functional.py 55.5 KB
Newer Older
1
import math
2
3
import numbers
import warnings
4
from enum import Enum
5
6

import numpy as np
vfdev's avatar
vfdev committed
7
from PIL import Image
8
9
10

import torch
from torch import Tensor
11
from typing import List, Tuple, Any, Optional
12

13
14
15
16
17
try:
    import accimage
except ImportError:
    accimage = None

18
19
20
from . import functional_pil as F_pil
from . import functional_tensor as F_t

21

22
class InterpolationMode(Enum):
23
24
25
26
27
28
29
30
31
32
33
34
    """Interpolation modes
    """
    NEAREST = "nearest"
    BILINEAR = "bilinear"
    BICUBIC = "bicubic"
    # For PIL compatibility
    BOX = "box"
    HAMMING = "hamming"
    LANCZOS = "lanczos"


# TODO: Once torchscript supports Enums with staticmethod
35
36
# this can be put into InterpolationMode as staticmethod
def _interpolation_modes_from_int(i: int) -> InterpolationMode:
37
    inverse_modes_mapping = {
38
39
40
41
42
43
        0: InterpolationMode.NEAREST,
        2: InterpolationMode.BILINEAR,
        3: InterpolationMode.BICUBIC,
        4: InterpolationMode.BOX,
        5: InterpolationMode.HAMMING,
        1: InterpolationMode.LANCZOS,
44
45
46
47
48
    }
    return inverse_modes_mapping[i]


pil_modes_mapping = {
49
50
51
52
53
54
    InterpolationMode.NEAREST: 0,
    InterpolationMode.BILINEAR: 2,
    InterpolationMode.BICUBIC: 3,
    InterpolationMode.BOX: 4,
    InterpolationMode.HAMMING: 5,
    InterpolationMode.LANCZOS: 1,
55
56
}

vfdev's avatar
vfdev committed
57
58
59
60
_is_pil_image = F_pil._is_pil_image


def _get_image_size(img: Tensor) -> List[int]:
61
    """Returns image size as [w, h]
vfdev's avatar
vfdev committed
62
63
64
    """
    if isinstance(img, torch.Tensor):
        return F_t._get_image_size(img)
65

vfdev's avatar
vfdev committed
66
    return F_pil._get_image_size(img)
67

vfdev's avatar
vfdev committed
68

69
def _get_image_num_channels(img: Tensor) -> int:
70
71
    """Returns number of image channels
    """
72
73
74
75
76
77
    if isinstance(img, torch.Tensor):
        return F_t._get_image_num_channels(img)

    return F_pil._get_image_num_channels(img)


vfdev's avatar
vfdev committed
78
79
@torch.jit.unused
def _is_numpy(img: Any) -> bool:
80
81
82
    return isinstance(img, np.ndarray)


vfdev's avatar
vfdev committed
83
84
@torch.jit.unused
def _is_numpy_image(img: Any) -> bool:
85
    return img.ndim in {2, 3}
86
87
88
89


def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
90
    This function does not support torchscript.
91

92
    See :class:`~torchvision.transforms.ToTensor` for more details.
93
94
95
96
97
98
99

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
vfdev's avatar
vfdev committed
100
    if not(F_pil._is_pil_image(pic) or _is_numpy(pic)):
101
102
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

103
104
105
    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

106
107
    default_float_dtype = torch.get_default_dtype()

108
109
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
110
111
112
        if pic.ndim == 2:
            pic = pic[:, :, None]

113
        img = torch.from_numpy(pic.transpose((2, 0, 1))).contiguous()
114
        # backward compatibility
115
        if isinstance(img, torch.ByteTensor):
116
            return img.to(dtype=default_float_dtype).div(255)
117
118
        else:
            return img
119
120

    if accimage is not None and isinstance(pic, accimage.Image):
121
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
122
        pic.copyto(nppic)
123
        return torch.from_numpy(nppic).to(dtype=default_float_dtype)
124
125
126
127
128
129

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
130
131
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
132
133
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
134
135
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
136
137

    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
138
    # put it from HWC to CHW format
139
    img = img.permute((2, 0, 1)).contiguous()
140
    if isinstance(img, torch.ByteTensor):
141
        return img.to(dtype=default_float_dtype).div(255)
142
143
144
145
    else:
        return img


146
147
def pil_to_tensor(pic):
    """Convert a ``PIL Image`` to a tensor of the same type.
148
    This function does not support torchscript.
149

vfdev's avatar
vfdev committed
150
    See :class:`~torchvision.transforms.PILToTensor` for more details.
151
152
153
154
155
156
157

