresized_params(self):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        size = 100
        epsilon = 0.05
146
        min_scale = 0.25
Francisco Massa's avatar
Francisco Massa committed
147
        for _ in range(10):
148
            scale_min = max(round(random.random(), 2), min_scale)
149
            scale_range = (scale_min, scale_min + round(random.random(), 2))
150
            aspect_min = max(round(random.random(), 2), epsilon)
151
152
            aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
            randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range)
153
            i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
154
            aspect_ratio_obtained = w / h
155
156
157
158
159
160
161
            self.assertTrue((min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained and
                             aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon) or
                            aspect_ratio_obtained == 1.0)
            self.assertIsInstance(i, int)
            self.assertIsInstance(j, int)
            self.assertIsInstance(h, int)
            self.assertIsInstance(w, int)
162

163
    def test_randomperspective(self):
Francisco Massa's avatar
Francisco Massa committed
164
        for _ in range(10):
165
166
167
168
169
170
171
172
173
174
            height = random.randint(24, 32) * 2
            width = random.randint(24, 32) * 2
            img = torch.ones(3, height, width)
            to_pil_image = transforms.ToPILImage()
            img = to_pil_image(img)
            perp = transforms.RandomPerspective()
            startpoints, endpoints = perp.get_params(width, height, 0.5)
            tr_img = F.perspective(img, startpoints, endpoints)
            tr_img2 = F.to_tensor(F.perspective(tr_img, endpoints, startpoints))
            tr_img = F.to_tensor(tr_img)
175
176
177
178
            self.assertEqual(img.size[0], width)
            self.assertEqual(img.size[1], height)
            self.assertGreater(torch.nn.functional.mse_loss(tr_img, F.to_tensor(img)) + 0.3,
                               torch.nn.functional.mse_loss(tr_img2, F.to_tensor(img)))
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    def test_randomperspective_fill(self):
        height = 100
        width = 100
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)

        modes = ("L", "RGB", "F")
        nums_bands = [len(mode) for mode in modes]
        fill = 127

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            perspective = transforms.RandomPerspective(p=1, fill=fill)
            tr_img = perspective(img_conv)
            pixel = tr_img.getpixel((0, 0))

            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            startpoints, endpoints = transforms.RandomPerspective.get_params(width, height, 0.5)
            tr_img = F.perspective(img_conv, startpoints, endpoints, fill=fill)
            pixel = tr_img.getpixel((0, 0))
        
            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

            for wrong_num_bands in set(nums_bands) - {num_bands}:
                with self.assertRaises(ValueError):
                    F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))

215
    def test_resize(self):
216
217
218
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        osize = random.randint(5, 12) * 2
219

220
221
222
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
223
            transforms.Resize(osize),
224
225
            transforms.ToTensor(),
        ])(img)
226
        self.assertIn(osize, result.size())
227
        if height < width:
228
            self.assertLessEqual(result.size(1), result.size(2))
229
        elif width < height:
230
            self.assertGreaterEqual(result.size(1), result.size(2))
231

232
233
        result = transforms.Compose([
            transforms.ToPILImage(),
234
            transforms.Resize([osize, osize]),
235
236
            transforms.ToTensor(),
        ])(img)
237
238
239
        self.assertIn(osize, result.size())
        self.assertEqual(result.size(1), osize)
        self.assertEqual(result.size(2), osize)
240

241
242
243
244
        oheight = random.randint(5, 12) * 2
        owidth = random.randint(5, 12) * 2
        result = transforms.Compose([
            transforms.ToPILImage(),
245
            transforms.Resize((oheight, owidth)),
246
247
            transforms.ToTensor(),
        ])(img)
248
249
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
250
251
252

        result = transforms.Compose([
            transforms.ToPILImage(),
253
            transforms.Resize([oheight, owidth]),
254
255
            transforms.ToTensor(),
        ])(img)
256
257
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
258

259
260
261
262
    def test_random_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
263
        owidth = random.randint(5, (width - 2) / 2) * 2
264
265
266
267
268
269
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
270
271
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
272

273
274
275
276
277
278
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ])(img)
279
280
        self.assertEqual(result.size(1), oheight)
        self.assertEqual(result.size(2), owidth)
281

282
283
284
285
286
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height, width)),
            transforms.ToTensor()
        ])(img)
287
288
289
        self.assertEqual(result.size(1), height)
        self.assertEqual(result.size(2), width)
        self.assertTrue(np.allclose(img.numpy(), result.numpy()))
290

291
292
293
294
295
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
            transforms.ToTensor(),
        ])(img)
296
297
        self.assertEqual(result.size(1), height + 1)
        self.assertEqual(result.size(2), width + 1)
298

299
300
301
302
303
304
305
306
307
308
    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Pad(padding),
            transforms.ToTensor(),
        ])(img)
309
310
        self.assertEqual(result.size(1), height + 2 * padding)
        self.assertEqual(result.size(2), width + 2 * padding)
Soumith Chintala's avatar
Soumith Chintala committed
311

312
313
314
315
316
317
318
    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

        padding = tuple([random.randint(1, 20) for _ in range(2)])
        output = transforms.Pad(padding)(img)
319
        self.assertEqual(output.size, (width + padding[0] * 2, height + padding[1] * 2))
320
321
322

        padding = tuple([random.randint(1, 20) for _ in range(4)])
        output = transforms.Pad(padding)(img)
323
324
        self.assertEqual(output.size[0], width + padding[0] + padding[2])
        self.assertEqual(output.size[1], height + padding[1] + padding[3])
325

