test_transforms.py 81.7 KB
Newer Older
1
import math
2
import os
3
import random
4
import re
5
from functools import partial
6
7
8

import numpy as np
import pytest
9
10
import torch
import torchvision.transforms as transforms
11
import torchvision.transforms._pil_constants as _pil_constants
12
import torchvision.transforms.functional as F
13
import torchvision.transforms.functional_tensor as F_t
14
from PIL import Image
15
16
from torch._utils_internal import get_file_path_2

17
18
19
20
21
try:
    import accimage
except ImportError:
    accimage = None

22
23
24
25
26
try:
    from scipy import stats
except ImportError:
    stats = None

27
from common_utils import assert_equal, cycle_over, float_dtypes, int_dtypes
28
29


30
GRACE_HOPPER = get_file_path_2(
31
32
    os.path.dirname(os.path.abspath(__file__)), "assets", "encode_jpeg", "grace_hopper_517x606.jpg"
)
33
34


35
def _get_grayscale_test_image(img, fill=None):
36
37
    img = img.convert("L")
    fill = (fill[0],) if isinstance(fill, tuple) else fill
38
39
40
    return img, fill


41
class TestConvertImageDtype:
42
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(float_dtypes()))
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    def test_float_to_float(self, input_dtype, output_dtype):
        input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0.0, 1.0

        assert abs(actual_min - desired_min) < 1e-7
        assert abs(actual_max - desired_max) < 1e-7

59
60
    @pytest.mark.parametrize("input_dtype", float_dtypes())
    @pytest.mark.parametrize("output_dtype", int_dtypes())
61
62
63
64
65
66
    def test_float_to_int(self, input_dtype, output_dtype):
        input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        if (input_dtype == torch.float32 and output_dtype in (torch.int32, torch.int64)) or (
67
            input_dtype == torch.float64 and output_dtype == torch.int64
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        ):
            with pytest.raises(RuntimeError):
                transform(input_image)
        else:
            output_image = transform(input_image)
            output_image_script = transform_script(input_image, output_dtype)

            torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

            actual_min, actual_max = output_image.tolist()
            desired_min, desired_max = 0, torch.iinfo(output_dtype).max

            assert actual_min == desired_min
            assert actual_max == desired_max

83
84
    @pytest.mark.parametrize("input_dtype", int_dtypes())
    @pytest.mark.parametrize("output_dtype", float_dtypes())
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    def test_int_to_float(self, input_dtype, output_dtype):
        input_image = torch.tensor((0, torch.iinfo(input_dtype).max), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0.0, 1.0

        assert abs(actual_min - desired_min) < 1e-7
        assert actual_min >= desired_min
        assert abs(actual_max - desired_max) < 1e-7
        assert actual_max <= desired_max

103
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(int_dtypes()))
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    def test_dtype_int_to_int(self, input_dtype, output_dtype):
        input_max = torch.iinfo(input_dtype).max
        input_image = torch.tensor((0, input_max), dtype=input_dtype)
        output_max = torch.iinfo(output_dtype).max

        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(
            output_image_script,
            output_image,
            rtol=0.0,
            atol=1e-6,
120
            msg=f"{output_image_script} vs {output_image}",
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        )

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0, output_max

        # see https://github.com/pytorch/vision/pull/2078#issuecomment-641036236 for details
        if input_max >= output_max:
            error_term = 0
        else:
            error_term = 1 - (torch.iinfo(output_dtype).max + 1) // (torch.iinfo(input_dtype).max + 1)

        assert actual_min == desired_min
        assert actual_max == (desired_max + error_term)

135
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(int_dtypes()))
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    def test_int_to_int_consistency(self, input_dtype, output_dtype):
        input_max = torch.iinfo(input_dtype).max
        input_image = torch.tensor((0, input_max), dtype=input_dtype)

        output_max = torch.iinfo(output_dtype).max
        if output_max <= input_max:
            return

        transform = transforms.ConvertImageDtype(output_dtype)
        inverse_transfrom = transforms.ConvertImageDtype(input_dtype)
        output_image = inverse_transfrom(transform(input_image))