    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
158
    if not F_pil._is_pil_image(pic):
159
160
161
        raise TypeError('pic should be PIL Image. Got {}'.format(type(pic)))

    if accimage is not None and isinstance(pic, accimage.Image):
162
163
        # accimage format is always uint8 internally, so always return uint8 here
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.uint8)
164
165
166
167
168
169
170
171
172
173
174
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
    img = torch.as_tensor(np.asarray(pic))
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


175
176
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
177
    This function does not support PIL Image.
178
179
180
181
182
183

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
vfdev's avatar
vfdev committed
184
        Tensor: Converted image
185
186
187
188
189
190
191
192
193
194
195
196

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
197
198
199
200
    if not isinstance(image, torch.Tensor):
        raise TypeError('Input img should be Tensor Image')

    return F_t.convert_image_dtype(image, dtype)
201
202


203
def to_pil_image(pic, mode=None):
204
    """Convert a tensor or an ndarray to PIL Image. This function does not support torchscript.
205

206
    See :class:`~torchvision.transforms.ToPILImage` for more details.
207
208
209
210
211

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

212
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
213
214
215
216

    Returns:
        PIL Image: Image converted to PIL Image.
    """
Varun Agrawal's avatar
Varun Agrawal committed
217
    if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
218
219
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))

Varun Agrawal's avatar
Varun Agrawal committed
220
221
222
223
224
225
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndimension()))

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
226
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
227

228
229
230
231
        # check number of channels
        if pic.shape[-3] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-3]))

Varun Agrawal's avatar
Varun Agrawal committed
232
233
234
235
236
237
238
239
    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

240
241
242
243
        # check number of channels
        if pic.shape[-1] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-1]))

244
    npimg = pic
Varun Agrawal's avatar
Varun Agrawal committed
245
    if isinstance(pic, torch.Tensor):
246
247
248
        if pic.is_floating_point() and mode != 'F':
            pic = pic.mul(255).byte()
        npimg = np.transpose(pic.cpu().numpy(), (1, 2, 0))
249
250
251
252
253
254
255
256
257
258

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
vfdev's avatar
vfdev committed
259
        elif npimg.dtype == np.int16:
260
            expected_mode = 'I;16'
vfdev's avatar
vfdev committed
261
        elif npimg.dtype == np.int32:
262
263
264
265
266
267
268
269
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
                             .format(mode, np.dtype, expected_mode))
        mode = expected_mode

surgan12's avatar
surgan12 committed
270
271
272
273
274
275
276
277
    elif npimg.shape[2] == 2:
        permitted_2_channel_modes = ['LA']
        if mode is not None and mode not in permitted_2_channel_modes:
            raise ValueError("Only modes {} are supported for 2D inputs".format(permitted_2_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'LA'

278
    elif npimg.shape[2] == 4:
surgan12's avatar
surgan12 committed
279
        permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)


298
def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False) -> Tensor:
299
    """Normalize a float tensor image with mean and standard deviation.
300
    This transform does not support PIL Image.
301

302
    .. note::
surgan12's avatar
surgan12 committed
303
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
304

305
    See :class:`~torchvision.transforms.Normalize` for more details.
306
307

    Args:
308
        tensor (Tensor): Float tensor image of size (C, H, W) or (B, C, H, W) to be normalized.
309
        mean (sequence): Sequence of means for each channel.
310
        std (sequence): Sequence of standard deviations for each channel.
311
        inplace(bool,optional): Bool to make this operation inplace.
312
313
314
315

    Returns:
        Tensor: Normalized Tensor image.
    """
316
317
    if not isinstance(tensor, torch.Tensor):
        raise TypeError('Input tensor should be a torch tensor. Got {}.'.format(type(tensor)))
318

319
320
321
    if not tensor.is_floating_point():
        raise TypeError('Input tensor should be a float tensor. Got {}.'.format(tensor.dtype))

322
323
    if tensor.ndim < 3:
        raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.size() = '
324
                         '{}.'.format(tensor.size()))
325

surgan12's avatar
surgan12 committed
326
327
328
    if not inplace:
        tensor = tensor.clone()

329
330
331
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
332
333
    if (std == 0).any():
        raise ValueError('std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype))
334
    if mean.ndim == 1:
335
        mean = mean.view(-1, 1, 1)
336
    if std.ndim == 1:
337
        std = std.view(-1, 1, 1)
338
    tensor.sub_(mean).div_(std)
339
    return tensor
340
341


342
343
def resize(img: Tensor, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR,
           max_size: Optional[int] = None) -> Tensor:
vfdev's avatar
vfdev committed
344
    r"""Resize the input image to the given size.
345
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
346
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
347

348
349
350
351
352
353
    .. warning::
        The output image might be different depending on its type: when downsampling, the interpolation of PIL images
        and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences
        in the performance of a network. Therefore, it is preferable to train and serve a model with the same input
        types.