326
327
328
        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

329
330
    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
vfdev's avatar
vfdev committed
331
        img = torch.zeros(3, 27, 27).byte()
332
333
334
335
336
337
338
339
340
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
        edge_padded_img = F.pad(img, 3, padding_mode='edge')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
341
342
        self.assertTrue(np.all(edge_middle_slice == np.asarray([200, 200, 200, 200, 1, 0])))
        self.assertEqual(transforms.ToTensor()(edge_padded_img).size(), (3, 35, 35))
343
344
345
346
347
348

        # Pad 3 to left/right, 2 to top/bottom
        reflect_padded_img = F.pad(img, (3, 2), padding_mode='reflect')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
349
350
        self.assertTrue(np.all(reflect_middle_slice == np.asarray([0, 0, 1, 200, 1, 0])))
        self.assertEqual(transforms.ToTensor()(reflect_padded_img).size(), (3, 33, 35))
351
352
353
354
355
356

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode='symmetric')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
357
358
        self.assertTrue(np.all(symmetric_middle_slice == np.asarray([0, 1, 200, 200, 1, 0])))
        self.assertEqual(transforms.ToTensor()(symmetric_padded_img).size(), (3, 32, 34))
359

360
    def test_pad_raises_with_invalid_pad_sequence_len(self):
361
362
363
364
365
366
367
368
369
        with self.assertRaises(ValueError):
            transforms.Pad(())

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3))

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

Soumith Chintala's avatar
Soumith Chintala committed
370
371
372
373
    def test_lambda(self):
        trans = transforms.Lambda(lambda x: x.add(10))
        x = torch.randn(10)
        y = trans(x)
374
        self.assertTrue(y.equal(torch.add(x, 10)))
Soumith Chintala's avatar
Soumith Chintala committed
375
376
377
378

        trans = transforms.Lambda(lambda x: x.add_(10))
        x = torch.randn(10)
        y = trans(x)
379
        self.assertTrue(y.equal(x))
380

381
382
383
        # Checking if Lambda can be printed as string
        trans.__repr__()

384
    @unittest.skipIf(stats is None, 'scipy.stats not available')
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
    def test_random_apply(self):
        random_state = random.getstate()
        random.seed(42)
        random_apply_transform = transforms.RandomApply(
            [
                transforms.RandomRotation((-45, 45)),
                transforms.RandomHorizontalFlip(),
                transforms.RandomVerticalFlip(),
            ], p=0.75
        )
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        num_samples = 250
        num_applies = 0
        for _ in range(num_samples):
            out = random_apply_transform(img)
            if out != img:
                num_applies += 1

        p_value = stats.binom_test(num_applies, num_samples, p=0.75)
        random.setstate(random_state)
405
        self.assertGreater(p_value, 0.0001)
406
407
408
409

        # Checking if RandomApply can be printed as string
        random_apply_transform.__repr__()

410
    @unittest.skipIf(stats is None, 'scipy.stats not available')
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
    def test_random_choice(self):
        random_state = random.getstate()
        random.seed(42)
        random_choice_transform = transforms.RandomChoice(
            [
                transforms.Resize(15),
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_resize_15 = 0
        num_resize_20 = 0
        num_crop_10 = 0
        for _ in range(num_samples):
            out = random_choice_transform(img)
            if out.size == (15, 15):
                num_resize_15 += 1
            elif out.size == (20, 20):
                num_resize_20 += 1
            elif out.size == (10, 10):
                num_crop_10 += 1

        p_value = stats.binom_test(num_resize_15, num_samples, p=0.33333)
436
        self.assertGreater(p_value, 0.0001)
437
        p_value = stats.binom_test(num_resize_20, num_samples, p=0.33333)
438
        self.assertGreater(p_value, 0.0001)
439
        p_value = stats.binom_test(num_crop_10, num_samples, p=0.33333)
440
        self.assertGreater(p_value, 0.0001)
441
442
443
444
445

        random.setstate(random_state)
        # Checking if RandomChoice can be printed as string
        random_choice_transform.__repr__()

446
    @unittest.skipIf(stats is None, 'scipy.stats not available')
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
    def test_random_order(self):
        random_state = random.getstate()
        random.seed(42)
        random_order_transform = transforms.RandomOrder(
            [
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_normal_order = 0
        resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
        for _ in range(num_samples):
            out = random_order_transform(img)
            if out == resize_crop_out:
                num_normal_order += 1

        p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
        random.setstate(random_state)
467
        self.assertGreater(p_value, 0.0001)
468
469
470
471

        # Checking if RandomOrder can be printed as string
        random_order_transform.__repr__()

472
    def test_to_tensor(self):
473
        test_channels = [1, 3, 4]
474
475
        height, width = 4, 4
        trans = transforms.ToTensor()
476

477
478
479
480
481
482
483
        with self.assertRaises(TypeError):
            trans(np.random.rand(1, height, width).tolist())

        with self.assertRaises(ValueError):
            trans(np.random.rand(height))
            trans(np.random.rand(1, 1, height, width))

484
485
486
487
        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
488
            self.assertTrue(np.allclose(input_data.numpy(), output.numpy()))
489

490
            ndarray = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
491
492
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1)) / 255.0
493
            self.assertTrue(np.allclose(output.numpy(), expected_output))
494

495
496
497
            ndarray = np.random.rand(height, width, channels).astype(np.float32)
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1))
498
            self.assertTrue(np.allclose(output.numpy(), expected_output))
499

500
501
502
503
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
        output = trans(img)
504
        self.assertTrue(np.allclose(input_data.numpy(), output.numpy()))
505