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0, input_max

        assert actual_min == desired_min
        assert actual_max == desired_max
153

154

155
156
157
@pytest.mark.skipif(accimage is None, reason="accimage not available")
class TestAccImage:
    def test_accimage_to_tensor(self):
158
        trans = transforms.PILToTensor()
159

160
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
161
162
163
164
165
166
167
        output = trans(accimage.Image(GRACE_HOPPER))

        torch.testing.assert_close(output, expected_output)

    def test_accimage_pil_to_tensor(self):
        trans = transforms.PILToTensor()

168
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
169
170
171
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
172
        torch.testing.assert_close(output, expected_output)
173
174

    def test_accimage_resize(self):
175
176
        trans = transforms.Compose(
            [
177
                transforms.Resize(256, interpolation=_pil_constants.LINEAR),
178
179
                transforms.PILToTensor(),
                transforms.ConvertImageDtype(dtype=torch.float),
180
181
            ]
        )
182
183
184
185

        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

186
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
187
188
189
190
191
192
193
194
195
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
        assert np.abs((expected_output - output).mean()) < 1e-3
        assert (expected_output - output).var() < 1e-5
        # note the high absolute tolerance
        torch.testing.assert_close(output.numpy(), expected_output.numpy(), rtol=1e-5, atol=5e-2)

    def test_accimage_crop(self):
196
        trans = transforms.Compose(
197
            [transforms.CenterCrop(256), transforms.PILToTensor(), transforms.ConvertImageDtype(dtype=torch.float)]
198
        )
199
200
201
202

        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

203
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
204
205
206
207
208
209
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
        torch.testing.assert_close(output, expected_output)


210
class TestToTensor:
211
    @pytest.mark.parametrize("channels", [1, 3, 4])
212
213
214
    def test_to_tensor(self, channels):
        height, width = 4, 4
        trans = transforms.ToTensor()
215
        np_rng = np.random.RandomState(0)
216

217
218
219
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
220
        torch.testing.assert_close(output, input_data)
221

222
        ndarray = np_rng.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
223
224
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1)) / 255.0
225
        torch.testing.assert_close(output.numpy(), expected_output, check_dtype=False)
226

227
        ndarray = np_rng.rand(height, width, channels).astype(np.float32)
228
229
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1))
230
        torch.testing.assert_close(output.numpy(), expected_output, check_dtype=False)
231
232
233

        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
234
        img = transforms.ToPILImage()(input_data.mul(255)).convert("1")
235
        output = trans(img)
236
        torch.testing.assert_close(input_data, output, check_dtype=False)
237
238
239
240

    def test_to_tensor_errors(self):
        height, width = 4, 4
        trans = transforms.ToTensor()
241
        np_rng = np.random.RandomState(0)
242

243
        with pytest.raises(TypeError):
244
            trans(np_rng.rand(1, height, width).tolist())
245

246
        with pytest.raises(ValueError):
247
            trans(np_rng.rand(height))
248

249
        with pytest.raises(ValueError):
250
            trans(np_rng.rand(1, 1, height, width))
251

252
    @pytest.mark.parametrize("dtype", [torch.float16, torch.float, torch.double])
253
    def test_to_tensor_with_other_default_dtypes(self, dtype):
254
        np_rng = np.random.RandomState(0)
255
        current_def_dtype = torch.get_default_dtype()
256

257
        t = transforms.ToTensor()
258
        np_arr = np_rng.randint(0, 255, (32, 32, 3), dtype=np.uint8)
259
        img = Image.fromarray(np_arr)
260

261
262
263
        torch.set_default_dtype(dtype)
        res = t(img)
        assert res.dtype == dtype, f"{res.dtype} vs {dtype}"
264

265
        torch.set_default_dtype(current_def_dtype)
266

267
    @pytest.mark.parametrize("channels", [1, 3, 4])
268
269
270
    def test_pil_to_tensor(self, channels):
        height, width = 4, 4
        trans = transforms.PILToTensor()
271
        np_rng = np.random.RandomState(0)
272