354
    Args:
vfdev's avatar
vfdev committed
355
        img (PIL Image or Tensor): Image to be resized.
356
357
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
Vitaliy Chiley's avatar
Vitaliy Chiley committed
358
            the smaller edge of the image will be matched to this number maintaining
359
            the aspect ratio. i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
360
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
361
362
363

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
364
365
366
367
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
368
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
369
370
371
372
373
374
375
376
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
            ``max_size``. As a result, ```size` might be overruled, i.e the
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
377
378

    Returns:
vfdev's avatar
vfdev committed
379
        PIL Image or Tensor: Resized image.
380
    """
381
382
383
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
384
385
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
386
387
388
        )
        interpolation = _interpolation_modes_from_int(interpolation)

389
390
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
391

vfdev's avatar
vfdev committed
392
    if not isinstance(img, torch.Tensor):
393
        pil_interpolation = pil_modes_mapping[interpolation]
394
        return F_pil.resize(img, size=size, interpolation=pil_interpolation, max_size=max_size)
vfdev's avatar
vfdev committed
395

396
    return F_t.resize(img, size=size, interpolation=interpolation.value, max_size=max_size)
397
398
399
400
401
402
403
404


def scale(*args, **kwargs):
    warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                  "please use transforms.Resize instead.")
    return resize(*args, **kwargs)


405
406
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
    r"""Pad the given image on all sides with the given "pad" value.
407
    If the image is torch Tensor, it is expected
408
409
410
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
411
412

    Args:
413
        img (PIL Image or Tensor): Image to be padded.
414
415
416
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
417
            this is the padding for the left, top, right and bottom borders respectively.
418
419
420
421

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
422
423
424
425
426
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0.
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
427
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
428
429
430

            - constant: pads with a constant value, this value is specified with fill

431
432
            - edge: pads with the last value on the edge of the image,
                    if input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
433
434
435
436
437
438
439
440
441
442

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]
443
444

    Returns:
445
        PIL Image or Tensor: Padded image.
446
    """
447
448
    if not isinstance(img, torch.Tensor):
        return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
449

450
    return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
451
452


vfdev's avatar
vfdev committed
453
454
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
    """Crop the given image at specified location and output size.
455
456
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
457

458
    Args:
vfdev's avatar
vfdev committed
459
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
460
461
462
463
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
464

465
    Returns:
vfdev's avatar
vfdev committed
466
        PIL Image or Tensor: Cropped image.
467
468
    """

vfdev's avatar
vfdev committed
469
470
    if not isinstance(img, torch.Tensor):
        return F_pil.crop(img, top, left, height, width)
471

vfdev's avatar
vfdev committed
472
    return F_t.crop(img, top, left, height, width)
473

vfdev's avatar
vfdev committed
474
475
476

def center_crop(img: Tensor, output_size: List[int]) -> Tensor:
    """Crops the given image at the center.
477
    If the image is torch Tensor, it is expected
478
479
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
480

481
    Args:
vfdev's avatar
vfdev committed
482
        img (PIL Image or Tensor): Image to be cropped.
483
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
vfdev's avatar
vfdev committed
484
485
            it is used for both directions.

486
    Returns:
vfdev's avatar
vfdev committed
487
        PIL Image or Tensor: Cropped image.
488
    """
489
490
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
vfdev's avatar
vfdev committed
491
492
493
494
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

    image_width, image_height = _get_image_size(img)
495
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
496

497
498
499
500
501
502
503
504
505
506
507
508
    if crop_width > image_width or crop_height > image_height:
        padding_ltrb = [
            (crop_width - image_width) // 2 if crop_width > image_width else 0,
            (crop_height - image_height) // 2 if crop_height > image_height else 0,
            (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
            (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
        ]
        img = pad(img, padding_ltrb, fill=0)  # PIL uses fill value 0
        image_width, image_height = _get_image_size(img)
        if crop_width == image_width and crop_height == image_height:
            return img