506
507
508
509
510
511
512
513
    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
514
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy()))
515
516
517
518

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_resize(self):
        trans = transforms.Compose([
519
            transforms.Resize(256, interpolation=Image.LINEAR),
520
521
522
            transforms.ToTensor(),
        ])

523
524
525
        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

526
527
528
529
530
531
532
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        self.assertLess(np.abs((expected_output - output).mean()), 1e-3)
        self.assertLess((expected_output - output).var(), 1e-5)
        # note the high absolute tolerance
533
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy(), atol=5e-2))
534
535
536
537
538
539
540
541

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_crop(self):
        trans = transforms.Compose([
            transforms.CenterCrop(256),
            transforms.ToTensor(),
        ])

542
543
544
        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

545
546
547
548
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
549
        self.assertTrue(np.allclose(output.numpy(), expected_output.numpy()))
550

551
    def test_1_channel_tensor_to_pil_image(self):
552
553
        to_tensor = transforms.ToTensor()

554
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
555
556
557
558
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        img_data_int = torch.IntTensor(1, 4, 4).random_()

559
560
561
562
563
564
565
566
567
568
        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
569
570
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(expected_output, to_tensor(img).numpy()))
571
572
        # 'F' mode for torch.FloatTensor
        img_F_mode = transforms.ToPILImage(mode='F')(img_data_float)
573
574
575
        self.assertEqual(img_F_mode.mode, 'F')
        self.assertTrue(np.allclose(np.array(Image.fromarray(img_data_float.squeeze(0).numpy(), mode='F')),
                                    np.array(img_F_mode)))
576
577
578
579
580
581
582
583
584
585
586
587

    def test_1_channel_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4, 1).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4, 1).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4, 1).random_().numpy()
        img_data_int = torch.IntTensor(4, 4, 1).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
588
589
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(img_data[:, :, 0], img))
590

surgan12's avatar
surgan12 committed
591
592
593
594
    def test_2_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
595
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
596
597
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
598
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
599
600
            split = img.split()
            for i in range(2):
601
                self.assertTrue(np.allclose(img_data[:, :, i], split[i]))
surgan12's avatar
surgan12 committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618

        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        for mode in [None, 'LA']:
            verify_img_data(img_data, mode)

        transforms.ToPILImage().__repr__()

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

    def test_2_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
619
                self.assertEqual(img.mode, 'LA')  # default should assume LA
surgan12's avatar
surgan12 committed
620
621
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
622
                self.assertEqual(img.mode, mode)
surgan12's avatar
surgan12 committed
623
624
            split = img.split()
            for i in range(2):
625
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
surgan12's avatar
surgan12 committed
626
627
628
629
630
631
632
633
634
635
636
637

        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'LA']:
            verify_img_data(img_data, expected_output, mode=mode)

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

638
639
640
641
    def test_3_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
642
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
643
644
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
645
                self.assertEqual(img.mode, mode)
646
647
            split = img.split()
            for i in range(3):
648
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
649

650
651
652
653
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, expected_output, mode=mode)
654

655
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
656
            # should raise if we try a mode for 4 or 1 or 2 channel images
657
658
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
659
            transforms.ToPILImage(mode='LA')(img_data)
660

Varun Agrawal's avatar
Varun Agrawal committed
661
662
663
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

664
665
666
667
    def test_3_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
668
                self.assertEqual(img.mode, 'RGB')  # default should assume RGB
669
670
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
671
                self.assertEqual(img.mode, mode)
672
673
            split = img.split()
            for i in range(3):
674
                self.assertTrue(np.allclose(img_data[:, :, i], split[i]))
675

676
677
678
679
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, mode)

680
681
682
        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

683
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
684
            # should raise if we try a mode for 4 or 1 or 2 channel images
685
686
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
687
            transforms.ToPILImage(mode='LA')(img_data)
688
689
690
691
692

    def test_4_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
693
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
694
695
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
696
                self.assertEqual(img.mode, mode)
697
698
699

            split = img.split()
            for i in range(4):
700
                self.assertTrue(np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy()))
701

702
        img_data = torch.Tensor(4, 4, 4).uniform_()
703
        expected_output = img_data.mul(255).int().float().div(255)
surgan12's avatar
surgan12 committed
704
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
705
            verify_img_data(img_data, expected_output, mode)
706

707
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
708
            # should raise if we try a mode for 3 or 1 or 2 channel images
709
710
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
711
            transforms.ToPILImage(mode='LA')(img_data)
712
713
714
715
716

    def test_4_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
717
                self.assertEqual(img.mode, 'RGBA')  # default should assume RGBA
718
719
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
720
                self.assertEqual(img.mode, mode)
721
722
            split = img.split()
            for i in range(4):
723
                self.assertTrue(np.allclose(img_data[:, :, i], split[i]))
724

725
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()
surgan12's avatar
surgan12 committed
726
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
727
            verify_img_data(img_data, mode)
728

729
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
730
            # should raise if we try a mode for 3 or 1 or 2 channel images
731
732
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
733
            transforms.ToPILImage(mode='LA')(img_data)
734

Varun Agrawal's avatar
Varun Agrawal committed
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
    def test_2d_tensor_to_pil_image(self):
        to_tensor = transforms.ToTensor()

        img_data_float = torch.Tensor(4, 4).uniform_()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(4, 4).random_()
        img_data_int = torch.IntTensor(4, 4).random_()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
753
754
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(expected_output, to_tensor(img).numpy()))
Varun Agrawal's avatar
Varun Agrawal committed
755
756
757
758
759
760
761
762
763
764
765
766

    def test_2d_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4).random_().numpy()
        img_data_int = torch.IntTensor(4, 4).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
767
768
                self.assertEqual(img.mode, mode)
                self.assertTrue(np.allclose(img_data, img))
Varun Agrawal's avatar
Varun Agrawal committed
769
770
771
772
773

    def test_tensor_bad_types_to_pil_image(self):
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))