273
274
275
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
276
        torch.testing.assert_close(input_data, output)
277

278
        input_data = np_rng.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
279
280
281
282
283
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
        expected_output = input_data.transpose((2, 0, 1))
        torch.testing.assert_close(output.numpy(), expected_output)

284
        input_data = torch.as_tensor(np_rng.rand(channels, height, width).astype(np.float32))
285
286
287
        img = transforms.ToPILImage()(input_data)  # CHW -> HWC and (* 255).byte()
        output = trans(img)  # HWC -> CHW
        expected_output = (input_data * 255).byte()
288
        torch.testing.assert_close(output, expected_output)
289

290
291
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
292
        img = transforms.ToPILImage()(input_data.mul(255)).convert("1")
293
        output = trans(img).view(torch.uint8).bool().to(torch.uint8)
294
        torch.testing.assert_close(input_data, output)
295

296
297
298
    def test_pil_to_tensor_errors(self):
        height, width = 4, 4
        trans = transforms.PILToTensor()
299
        np_rng = np.random.RandomState(0)
300

301
        with pytest.raises(TypeError):
302
            trans(np_rng.rand(1, height, width).tolist())
303

304
        with pytest.raises(TypeError):
305
            trans(np_rng.rand(1, height, width))
306
307


308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
def test_randomresized_params():
    height = random.randint(24, 32) * 2
    width = random.randint(24, 32) * 2
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    size = 100
    epsilon = 0.05
    min_scale = 0.25
    for _ in range(10):
        scale_min = max(round(random.random(), 2), min_scale)
        scale_range = (scale_min, scale_min + round(random.random(), 2))
        aspect_min = max(round(random.random(), 2), epsilon)
        aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
        randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range)
        i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
        aspect_ratio_obtained = w / h
325
326
327
328
        assert (
            min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained
            and aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon
        ) or aspect_ratio_obtained == 1.0
329
330
331
332
333
334
        assert isinstance(i, int)
        assert isinstance(j, int)
        assert isinstance(h, int)
        assert isinstance(w, int)


335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
@pytest.mark.parametrize(
    "height, width",
    [
        # height, width
        # square image
        (28, 28),
        (27, 27),
        # rectangular image: h < w
        (28, 34),
        (29, 35),
        # rectangular image: h > w
        (34, 28),
        (35, 29),
    ],
)
@pytest.mark.parametrize(
    "osize",
    [
        # single integer
        22,
        27,
        28,
        36,
        # single integer in tuple/list
        [
            22,
        ],
        (27,),
    ],
)
@pytest.mark.parametrize("max_size", (None, 37, 1000))
366
367
368
369
370
371
def test_resize(height, width, osize, max_size):
    img = Image.new("RGB", size=(width, height), color=127)

    t = transforms.Resize(osize, max_size=max_size)
    result = t(img)

372
    msg = f"{height}, {width} - {osize} - {max_size}"
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    osize = osize[0] if isinstance(osize, (list, tuple)) else osize
    # If size is an int, smaller edge of the image will be matched to this number.
    # i.e, if height > width, then image will be rescaled to (size * height / width, size).
    if height < width:
        exp_w, exp_h = (int(osize * width / height), osize)  # (w, h)
        if max_size is not None and max_size < exp_w:
            exp_w, exp_h = max_size, int(max_size * exp_h / exp_w)
        assert result.size == (exp_w, exp_h), msg
    elif width < height:
        exp_w, exp_h = (osize, int(osize * height / width))  # (w, h)
        if max_size is not None and max_size < exp_h:
            exp_w, exp_h = int(max_size * exp_w / exp_h), max_size
        assert result.size == (exp_w, exp_h), msg
    else:
        exp_w, exp_h = (osize, osize)  # (w, h)
        if max_size is not None and max_size < osize:
            exp_w, exp_h = max_size, max_size
        assert result.size == (exp_w, exp_h), msg