509
510
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))
511
    return crop(img, crop_top, crop_left, crop_height, crop_width)
512
513


514
def resized_crop(
515
        img: Tensor, top: int, left: int, height: int, width: int, size: List[int],
516
        interpolation: InterpolationMode = InterpolationMode.BILINEAR
517
518
) -> Tensor:
    """Crop the given image and resize it to desired size.
519
    If the image is torch Tensor, it is expected
520
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
521

522
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
523
524

    Args:
525
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
526
527
528
529
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
530
        size (sequence or int): Desired output size. Same semantics as ``resize``.
531
532
533
534
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
535
536
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

537
    Returns:
538
        PIL Image or Tensor: Cropped image.
539
    """
540
    img = crop(img, top, left, height, width)
541
542
543
544
    img = resize(img, size, interpolation)
    return img


545
def hflip(img: Tensor) -> Tensor:
546
    """Horizontally flip the given image.
547
548

    Args:
vfdev's avatar
vfdev committed
549
        img (PIL Image or Tensor): Image to be flipped. If img
550
            is a Tensor, it is expected to be in [..., H, W] format,
551
            where ... means it can have an arbitrary number of leading
552
            dimensions.
553
554

    Returns:
vfdev's avatar
vfdev committed
555
        PIL Image or Tensor:  Horizontally flipped image.
556
    """
557
558
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
559

560
    return F_t.hflip(img)
561
562


563
564
565
def _get_perspective_coeffs(
        startpoints: List[List[int]], endpoints: List[List[int]]
) -> List[float]:
566
567
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

Vitaliy Chiley's avatar
Vitaliy Chiley committed
568
    In Perspective Transform each pixel (x, y) in the original image gets transformed as,
569
570
571
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
572
573
574
575
576
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.

577
578
579
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
580
581
582
583
584
    a_matrix = torch.zeros(2 * len(startpoints), 8, dtype=torch.float)

    for i, (p1, p2) in enumerate(zip(endpoints, startpoints)):
        a_matrix[2 * i, :] = torch.tensor([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        a_matrix[2 * i + 1, :] = torch.tensor([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
585

586
587
    b_matrix = torch.tensor(startpoints, dtype=torch.float).view(8)
    res = torch.lstsq(b_matrix, a_matrix)[0]
588

589
590
    output: List[float] = res.squeeze(1).tolist()
    return output
591
592


593
594
595
596
def perspective(
        img: Tensor,
        startpoints: List[List[int]],
        endpoints: List[List[int]],
597
        interpolation: InterpolationMode = InterpolationMode.BILINEAR,
598
        fill: Optional[List[float]] = None
599
600
) -> Tensor:
    """Perform perspective transform of the given image.
601
    If the image is torch Tensor, it is expected
602
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
603
604

    Args:
605
606
607
608
609
        img (PIL Image or Tensor): Image to be transformed.
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.
610
611
612
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
613
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
614
615
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
616
617
618
619

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
620

621
    Returns:
622
        PIL Image or Tensor: transformed Image.
623
    """
624

625
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
626

627
628
629
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
630
631
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
632
633
634
        )
        interpolation = _interpolation_modes_from_int(interpolation)

635
636
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
637

638
    if not isinstance(img, torch.Tensor):
639
640
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.perspective(img, coeffs, interpolation=pil_interpolation, fill=fill)
641

642
    return F_t.perspective(img, coeffs, interpolation=interpolation.value, fill=fill)
643
644


645
def vflip(img: Tensor) -> Tensor:
646
    """Vertically flip the given image.
647
648

    Args:
vfdev's avatar
vfdev committed
649
        img (PIL Image or Tensor): Image to be flipped. If img
650
            is a Tensor, it is expected to be in [..., H, W] format,
651
            where ... means it can have an arbitrary number of leading
652
            dimensions.
653
654

    Returns:
655
        PIL Image or Tensor:  Vertically flipped image.
656
    """
657
658
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
659

660
    return F_t.vflip(img)
661
662


vfdev's avatar
vfdev committed
663
664
def five_crop(img: Tensor, size: List[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """Crop the given image into four corners and the central crop.
665
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
666
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
667
668
669
670
671
672

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
673
674
675
        img (PIL Image or Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
676
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
677