774
    def test_ndarray_bad_types_to_pil_image(self):
775
        trans = transforms.ToPILImage()
776
        with self.assertRaises(TypeError):
777
778
779
780
781
            trans(np.ones([4, 4, 1], np.int64))
            trans(np.ones([4, 4, 1], np.uint16))
            trans(np.ones([4, 4, 1], np.uint32))
            trans(np.ones([4, 4, 1], np.float64))

Varun Agrawal's avatar
Varun Agrawal committed
782
783
784
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))

785
786
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_vertical_flip(self):
787
788
        random_state = random.getstate()
        random.seed(42)
789
790
791
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        vimg = img.transpose(Image.FLIP_TOP_BOTTOM)

792
        num_samples = 250
793
        num_vertical = 0
794
        for _ in range(num_samples):
795
796
797
798
            out = transforms.RandomVerticalFlip()(img)
            if out == vimg:
                num_vertical += 1

799
800
        p_value = stats.binom_test(num_vertical, num_samples, p=0.5)
        random.setstate(random_state)
801
        self.assertGreater(p_value, 0.0001)
802

803
804
805
806
807
808
809
810
811
        num_samples = 250
        num_vertical = 0
        for _ in range(num_samples):
            out = transforms.RandomVerticalFlip(p=0.7)(img)
            if out == vimg:
                num_vertical += 1

        p_value = stats.binom_test(num_vertical, num_samples, p=0.7)
        random.setstate(random_state)
812
        self.assertGreater(p_value, 0.0001)
813

814
815
816
        # Checking if RandomVerticalFlip can be printed as string
        transforms.RandomVerticalFlip().__repr__()

817
818
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_horizontal_flip(self):
819
820
        random_state = random.getstate()
        random.seed(42)
821
822
823
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        himg = img.transpose(Image.FLIP_LEFT_RIGHT)

824
        num_samples = 250
825
        num_horizontal = 0
826
        for _ in range(num_samples):
827
828
829
830
            out = transforms.RandomHorizontalFlip()(img)
            if out == himg:
                num_horizontal += 1

831
832
        p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
        random.setstate(random_state)
833
        self.assertGreater(p_value, 0.0001)
834

835
836
837
838
839
840
841
842
843
        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlip(p=0.7)(img)
            if out == himg:
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
        random.setstate(random_state)
844
        self.assertGreater(p_value, 0.0001)
845

846
847
848
        # Checking if RandomHorizontalFlip can be printed as string
        transforms.RandomHorizontalFlip().__repr__()

849
    @unittest.skipIf(stats is None, 'scipy.stats is not available')
850
851
852
853
854
855
856
857
858
859
860
861
    def test_normalize(self):
        def samples_from_standard_normal(tensor):
            p_value = stats.kstest(list(tensor.view(-1)), 'norm', args=(0, 1)).pvalue
            return p_value > 0.0001

        random_state = random.getstate()
        random.seed(42)
        for channels in [1, 3]:
            img = torch.rand(channels, 10, 10)
            mean = [img[c].mean() for c in range(channels)]
            std = [img[c].std() for c in range(channels)]
            normalized = transforms.Normalize(mean, std)(img)
862
            self.assertTrue(samples_from_standard_normal(normalized))
863
864
        random.setstate(random_state)

865
866
867
        # Checking if Normalize can be printed as string
        transforms.Normalize(mean, std).__repr__()

868
869
870
        # Checking the optional in-place behaviour
        tensor = torch.rand((1, 16, 16))
        tensor_inplace = transforms.Normalize((0.5,), (0.5,), inplace=True)(tensor)
871
        self.assertTrue(torch.equal(tensor, tensor_inplace))
872

873
874
875
876
877
878
879
880
881
    def test_normalize_different_dtype(self):
        for dtype1 in [torch.float32, torch.float64]:
            img = torch.rand(3, 10, 10, dtype=dtype1)
            for dtype2 in [torch.int64, torch.float32, torch.float64]:
                mean = torch.tensor([1, 2, 3], dtype=dtype2)
                std = torch.tensor([1, 2, 1], dtype=dtype2)
                # checks that it doesn't crash
                transforms.functional.normalize(img, mean, std)

882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
    def test_normalize_3d_tensor(self):
        torch.manual_seed(28)
        n_channels = 3
        img_size = 10
        mean = torch.rand(n_channels)
        std = torch.rand(n_channels)
        img = torch.rand(n_channels, img_size, img_size)
        target = F.normalize(img, mean, std).numpy()

        mean_unsqueezed = mean.view(-1, 1, 1)
        std_unsqueezed = std.view(-1, 1, 1)
        result1 = F.normalize(img, mean_unsqueezed, std_unsqueezed)
        result2 = F.normalize(img,
                              mean_unsqueezed.repeat(1, img_size, img_size),
                              std_unsqueezed.repeat(1, img_size, img_size))
        assert_array_almost_equal(target, result1.numpy())
        assert_array_almost_equal(target, result2.numpy())


901
902
903
904
905
906
907
    def test_adjust_brightness(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
908
        y_pil = F.adjust_brightness(x_pil, 1)
909
        y_np = np.array(y_pil)
910
        self.assertTrue(np.allclose(y_np, x_np))
911
912