393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
@pytest.mark.parametrize(
    "height, width",
    [
        # height, width
        # square image
        (28, 28),
        (27, 27),
        # rectangular image: h < w
        (28, 34),
        (29, 35),
        # rectangular image: h > w
        (34, 28),
        (35, 29),
    ],
)
@pytest.mark.parametrize(
    "osize",
    [
        # two integers sequence output
        [22, 22],
        [22, 28],
        [22, 36],
        [27, 22],
        [36, 22],
        [28, 28],
        [28, 37],
        [37, 27],
        [37, 37],
    ],
)
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
def test_resize_sequence_output(height, width, osize):
    img = Image.new("RGB", size=(width, height), color=127)
    oheight, owidth = osize

    t = transforms.Resize(osize)
    result = t(img)

    assert (owidth, oheight) == result.size


def test_resize_antialias_error():
    osize = [37, 37]
    img = Image.new("RGB", size=(35, 29), color=127)

    with pytest.warns(UserWarning, match=r"Anti-alias option is always applied for PIL Image input"):
        t = transforms.Resize(osize, antialias=False)
        t(img)


442
443
444
445
446
447
448
449
450
451
452
453
454
@pytest.mark.parametrize("height, width", ((32, 64), (64, 32)))
def test_resize_size_equals_small_edge_size(height, width):
    # Non-regression test for https://github.com/pytorch/vision/issues/5405
    # max_size used to be ignored if size == small_edge_size
    max_size = 40
    img = Image.new("RGB", size=(width, height), color=127)

    small_edge = min(height, width)
    t = transforms.Resize(small_edge, max_size=max_size)
    result = t(img)
    assert max(result.size) == max_size


455
class TestPad:
456
457
    @pytest.mark.parametrize("fill", [85, 85.0])
    def test_pad(self, fill):
458
459
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
460
        img = torch.ones(3, height, width, dtype=torch.uint8)
461
        padding = random.randint(1, 20)
462
463
464
465
        result = transforms.Compose(
            [
                transforms.ToPILImage(),
                transforms.Pad(padding, fill=fill),
466
                transforms.PILToTensor(),
467
468
            ]
        )(img)
469
470
471
472
473
474
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
        # check that all elements in the padded region correspond
        # to the pad value
        h_padded = result[:, :padding, :]
        w_padded = result[:, :, :padding]
475
476
        torch.testing.assert_close(h_padded, torch.full_like(h_padded, fill_value=fill), rtol=0.0, atol=0.0)
        torch.testing.assert_close(w_padded, torch.full_like(w_padded, fill_value=fill), rtol=0.0, atol=0.0)
477
        pytest.raises(ValueError, transforms.Pad(padding, fill=(1, 2)), transforms.ToPILImage()(img))
478
479
480
481
482
483

    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

484
        padding = tuple(random.randint(1, 20) for _ in range(2))
485
486
487
        output = transforms.Pad(padding)(img)
        assert output.size == (width + padding[0] * 2, height + padding[1] * 2)

488
        padding = [random.randint(1, 20) for _ in range(4)]
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        output = transforms.Pad(padding)(img)
        assert output.size[0] == width + padding[0] + padding[2]
        assert output.size[1] == height + padding[1] + padding[3]

        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
        img = torch.zeros(3, 27, 27).byte()
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
504
        edge_padded_img = F.pad(img, 3, padding_mode="edge")
505
506
507
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
508
        assert_equal(edge_middle_slice, np.asarray([200, 200, 200, 200, 1, 0], dtype=np.uint8))
509
        assert transforms.PILToTensor()(edge_padded_img).size() == (3, 35, 35)
510
511

        # Pad 3 to left/right, 2 to top/bottom
512
        reflect_padded_img = F.pad(img, (3, 2), padding_mode="reflect")
513
514
515
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
516
        assert_equal(reflect_middle_slice, np.asarray([0, 0, 1, 200, 1, 0], dtype=np.uint8))
517
        assert transforms.PILToTensor()(reflect_padded_img).size() == (3, 33, 35)
518
519