678
    Returns:
679
       tuple: tuple (tl, tr, bl, br, center)
680
       Corresponding top left, top right, bottom left, bottom right and center crop.
681
682
683
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
684
685
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])
686

vfdev's avatar
vfdev committed
687
688
689
690
    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    image_width, image_height = _get_image_size(img)
691
692
693
694
695
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

vfdev's avatar
vfdev committed
696
697
698
699
700
701
702
703
    tl = crop(img, 0, 0, crop_height, crop_width)
    tr = crop(img, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop(img, image_height - crop_height, 0, crop_height, crop_width)
    br = crop(img, image_height - crop_height, image_width - crop_width, crop_height, crop_width)

    center = center_crop(img, [crop_height, crop_width])

    return tl, tr, bl, br, center
704
705


vfdev's avatar
vfdev committed
706
707
708
def ten_crop(img: Tensor, size: List[int], vertical_flip: bool = False) -> List[Tensor]:
    """Generate ten cropped images from the given image.
    Crop the given image into four corners and the central crop plus the
709
    flipped version of these (horizontal flipping is used by default).
710
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
711
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
712
713
714
715
716

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

717
    Args:
vfdev's avatar
vfdev committed
718
        img (PIL Image or Tensor): Image to be cropped.
719
        size (sequence or int): Desired output size of the crop. If size is an
720
            int instead of sequence like (h, w), a square crop (size, size) is
721
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
722
        vertical_flip (bool): Use vertical flipping instead of horizontal
723
724

    Returns:
725
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
726
727
        Corresponding top left, top right, bottom left, bottom right and
        center crop and same for the flipped image.
728
729
730
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
731
732
733
734
735
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")
736
737
738
739
740
741
742
743
744
745
746
747

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


748
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
749
    """Adjust brightness of an image.
750
751

    Args:
vfdev's avatar
vfdev committed
752
        img (PIL Image or Tensor): Image to be adjusted.
753
754
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
755
756
757
758
759
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
760
        PIL Image or Tensor: Brightness adjusted image.
761
    """
762
763
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
764

765
    return F_t.adjust_brightness(img, brightness_factor)
766
767


768
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
769
    """Adjust contrast of an image.
770
771

    Args:
vfdev's avatar
vfdev committed
772
        img (PIL Image or Tensor): Image to be adjusted.
773
774
            If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
775
776
777
778
779
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
780
        PIL Image or Tensor: Contrast adjusted image.
781
    """
782
783
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
784

785
    return F_t.adjust_contrast(img, contrast_factor)
786
787


788
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
789
790
791
    """Adjust color saturation of an image.

    Args:
vfdev's avatar
vfdev committed
792
        img (PIL Image or Tensor): Image to be adjusted.
793
794
            If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
795
796
797
798
799
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
800
        PIL Image or Tensor: Saturation adjusted image.
801
    """
802
803
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
804

805
    return F_t.adjust_saturation(img, saturation_factor)
806
807


808
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
809
810
811
812
813
814
815
816
817
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

818
819
820
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
821
822

    Args:
823
        img (PIL Image or Tensor): Image to be adjusted.
824
825
826
            If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image mode "1", "L", "I", "F" and modes with transparency (alpha channel) are not supported.
827
828
829
830
831
832
833
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
834
        PIL Image or Tensor: Hue adjusted image.
835
    """
836
837
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
838

839
    return F_t.adjust_hue(img, hue_factor)
840
841


842
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
843
    r"""Perform gamma correction on an image.
844
845
846
847

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

848
849
850
851
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
852

853
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
854
855

    Args:
856
        img (PIL Image or Tensor): PIL Image to be adjusted.
857
858
859
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, modes with transparency (alpha channel) are not supported.
860
861
862
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
863
        gain (float): The constant multiplier.
864
865
    Returns:
        PIL Image or Tensor: Gamma correction adjusted image.
866
    """
867
868
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_gamma(img, gamma, gain)
869

870
    return F_t.adjust_gamma(img, gamma, gain)
871
872


vfdev's avatar
vfdev committed
873
def _get_inverse_affine_matrix(
vfdev's avatar
vfdev committed
874
        center: List[float], angle: float, translate: List[float], scale: float, shear: List[float]
vfdev's avatar
vfdev committed
875
) -> List[float]:
876
877
878
879
880
881
882
    # Helper method to compute inverse matrix for affine transformation

    # As it is explained in PIL.Image.rotate
    # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RSS is rotation with scale and shear matrix
883
884
885
886
887
888
889
890
891
892
    #       RSS(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ]
    #         [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    #
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
893
894
    # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