        # test 1
913
        y_pil = F.adjust_brightness(x_pil, 0.5)
914
915
916
        y_np = np.array(y_pil)
        y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
917
        self.assertTrue(np.allclose(y_np, y_ans))
918
919

        # test 2
920
        y_pil = F.adjust_brightness(x_pil, 2)
921
922
923
        y_np = np.array(y_pil)
        y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
924
        self.assertTrue(np.allclose(y_np, y_ans))
925
926
927
928
929
930
931
932

    def test_adjust_contrast(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
933
        y_pil = F.adjust_contrast(x_pil, 1)
934
        y_np = np.array(y_pil)
935
        self.assertTrue(np.allclose(y_np, x_np))
936
937

        # test 1
938
        y_pil = F.adjust_contrast(x_pil, 0.5)
939
940
941
        y_np = np.array(y_pil)
        y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
942
        self.assertTrue(np.allclose(y_np, y_ans))
943
944

        # test 2
945
        y_pil = F.adjust_contrast(x_pil, 2)
946
947
948
        y_np = np.array(y_pil)
        y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
949
        self.assertTrue(np.allclose(y_np, y_ans))
950

Francisco Massa's avatar
Francisco Massa committed
951
    @unittest.skipIf(Image.__version__ >= '7', "Temporarily disabled")
952
953
954
955
956
957
958
    def test_adjust_saturation(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
959
        y_pil = F.adjust_saturation(x_pil, 1)
960
        y_np = np.array(y_pil)
961
        self.assertTrue(np.allclose(y_np, x_np))
962
963

        # test 1
964
        y_pil = F.adjust_saturation(x_pil, 0.5)
965
966
967
        y_np = np.array(y_pil)
        y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
968
        self.assertTrue(np.allclose(y_np, y_ans))
969
970

        # test 2
971
        y_pil = F.adjust_saturation(x_pil, 2)
972
973
974
        y_np = np.array(y_pil)
        y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
975
        self.assertTrue(np.allclose(y_np, y_ans))
976
977
978
979
980
981
982
983

    def test_adjust_hue(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        with self.assertRaises(ValueError):
984
985
            F.adjust_hue(x_pil, -0.7)
            F.adjust_hue(x_pil, 1)
986
987
988

        # test 0: almost same as x_data but not exact.
        # probably because hsv <-> rgb floating point ops
989
        y_pil = F.adjust_hue(x_pil, 0)
990
991
992
        y_np = np.array(y_pil)
        y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
993
        self.assertTrue(np.allclose(y_np, y_ans))
994
995

        # test 1
996
        y_pil = F.adjust_hue(x_pil, 0.25)
997
998
999
        y_np = np.array(y_pil)
        y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1000
        self.assertTrue(np.allclose(y_np, y_ans))
1001
1002

        # test 2
1003
        y_pil = F.adjust_hue(x_pil, -0.25)
1004
1005
1006
        y_np = np.array(y_pil)
        y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1007
        self.assertTrue(np.allclose(y_np, y_ans))
1008
1009
1010
1011
1012
1013
1014
1015

    def test_adjust_gamma(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
1016
        y_pil = F.adjust_gamma(x_pil, 1)
1017
        y_np = np.array(y_pil)
1018
        self.assertTrue(np.allclose(y_np, x_np))
1019
1020

        # test 1
1021
        y_pil = F.adjust_gamma(x_pil, 0.5)
1022
1023
1024
        y_np = np.array(y_pil)
        y_ans = [0, 35, 57, 117, 185, 240, 97, 45, 244, 151, 255, 15]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1025
        self.assertTrue(np.allclose(y_np, y_ans))
1026
1027

        # test 2
1028
        y_pil = F.adjust_gamma(x_pil, 2)
1029
1030
1031
        y_np = np.array(y_pil)
        y_ans = [0, 0, 0, 11, 71, 200, 5, 0, 214, 31, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
1032
        self.assertTrue(np.allclose(y_np, y_ans))
1033
1034
1035
1036
1037
1038
1039
1040

    def test_adjusts_L_mode(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_rgb = Image.fromarray(x_np, mode='RGB')

        x_l = x_rgb.convert('L')
1041
1042
1043
1044
1045
        self.assertEqual(F.adjust_brightness(x_l, 2).mode, 'L')
        self.assertEqual(F.adjust_saturation(x_l, 2).mode, 'L')
        self.assertEqual(F.adjust_contrast(x_l, 2).mode, 'L')
        self.assertEqual(F.adjust_hue(x_l, 0.4).mode, 'L')
        self.assertEqual(F.adjust_gamma(x_l, 0.5).mode, 'L')
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057

    def test_color_jitter(self):
        color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')

        for i in range(10):
            y_pil = color_jitter(x_pil)
1058
            self.assertEqual(y_pil.mode, x_pil.mode)
1059
1060

            y_pil_2 = color_jitter(x_pil_2)
1061
            self.assertEqual(y_pil_2.mode, x_pil_2.mode)
1062

1063
1064
1065
        # Checking if ColorJitter can be printed as string
        color_jitter.__repr__()