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
520
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode="symmetric")
521
522
523
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
524
        assert_equal(symmetric_middle_slice, np.asarray([0, 1, 200, 200, 1, 0], dtype=np.uint8))
525
        assert transforms.PILToTensor()(symmetric_padded_img).size() == (3, 32, 34)
526
527
528
529

        # Check negative padding explicitly for symmetric case, since it is not
        # implemented for tensor case to compare to
        # Crop 1 to left, pad 2 to top, pad 3 to right, crop 3 to bottom
530
        symmetric_padded_img_neg = F.pad(img, (-1, 2, 3, -3), padding_mode="symmetric")
531
532
        symmetric_neg_middle_left = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][:3]
        symmetric_neg_middle_right = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][-4:]
533
534
        assert_equal(symmetric_neg_middle_left, np.asarray([1, 0, 0], dtype=np.uint8))
        assert_equal(symmetric_neg_middle_right, np.asarray([200, 200, 0, 0], dtype=np.uint8))
535
        assert transforms.PILToTensor()(symmetric_padded_img_neg).size() == (3, 28, 31)
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

    def test_pad_raises_with_invalid_pad_sequence_len(self):
        with pytest.raises(ValueError):
            transforms.Pad(())

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3))

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

    def test_pad_with_mode_F_images(self):
        pad = 2
        transform = transforms.Pad(pad)

        img = Image.new("F", (10, 10))
        padded_img = transform(img)
553
        assert_equal(padded_img.size, [edge_size + 2 * pad for edge_size in img.size])
554
555


556
@pytest.mark.parametrize(
557
    "fn, trans, kwargs",
558
559
560
561
562
563
564
    [
        (F.invert, transforms.RandomInvert, {}),
        (F.posterize, transforms.RandomPosterize, {"bits": 4}),
        (F.solarize, transforms.RandomSolarize, {"threshold": 192}),
        (F.adjust_sharpness, transforms.RandomAdjustSharpness, {"sharpness_factor": 2.0}),
        (F.autocontrast, transforms.RandomAutocontrast, {}),
        (F.equalize, transforms.RandomEqualize, {}),
565
566
567
        (F.vflip, transforms.RandomVerticalFlip, {}),
        (F.hflip, transforms.RandomHorizontalFlip, {}),
        (partial(F.to_grayscale, num_output_channels=3), transforms.RandomGrayscale, {}),
568
569
    ],
)
570
571
572
573
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("p", (0, 1))
def test_randomness(fn, trans, kwargs, seed, p):
    torch.manual_seed(seed)
574
575
    img = transforms.ToPILImage()(torch.rand(3, 16, 18))

576
577
    expected_transformed_img = fn(img, **kwargs)
    randomly_transformed_img = trans(p=p, **kwargs)(img)
578

579
580
581
582
    if p == 0:
        assert randomly_transformed_img == img
    elif p == 1:
        assert randomly_transformed_img == expected_transformed_img
583

584
    trans(**kwargs).__repr__()
585
586


587
588
589
590
591
592
593
594
595
def test_autocontrast_equal_minmax():
    img_tensor = torch.tensor([[[10]], [[128]], [[245]]], dtype=torch.uint8).expand(3, 32, 32)
    img_pil = F.to_pil_image(img_tensor)

    img_tensor = F.autocontrast(img_tensor)
    img_pil = F.autocontrast(img_pil)
    torch.testing.assert_close(img_tensor, F.pil_to_tensor(img_pil))


596
597
598
599
class TestToPil:
    def _get_1_channel_tensor_various_types():
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
        expected_output = img_data_float.mul(255).int().float().div(255).numpy()
600
        yield img_data_float, expected_output, "L"
601

602
603
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        expected_output = img_data_byte.float().div(255.0).numpy()
604
        yield img_data_byte, expected_output, "L"
605

606
607
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        expected_output = img_data_short.numpy()
608
        yield img_data_short, expected_output, "I;16"
609