895
896
897
898
899
900
901
    rot = math.radians(angle)
    sx, sy = [math.radians(s) for s in shear]

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
vfdev's avatar
vfdev committed
902
903
904
905
    a = math.cos(rot - sy) / math.cos(sy)
    b = -math.cos(rot - sy) * math.tan(sx) / math.cos(sy) - math.sin(rot)
    c = math.sin(rot - sy) / math.cos(sy)
    d = -math.sin(rot - sy) * math.tan(sx) / math.cos(sy) + math.cos(rot)
906
907

    # Inverted rotation matrix with scale and shear
908
    # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
vfdev's avatar
vfdev committed
909
910
    matrix = [d, -b, 0.0, -c, a, 0.0]
    matrix = [x / scale for x in matrix]
911
912

    # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
913
914
    matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty)
    matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty)
915
916

    # Apply center translation: C * RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
917
918
    matrix[2] += cx
    matrix[5] += cy
919

vfdev's avatar
vfdev committed
920
    return matrix
921

vfdev's avatar
vfdev committed
922

vfdev's avatar
vfdev committed
923
def rotate(
924
        img: Tensor, angle: float, interpolation: InterpolationMode = InterpolationMode.NEAREST,
925
        expand: bool = False, center: Optional[List[int]] = None,
926
        fill: Optional[List[float]] = None, resample: Optional[int] = None
vfdev's avatar
vfdev committed
927
928
) -> Tensor:
    """Rotate the image by angle.
929
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
930
931
932
933
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        img (PIL Image or Tensor): image to be rotated.
934
        angle (number): rotation angle value in degrees, counter-clockwise.
935
936
937
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
938
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
vfdev's avatar
vfdev committed
939
940
941
942
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
943
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
vfdev's avatar
vfdev committed
944
            Default is the center of the image.
945
946
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
947
948
949
950

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
vfdev's avatar
vfdev committed
951
952
953
954
955
956
957

    Returns:
        PIL Image or Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
958
959
960
961
962
963
964
965
966
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
967
968
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
969
970
971
        )
        interpolation = _interpolation_modes_from_int(interpolation)

vfdev's avatar
vfdev committed
972
973
974
975
976
977
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

978
979
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
980

vfdev's avatar
vfdev committed
981
    if not isinstance(img, torch.Tensor):
982
983
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.rotate(img, angle=angle, interpolation=pil_interpolation, expand=expand, center=center, fill=fill)
vfdev's avatar
vfdev committed
984
985
986
987

    center_f = [0.0, 0.0]
    if center is not None:
        img_size = _get_image_size(img)
988
989
990
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, img_size)]

vfdev's avatar
vfdev committed
991
992
993
    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
994
    return F_t.rotate(img, matrix=matrix, interpolation=interpolation.value, expand=expand, fill=fill)
vfdev's avatar
vfdev committed
995
996


vfdev's avatar
vfdev committed
997
998
def affine(
        img: Tensor, angle: float, translate: List[int], scale: float, shear: List[float],
999
1000
        interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: Optional[List[float]] = None,
        resample: Optional[int] = None, fillcolor: Optional[List[float]] = None
vfdev's avatar
vfdev committed
1001
1002
) -> Tensor:
    """Apply affine transformation on the image keeping image center invariant.
1003
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1004
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1005
1006

    Args:
vfdev's avatar
vfdev committed
1007
        img (PIL Image or Tensor): image to transform.
1008
1009
        angle (number): rotation angle in degrees between -180 and 180, clockwise direction.
        translate (sequence of integers): horizontal and vertical translations (post-rotation translation)
1010
        scale (float): overall scale
1011
1012
        shear (float or sequence): shear angle value in degrees between -180 to 180, clockwise direction.
            If a sequence is specified, the first value corresponds to a shear parallel to the x axis, while
vfdev's avatar
vfdev committed
1013
            the second value corresponds to a shear parallel to the y axis.
1014
1015
1016
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1017
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1018
1019
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
1020
1021
1022
1023

            .. note::
                In torchscript mode single int/float value is not supported, please use a sequence
                of length 1: ``[value, ]``.
1024
        fillcolor (sequence, int, float): deprecated argument and will be removed since v0.10.0.
1025
            Please use the ``fill`` parameter instead.
1026
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1027
            Please use the ``interpolation`` parameter instead.
vfdev's avatar
vfdev committed
1028
1029
1030