1066
    def test_linear_transformation(self):
ekka's avatar
ekka committed
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
        num_samples = 1000
        x = torch.randn(num_samples, 3, 10, 10)
        flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
        # compute principal components
        sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
        u, s, _ = np.linalg.svd(sigma.numpy())
        zca_epsilon = 1e-10  # avoid division by 0
        d = torch.Tensor(np.diag(1. / np.sqrt(s + zca_epsilon)))
        u = torch.Tensor(u)
        principal_components = torch.mm(torch.mm(u, d), u.t())
        mean_vector = (torch.sum(flat_x, dim=0) / flat_x.size(0))
        # initialize whitening matrix
1079
        whitening = transforms.LinearTransformation(principal_components, mean_vector)
ekka's avatar
ekka committed
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
        # estimate covariance and mean using weak law of large number
        num_features = flat_x.size(1)
        cov = 0.0
        mean = 0.0
        for i in x:
            xwhite = whitening(i)
            xwhite = xwhite.view(1, -1).numpy()
            cov += np.dot(xwhite, xwhite.T) / num_features
            mean += np.sum(xwhite) / num_features
        # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
1090
1091
1092
1093
        self.assertTrue(np.allclose(cov / num_samples, np.identity(1), rtol=2e-3),
                        "cov not close to 1")
        self.assertTrue(np.allclose(mean / num_samples, 0, rtol=1e-3),
                        "mean not close to 0")
ekka's avatar
ekka committed
1094

1095
        # Checking if LinearTransformation can be printed as string
ekka's avatar
ekka committed
1096
1097
        whitening.__repr__()

1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
    def test_rotate(self):
        x = np.zeros((100, 100, 3), dtype=np.uint8)
        x[40, 40] = [255, 255, 255]

        with self.assertRaises(TypeError):
            F.rotate(x, 10)

        img = F.to_pil_image(x)

        result = F.rotate(img, 45)
1108
        self.assertEqual(result.size, (100, 100))
1109
        r, c, ch = np.where(result)
1110
1111
1112
        self.assertTrue(all(x in r for x in [49, 50]))
        self.assertTrue(all(x in c for x in [36]))
        self.assertTrue(all(x in ch for x in [0, 1, 2]))
1113
1114

        result = F.rotate(img, 45, expand=True)
1115
        self.assertEqual(result.size, (142, 142))
1116
        r, c, ch = np.where(result)
1117
1118
1119
        self.assertTrue(all(x in r for x in [70, 71]))
        self.assertTrue(all(x in c for x in [57]))
        self.assertTrue(all(x in ch for x in [0, 1, 2]))
1120
1121

        result = F.rotate(img, 45, center=(40, 40))
1122
        self.assertEqual(result.size, (100, 100))
1123
        r, c, ch = np.where(result)
1124
1125
1126
        self.assertTrue(all(x in r for x in [40]))
        self.assertTrue(all(x in c for x in [40]))
        self.assertTrue(all(x in ch for x in [0, 1, 2]))
1127
1128
1129
1130

        result_a = F.rotate(img, 90)
        result_b = F.rotate(img, -270)

1131
        self.assertTrue(np.all(np.array(result_a) == np.array(result_b)))
1132

Philip Meier's avatar
Philip Meier committed
1133
1134
1135
    def test_rotate_fill(self):
        img = F.to_pil_image(np.ones((100, 100, 3), dtype=np.uint8) * 255, "RGB")

1136
        modes = ("L", "RGB", "F")
Philip Meier's avatar
Philip Meier committed
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
        nums_bands = [len(mode) for mode in modes]
        fill = 127

        for mode, num_bands in zip(modes, nums_bands):
            img_conv = img.convert(mode)
            img_rot = F.rotate(img_conv, 45.0, fill=fill)
            pixel = img_rot.getpixel((0, 0))

            if not isinstance(pixel, tuple):
                pixel = (pixel,)
            self.assertTupleEqual(pixel, tuple([fill] * num_bands))

            for wrong_num_bands in set(nums_bands) - {num_bands}:
                with self.assertRaises(ValueError):
                    F.rotate(img_conv, 45.0, fill=tuple([fill] * wrong_num_bands))

1153
    def test_affine(self):
Francisco Massa's avatar
Francisco Massa committed
1154
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
1155
        pts = []
Francisco Massa's avatar
Francisco Massa committed
1156
1157
        cnt = [20, 20]
        for pt in [(16, 16), (20, 16), (20, 20)]:
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]
                    pts.append((pt[0] + i, pt[1] + j))
        pts = list(set(pts))

        with self.assertRaises(TypeError):
            F.affine(input_img, 10)

        pil_img = F.to_pil_image(input_img)

        def _to_3x3_inv(inv_result_matrix):
            result_matrix = np.zeros((3, 3))
            result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
            result_matrix[2, 2] = 1
            return np.linalg.inv(result_matrix)

        def _test_transformation(a, t, s, sh):
            a_rad = math.radians(a)
ptrblck's avatar
ptrblck committed
1177
            s_rad = [math.radians(sh_) for sh_ in sh]
1178
1179
1180
1181
1182
            cx, cy = cnt
            tx, ty = t
            sx, sy = s_rad
            rot = a_rad

1183
            # 1) Check transformation matrix:
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
            C = np.array([[1, 0, cx],
                          [0, 1, cy],
                          [0, 0, 1]])
            T = np.array([[1, 0, tx],
                          [0, 1, ty],
                          [0, 0, 1]])
            Cinv = np.linalg.inv(C)

            RS = np.array(
                [[s * math.cos(rot), -s * math.sin(rot), 0],
                 [s * math.sin(rot), s * math.cos(rot), 0],
                 [0, 0, 1]])

            SHx = np.array([[1, -math.tan(sx), 0],
                            [0, 1, 0],
                            [0, 0, 1]])

            SHy = np.array([[1, 0, 0],
                            [-math.tan(sy), 1, 0],
                            [0, 0, 1]])