610
611
        img_data_int = torch.IntTensor(1, 4, 4).random_()
        expected_output = img_data_int.numpy()
612
        yield img_data_int, expected_output, "I"
613

614
615
616
    def _get_2d_tensor_various_types():
        img_data_float = torch.Tensor(4, 4).uniform_()
        expected_output = img_data_float.mul(255).int().float().div(255).numpy()
617
        yield img_data_float, expected_output, "L"
618

619
620
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        expected_output = img_data_byte.float().div(255.0).numpy()
621
        yield img_data_byte, expected_output, "L"
622

623
624
        img_data_short = torch.ShortTensor(4, 4).random_()
        expected_output = img_data_short.numpy()
625
        yield img_data_short, expected_output, "I;16"
626

627
628
        img_data_int = torch.IntTensor(4, 4).random_()
        expected_output = img_data_int.numpy()
629
        yield img_data_int, expected_output, "I"
630

631
632
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize("img_data, expected_output, expected_mode", _get_1_channel_tensor_various_types())
633
634
635
    def test_1_channel_tensor_to_pil_image(self, with_mode, img_data, expected_output, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        to_tensor = transforms.ToTensor()
636

637
        img = transform(img_data)
638
        assert img.mode == expected_mode
639
        torch.testing.assert_close(expected_output, to_tensor(img).numpy())
640

641
642
643
    def test_1_channel_float_tensor_to_pil_image(self):
        img_data = torch.Tensor(1, 4, 4).uniform_()
        # 'F' mode for torch.FloatTensor
644
645
        img_F_mode = transforms.ToPILImage(mode="F")(img_data)
        assert img_F_mode.mode == "F"
646
        torch.testing.assert_close(
647
            np.array(Image.fromarray(img_data.squeeze(0).numpy(), mode="F")), np.array(img_F_mode)
648
        )
649

650
651
652
653
654
655
656
657
658
659
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize(
        "img_data, expected_mode",
        [
            (torch.Tensor(4, 4, 1).uniform_().numpy(), "F"),
            (torch.ByteTensor(4, 4, 1).random_(0, 255).numpy(), "L"),
            (torch.ShortTensor(4, 4, 1).random_().numpy(), "I;16"),
            (torch.IntTensor(4, 4, 1).random_().numpy(), "I"),
        ],
    )
660
661
662
    def test_1_channel_ndarray_to_pil_image(self, with_mode, img_data, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        img = transform(img_data)
663
        assert img.mode == expected_mode
664
665
666
        # note: we explicitly convert img's dtype because pytorch doesn't support uint16
        # and otherwise assert_close wouldn't be able to construct a tensor from the uint16 array
        torch.testing.assert_close(img_data[:, :, 0], np.asarray(img).astype(img_data.dtype))
667

668
    @pytest.mark.parametrize("expected_mode", [None, "LA"])
669
670
    def test_2_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
671

672
673
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
674
            assert img.mode == "LA"  # default should assume LA
675
676
677
678
679
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(2):
680
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
681
682
683
684
685
686
687

    def test_2_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        transforms.ToPILImage().__repr__()

        # should raise if we try a mode for 4 or 1 or 3 channel images
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
688
            transforms.ToPILImage(mode="RGBA")(img_data)
689
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
690
            transforms.ToPILImage(mode="P")(img_data)
691
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
692
            transforms.ToPILImage(mode="RGB")(img_data)
693

694
    @pytest.mark.parametrize("expected_mode", [None, "LA"])
695
696
697
698
699
    def test_2_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
700
            assert img.mode == "LA"  # default should assume LA
701
702
703
704
705
706
707
708
709
710
711
712
713
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode

        split = img.split()
        for i in range(2):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_2_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(2, 4, 4).uniform_()

        # should raise if we try a mode for 4 or 1 or 3 channel images
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
714
            transforms.ToPILImage(mode="RGBA")(img_data)
715
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
716
            transforms.ToPILImage(mode="P")(img_data)
717
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
718
            transforms.ToPILImage(mode="RGB")(img_data)
719