    Returns:
        PIL Image or Tensor: Transformed image.
1031
    """
1032
1033
1034
1035
1036
1037
1038
1039
1040
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
1041
1042
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
1043
1044
1045
1046
1047
1048
1049
1050
1051
        )
        interpolation = _interpolation_modes_from_int(interpolation)

    if fillcolor is not None:
        warnings.warn(
            "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
        )
        fill = fillcolor

vfdev's avatar
vfdev committed
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

1067
1068
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
1069

vfdev's avatar
vfdev committed
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError("Shear should be a sequence containing two values. Got {}".format(shear))

    img_size = _get_image_size(img)
    if not isinstance(img, torch.Tensor):
        # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
        # it is visually better to estimate the center without 0.5 offset
        # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
        center = [img_size[0] * 0.5, img_size[1] * 0.5]
        matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
1095
1096
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.affine(img, matrix=matrix, interpolation=pil_interpolation, fill=fill)
1097

1098
1099
    translate_f = [1.0 * t for t in translate]
    matrix = _get_inverse_affine_matrix([0.0, 0.0], angle, translate_f, scale, shear)
1100
    return F_t.affine(img, matrix=matrix, interpolation=interpolation.value, fill=fill)
1101
1102


1103
@torch.jit.unused
1104
def to_grayscale(img, num_output_channels=1):
1105
    """Convert PIL image of any mode (RGB, HSV, LAB, etc) to grayscale version of image.
1106
    This transform does not support torch Tensor.
1107
1108

    Args:
1109
        img (PIL Image): PIL Image to be converted to grayscale.
1110
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default is 1.
1111
1112

    Returns:
1113
1114
        PIL Image: Grayscale version of the image.

1115
1116
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1117
    """
1118
1119
    if isinstance(img, Image.Image):
        return F_pil.to_grayscale(img, num_output_channels)
1120

1121
1122
1123
1124
1125
    raise TypeError("Input should be PIL Image")


def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    """Convert RGB image to grayscale version of image.
1126
1127
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139

    Note:
        Please, note that this method supports only RGB images as input. For inputs in other color spaces,
        please, consider using meth:`~torchvision.transforms.functional.to_grayscale` with PIL Image.

    Args:
        img (PIL Image or Tensor): RGB Image to be converted to grayscale.
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.

    Returns:
        PIL Image or Tensor: Grayscale version of the image.

1140
1141
        - if num_output_channels = 1 : returned image is single channel
        - if num_output_channels = 3 : returned image is 3 channel with r = g = b
1142
1143
1144
1145
1146
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.to_grayscale(img, num_output_channels)

    return F_t.rgb_to_grayscale(img, num_output_channels)
1147
1148


1149
def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
1150
    """ Erase the input Tensor Image with given value.
1151
    This transform does not support PIL Image.
1152
1153
1154
1155
1156
1157
1158
1159

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
1160
        inplace(bool, optional): For in-place operations. By default is set False.
1161
1162
1163
1164
1165
1166
1167

    Returns:
        Tensor Image: Erased image.
    """
    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

1168
1169
1170
    if not inplace:
        img = img.clone()

vfdev's avatar
vfdev committed
1171
    img[..., i:i + h, j:j + w] = v
1172
    return img
1173
1174
1175


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None) -> Tensor:
1176
1177
1178
    """Performs Gaussian blurring on the image by given kernel.
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1179
1180
1181
1182
1183

    Args:
        img (PIL Image or Tensor): Image to be blurred
        kernel_size (sequence of ints or int): Gaussian kernel size. Can be a sequence of integers
            like ``(kx, ky)`` or a single integer for square kernels.
1184
1185
1186
1187

            .. note::
                In torchscript mode kernel_size as single int is not supported, use a sequence of
                length 1: ``[ksize, ]``.
1188
1189
1190
1191
        sigma (sequence of floats or float, optional): Gaussian kernel standard deviation. Can be a
            sequence of floats like ``(sigma_x, sigma_y)`` or a single float to define the
            same sigma in both X/Y directions. If None, then it is computed using
            ``kernel_size`` as ``sigma = 0.3 * ((kernel_size - 1) * 0.5 - 1) + 0.8``.
1192
1193
1194
1195
1196
            Default, None.