            RSS = np.matmul(RS, np.matmul(SHy, SHx))

            true_matrix = np.matmul(T, np.matmul(C, np.matmul(RSS, Cinv)))

1209
1210
            result_matrix = _to_3x3_inv(F._get_inverse_affine_matrix(center=cnt, angle=a,
                                                                     translate=t, scale=s, shear=sh))
1211
            self.assertLess(np.sum(np.abs(true_matrix - result_matrix)), 1e-10)
1212
            # 2) Perform inverse mapping:
Francisco Massa's avatar
Francisco Massa committed
1213
            true_result = np.zeros((40, 40, 3), dtype=np.uint8)
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
            inv_true_matrix = np.linalg.inv(true_matrix)
            for y in range(true_result.shape[0]):
                for x in range(true_result.shape[1]):
                    res = np.dot(inv_true_matrix, [x, y, 1])
                    _x = int(res[0] + 0.5)
                    _y = int(res[1] + 0.5)
                    if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                        true_result[y, x, :] = input_img[_y, _x, :]

            result = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh)
1224
            self.assertEqual(result.size, pil_img.size)
1225
1226
1227
1228
            # Compute number of different pixels:
            np_result = np.array(result)
            n_diff_pixels = np.sum(np_result != true_result) / 3
            # Accept 3 wrong pixels
1229
1230
1231
            self.assertLess(n_diff_pixels, 3,
                            "a={}, t={}, s={}, sh={}\n".format(a, t, s, sh) +
                            "n diff pixels={}\n".format(np.sum(np.array(result)[:, :, 0] != true_result[:, :, 0])))
1232
1233
1234

        # Test rotation
        a = 45
ptrblck's avatar
ptrblck committed
1235
        _test_transformation(a=a, t=(0, 0), s=1.0, sh=(0.0, 0.0))
1236
1237
1238

        # Test translation
        t = [10, 15]
ptrblck's avatar
ptrblck committed
1239
        _test_transformation(a=0.0, t=t, s=1.0, sh=(0.0, 0.0))
1240
1241
1242

        # Test scale
        s = 1.2
ptrblck's avatar
ptrblck committed
1243
        _test_transformation(a=0.0, t=(0.0, 0.0), s=s, sh=(0.0, 0.0))
1244
1245

        # Test shear
ptrblck's avatar
ptrblck committed
1246
        sh = [45.0, 25.0]
1247
1248
1249
1250
1251
1252
1253
        _test_transformation(a=0.0, t=(0.0, 0.0), s=1.0, sh=sh)

        # Test rotation, scale, translation, shear
        for a in range(-90, 90, 25):
            for t1 in range(-10, 10, 5):
                for s in [0.75, 0.98, 1.0, 1.1, 1.2]:
                    for sh in range(-15, 15, 5):
ptrblck's avatar
ptrblck committed
1254
                        _test_transformation(a=a, t=(t1, t1), s=s, sh=(sh, sh))
1255

1256
1257
1258
1259
1260
1261
1262
1263
1264
    def test_random_rotation(self):

        with self.assertRaises(ValueError):
            transforms.RandomRotation(-0.7)
            transforms.RandomRotation([-0.7])
            transforms.RandomRotation([-0.7, 0, 0.7])

        t = transforms.RandomRotation(10)
        angle = t.get_params(t.degrees)
1265
        self.assertTrue(angle > -10 and angle < 10)
1266
1267
1268

        t = transforms.RandomRotation((-10, 10))
        angle = t.get_params(t.degrees)
1269
        self.assertTrue(angle > -10 and angle < 10)
1270

1271
1272
1273
        # Checking if RandomRotation can be printed as string
        t.__repr__()

1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
    def test_random_affine(self):

        with self.assertRaises(ValueError):
            transforms.RandomAffine(-0.7)
            transforms.RandomAffine([-0.7])
            transforms.RandomAffine([-0.7, 0, 0.7])

            transforms.RandomAffine([-90, 90], translate=2.0)
            transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])
ptrblck's avatar
ptrblck committed
1293
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10, 0, 10])
1294
1295
1296
1297

        x = np.zeros((100, 100, 3), dtype=np.uint8)
        img = F.to_pil_image(x)

ptrblck's avatar
ptrblck committed
1298
        t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10, 20, 40])
1299
1300
1301
        for _ in range(100):
            angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear,
                                                             img_size=img.size)
1302
1303
1304
1305
1306
1307
1308
1309
            self.assertTrue(-10 < angle < 10)
            self.assertTrue(-img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5,
                            "{} vs {}".format(translations[0], img.size[0] * 0.5))
            self.assertTrue(-img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5,
                            "{} vs {}".format(translations[1], img.size[1] * 0.5))
            self.assertTrue(0.7 < scale < 1.3)
            self.assertTrue(-10 < shear[0] < 10)
            self.assertTrue(-20 < shear[1] < 40)
1310
1311
1312
1313
1314

        # Checking if RandomAffine can be printed as string
        t.__repr__()

        t = transforms.RandomAffine(10, resample=Image.BILINEAR)
1315
        self.assertIn("Image.BILINEAR", t.__repr__())
1316

1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
    def test_to_grayscale(self):
        """Unit tests for grayscale transform"""

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Test Set: Grayscale an image with desired number of output channels
        # Case 1: RGB -> 1 channel grayscale
        trans1 = transforms.Grayscale(num_output_channels=1)
        gray_pil_1 = trans1(x_pil)
        gray_np_1 = np.array(gray_pil_1)
1332
1333
        self.assertEqual(gray_pil_1.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_1.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1334
1335
1336
1337
1338
1339
        np.testing.assert_equal(gray_np, gray_np_1)