720
721
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize("img_data, expected_output, expected_mode", _get_2d_tensor_various_types())
722
723
724
725
726
    def test_2d_tensor_to_pil_image(self, with_mode, img_data, expected_output, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        to_tensor = transforms.ToTensor()

        img = transform(img_data)
727
        assert img.mode == expected_mode
728
729
        torch.testing.assert_close(expected_output, to_tensor(img).numpy()[0])

730
731
732
733
734
735
736
737
738
739
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize(
        "img_data, expected_mode",
        [
            (torch.Tensor(4, 4).uniform_().numpy(), "F"),
            (torch.ByteTensor(4, 4).random_(0, 255).numpy(), "L"),
            (torch.ShortTensor(4, 4).random_().numpy(), "I;16"),
            (torch.IntTensor(4, 4).random_().numpy(), "I"),
        ],
    )
740
741
742
    def test_2d_ndarray_to_pil_image(self, with_mode, img_data, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        img = transform(img_data)
743
        assert img.mode == expected_mode
744
        np.testing.assert_allclose(img_data, img)
745

746
    @pytest.mark.parametrize("expected_mode", [None, "RGB", "HSV", "YCbCr"])
747
748
749
    def test_3_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
750

751
752
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
753
            assert img.mode == "RGB"  # default should assume RGB
754
755
756
757
758
759
760
761
762
763
764
765
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(3):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_3_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(3, 4, 4).uniform_()
        error_message_3d = r"Only modes \['RGB', 'YCbCr', 'HSV'\] are supported for 3D inputs"
        # should raise if we try a mode for 4 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_3d):
766
            transforms.ToPILImage(mode="RGBA")(img_data)
767
        with pytest.raises(ValueError, match=error_message_3d):
768
            transforms.ToPILImage(mode="P")(img_data)
769
        with pytest.raises(ValueError, match=error_message_3d):
770
            transforms.ToPILImage(mode="LA")(img_data)
771

772
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
773
774
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

775
    @pytest.mark.parametrize("expected_mode", [None, "RGB", "HSV", "YCbCr"])
776
777
778
779
780
    def test_3_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
781
            assert img.mode == "RGB"  # default should assume RGB
782
783
784
785
786
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(3):
787
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
788
789
790
791
792
793
794
795
796
797

    def test_3_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()

        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

        error_message_3d = r"Only modes \['RGB', 'YCbCr', 'HSV'\] are supported for 3D inputs"
        # should raise if we try a mode for 4 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_3d):
798
            transforms.ToPILImage(mode="RGBA")(img_data)
799
        with pytest.raises(ValueError, match=error_message_3d):
800
            transforms.ToPILImage(mode="P")(img_data)
801
        with pytest.raises(ValueError, match=error_message_3d):
802
            transforms.ToPILImage(mode="LA")(img_data)
803

804
    @pytest.mark.parametrize("expected_mode", [None, "RGBA", "CMYK", "RGBX"])
805
806
807
808
809
810
    def test_4_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(4, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
811
            assert img.mode == "RGBA"  # default should assume RGBA
812
813
814
815
816
817
818
819
820
821
822
823
824
825
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode

        split = img.split()
        for i in range(4):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_4_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(4, 4, 4).uniform_()

        error_message_4d = r"Only modes \['RGBA', 'CMYK', 'RGBX'\] are supported for 4D inputs"
        # should raise if we try a mode for 3 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_4d):
826
            transforms.ToPILImage(mode="RGB")(img_data)
827
        with pytest.raises(ValueError, match=error_message_4d):
828
            transforms.ToPILImage(mode="P")(img_data)
829
        with pytest.raises(ValueError, match=error_message_4d):
830
            transforms.ToPILImage(mode="LA")(img_data)
831