            .. note::
                In torchscript mode sigma as single float is
                not supported, use a sequence of length 1: ``[sigma, ]``.
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237

    Returns:
        PIL Image or Tensor: Gaussian Blurred version of the image.
    """
    if not isinstance(kernel_size, (int, list, tuple)):
        raise TypeError('kernel_size should be int or a sequence of integers. Got {}'.format(type(kernel_size)))
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
    if len(kernel_size) != 2:
        raise ValueError('If kernel_size is a sequence its length should be 2. Got {}'.format(len(kernel_size)))
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
            raise ValueError('kernel_size should have odd and positive integers. Got {}'.format(kernel_size))

    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]

    if sigma is not None and not isinstance(sigma, (int, float, list, tuple)):
        raise TypeError('sigma should be either float or sequence of floats. Got {}'.format(type(sigma)))
    if isinstance(sigma, (int, float)):
        sigma = [float(sigma), float(sigma)]
    if isinstance(sigma, (list, tuple)) and len(sigma) == 1:
        sigma = [sigma[0], sigma[0]]
    if len(sigma) != 2:
        raise ValueError('If sigma is a sequence, its length should be 2. Got {}'.format(len(sigma)))
    for s in sigma:
        if s <= 0.:
            raise ValueError('sigma should have positive values. Got {}'.format(sigma))

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
            raise TypeError('img should be PIL Image or Tensor. Got {}'.format(type(img)))

        t_img = to_tensor(img)

    output = F_t.gaussian_blur(t_img, kernel_size, sigma)

    if not isinstance(img, torch.Tensor):
        output = to_pil_image(output)
    return output
1238
1239
1240


def invert(img: Tensor) -> Tensor:
1241
    """Invert the colors of an RGB/grayscale image.
1242
1243
1244

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1245
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1246
1247
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258

    Returns:
        PIL Image or Tensor: Color inverted image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.invert(img)

    return F_t.invert(img)


def posterize(img: Tensor, bits: int) -> Tensor:
1259
    """Posterize an image by reducing the number of bits for each color channel.
1260
1261
1262

    Args:
        img (PIL Image or Tensor): Image to have its colors posterized.
1263
            If img is torch Tensor, it should be of type torch.uint8 and
1264
1265
1266
            it is expected to be in [..., 1 or 3, H, W] format, where ... means
            it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
        bits (int): The number of bits to keep for each channel (0-8).
    Returns:
        PIL Image or Tensor: Posterized image.
    """
    if not (0 <= bits <= 8):
        raise ValueError('The number if bits should be between 0 and 8. Got {}'.format(bits))

    if not isinstance(img, torch.Tensor):
        return F_pil.posterize(img, bits)

    return F_t.posterize(img, bits)


def solarize(img: Tensor, threshold: float) -> Tensor:
1281
    """Solarize an RGB/grayscale image by inverting all pixel values above a threshold.
1282
1283
1284

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1285
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1286
1287
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
        threshold (float): All pixels equal or above this value are inverted.
    Returns:
        PIL Image or Tensor: Solarized image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.solarize(img, threshold)

    return F_t.solarize(img, threshold)


def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
1299
    """Adjust the sharpness of an image.
1300
1301
1302

    Args:
        img (PIL Image or Tensor): Image to be adjusted.
1303
1304
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
            where ... means it can have an arbitrary number of leading dimensions.
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.

    Returns:
        PIL Image or Tensor: Sharpness adjusted image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_sharpness(img, sharpness_factor)

    return F_t.adjust_sharpness(img, sharpness_factor)


def autocontrast(img: Tensor) -> Tensor:
1319
    """Maximize contrast of an image by remapping its
1320
1321
1322
1323
1324
    pixels per channel so that the lowest becomes black and the lightest
    becomes white.

    Args:
        img (PIL Image or Tensor): Image on which autocontrast is applied.
1325
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1326
1327
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338

    Returns:
        PIL Image or Tensor: An image that was autocontrasted.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.autocontrast(img)

    return F_t.autocontrast(img)


def equalize(img: Tensor) -> Tensor:
1339
    """Equalize the histogram of an image by applying
1340
1341
1342
1343
1344
    a non-linear mapping to the input in order to create a uniform
    distribution of grayscale values in the output.

    Args:
        img (PIL Image or Tensor): Image on which equalize is applied.
1345
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1346
            where ... means it can have an arbitrary number of leading dimensions.
1347
            The tensor dtype must be ``torch.uint8`` and values are expected to be in ``[0, 255]``.
1348
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1349
1350
1351
1352
1353
1354
1355
1356

    Returns:
        PIL Image or Tensor: An image that was equalized.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.equalize(img)

    return F_t.equalize(img)