        # Case 2: RGB -> 3 channel grayscale
        trans2 = transforms.Grayscale(num_output_channels=3)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1340
1341
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1342
1343
1344
1345
1346
1347
1348
1349
        np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])

        # Case 3: 1 channel grayscale -> 1 channel grayscale
        trans3 = transforms.Grayscale(num_output_channels=1)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1350
1351
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1352
1353
1354
1355
1356
1357
        np.testing.assert_equal(gray_np, gray_np_3)

        # Case 4: 1 channel grayscale -> 3 channel grayscale
        trans4 = transforms.Grayscale(num_output_channels=3)
        gray_pil_4 = trans4(x_pil_2)
        gray_np_4 = np.array(gray_pil_4)
1358
1359
        self.assertEqual(gray_pil_4.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_4.shape, tuple(x_shape), 'should be 3 channel')
1360
1361
1362
1363
        np.testing.assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
        np.testing.assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_4[:, :, 0])

1364
1365
1366
        # Checking if Grayscale can be printed as string
        trans4.__repr__()

1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_grayscale(self):
        """Unit tests for random grayscale transform"""

        # Test Set 1: RGB -> 3 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_2 = transforms.RandomGrayscale(p=0.5)(x_pil)
            gray_np_2 = np.array(gray_pil_2)
            if np.array_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1]) and \
1386
1387
                    np.array_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2]) and \
                    np.array_equal(gray_np, gray_np_2[:, :, 0]):
1388
1389
1390
1391
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=0.5)
        random.setstate(random_state)
1392
        self.assertGreater(p_value, 0.0001)
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412

        # Test Set 2: grayscale -> 1 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_3 = transforms.RandomGrayscale(p=0.5)(x_pil_2)
            gray_np_3 = np.array(gray_pil_3)
            if np.array_equal(gray_np, gray_np_3):
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=1.0)  # Note: grayscale is always unchanged
        random.setstate(random_state)
1413
        self.assertGreater(p_value, 0.0001)
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426

        # Test set 3: Explicit tests
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Case 3a: RGB -> 3 channel grayscale (grayscaled)
        trans2 = transforms.RandomGrayscale(p=1.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1427
1428
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1429
1430
1431
1432
1433
1434
1435
1436
        np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])

        # Case 3b: RGB -> 3 channel grayscale (unchanged)
        trans2 = transforms.RandomGrayscale(p=0.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1437
1438
        self.assertEqual(gray_pil_2.mode, 'RGB', 'mode should be RGB')
        self.assertEqual(gray_np_2.shape, tuple(x_shape), 'should be 3 channel')
1439
1440
1441
1442
1443
1444
        np.testing.assert_equal(x_np, gray_np_2)

        # Case 3c: 1 channel grayscale -> 1 channel grayscale (grayscaled)
        trans3 = transforms.RandomGrayscale(p=1.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1445
1446
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1447
1448
1449
1450
1451
1452
        np.testing.assert_equal(gray_np, gray_np_3)

        # Case 3d: 1 channel grayscale -> 1 channel grayscale (unchanged)
        trans3 = transforms.RandomGrayscale(p=0.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
1453
1454
        self.assertEqual(gray_pil_3.mode, 'L', 'mode should be L')
        self.assertEqual(gray_np_3.shape, tuple(x_shape[0:2]), 'should be 1 channel')
1455
1456
        np.testing.assert_equal(gray_np, gray_np_3)

1457
1458
1459
        # Checking if RandomGrayscale can be printed as string
        trans3.__repr__()

1460
1461
1462
    def test_random_erasing(self):
        """Unit tests for random erasing transform"""

1463
        img = torch.rand([3, 60, 60])
1464
1465

        # Test Set 1: Erasing with int value
1466
1467
1468
        img_re = transforms.RandomErasing(value=0.2)
        i, j, h, w, v = img_re.get_params(img, scale=img_re.scale, ratio=img_re.ratio, value=img_re.value)
        img_output = F.erase(img, i, j, h, w, v)
1469
        self.assertEqual(img_output.size(0), 3)
1470
1471
1472
1473
1474
1475

        # Test Set 2: Check if the unerased region is preserved
        orig_unerased = img.clone()
        orig_unerased[:, i:i + h, j:j + w] = 0
        output_unerased = img_output.clone()
        output_unerased[:, i:i + h, j:j + w] = 0
1476
        self.assertTrue(torch.equal(orig_unerased, output_unerased))
1477
1478

        # Test Set 3: Erasing with random value
1479
        img_re = transforms.RandomErasing(value='random')(img)
1480
        self.assertEqual(img_re.size(0), 3)
1481

1482
        # Test Set 4: Erasing with tuple value
1483
        img_re = transforms.RandomErasing(value=(0.2, 0.2, 0.2))(img)
1484
        self.assertEqual(img_re.size(0), 3)
1485

1486
1487
        # Test Set 5: Testing the inplace behaviour
        img_re = transforms.RandomErasing(value=(0.2), inplace=True)(img)
1488
        self.assertTrue(torch.equal(img_re, img))
1489

Zhun Zhong's avatar
Zhun Zhong committed
1490
1491
1492
        # Test Set 6: Checking when no erased region is selected
        img = torch.rand([3, 300, 1])
        img_re = transforms.RandomErasing(ratio=(0.1, 0.2), value='random')(img)
1493
        self.assertTrue(torch.equal(img_re, img))
Zhun Zhong's avatar
Zhun Zhong committed
1494

1495

1496
1497
if __name__ == '__main__':
    unittest.main()