832
    @pytest.mark.parametrize("expected_mode", [None, "RGBA", "CMYK", "RGBX"])
833
834
835
836
837
    def test_4_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
838
            assert img.mode == "RGBA"  # default should assume RGBA
839
840
841
842
843
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(4):
844
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
845
846
847
848
849
850
851

    def test_4_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()

        error_message_4d = r"Only modes \['RGBA', 'CMYK', 'RGBX'\] are supported for 4D inputs"
        # should raise if we try a mode for 3 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_4d):
852
            transforms.ToPILImage(mode="RGB")(img_data)
853
        with pytest.raises(ValueError, match=error_message_4d):
854
            transforms.ToPILImage(mode="P")(img_data)
855
        with pytest.raises(ValueError, match=error_message_4d):
856
            transforms.ToPILImage(mode="LA")(img_data)
857
858
859

    def test_ndarray_bad_types_to_pil_image(self):
        trans = transforms.ToPILImage()
860
        reg_msg = r"Input type \w+ is not supported"
861
862
863
864
865
866
867
868
869
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.int64))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.uint16))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.uint32))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.float64))

870
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
871
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))
872
        with pytest.raises(ValueError, match=r"pic should not have > 4 channels. Got \d+ channels."):
873
874
875
            transforms.ToPILImage()(np.ones([4, 4, 6]))

    def test_tensor_bad_types_to_pil_image(self):
876
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
877
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))
878
        with pytest.raises(ValueError, match=r"pic should not have > 4 channels. Got \d+ channels."):
879
            transforms.ToPILImage()(torch.ones(6, 4, 4))
880
881


882
883
884
885
def test_adjust_brightness():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
886
    x_pil = Image.fromarray(x_np, mode="RGB")
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911

    # test 0
    y_pil = F.adjust_brightness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_brightness(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_brightness(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_contrast():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
912
    x_pil = Image.fromarray(x_np, mode="RGB")
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933

    # test 0
    y_pil = F.adjust_contrast(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_contrast(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_contrast(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


934
@pytest.mark.skipif(Image.__version__ >= "7", reason="Temporarily disabled")
935
936
937
938
def test_adjust_saturation():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
939
    x_pil = Image.fromarray(x_np, mode="RGB")
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964

    # test 0
    y_pil = F.adjust_saturation(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_saturation(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_saturation(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_hue():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
965
    x_pil = Image.fromarray(x_np, mode="RGB")
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995

    with pytest.raises(ValueError):
        F.adjust_hue(x_pil, -0.7)
        F.adjust_hue(x_pil, 1)

    # test 0: almost same as x_data but not exact.
    # probably because hsv <-> rgb floating point ops
    y_pil = F.adjust_hue(x_pil, 0)
    y_np = np.array(y_pil)
    y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 1
    y_pil = F.adjust_hue(x_pil, 0.25)
    y_np = np.array(y_pil)
    y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_hue(x_pil, -0.25)
    y_np = np.array(y_pil)
    y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_sharpness():
    x_shape = [4, 4, 3]
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
    x_data = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        0,
        0,
        65,
        108,
        101,
        120,
        97,
        110,
        100,
        101,
        114,
        32,
        86,
        114,
        121,
        110,
        105,
        111,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1046
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1047
    x_pil = Image.fromarray(x_np, mode="RGB")
1048
1049
1050
1051
1052
1053
1054
1055
1056

    # test 0
    y_pil = F.adjust_sharpness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_sharpness(x_pil, 0.5)
    y_np = np.array(y_pil)
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
    y_ans = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        30,
        30,
        74,
        103,
        96,
        114,
        97,
        110,
        100,
        101,
        114,
        32,
        81,
        103,
        108,
        102,
        101,
        107,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1107
1108
1109
1110
1111
1112
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil)
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
    y_ans = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        0,
        0,
        46,
        118,
        111,
        132,
        97,
        110,
        100,
        101,
        114,
        32,
        95,
        135,
        146,
        126,
        112,
        119,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1163
1164
1165
1166
1167
1168
1169
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 3
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1170
    x_pil = Image.fromarray(x_np, mode="RGB")
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
    x_th = torch.tensor(x_np.transpose(2, 0, 1))
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil).transpose(2, 0, 1)
    y_th = F.adjust_sharpness(x_th, 2)
    torch.testing.assert_close(y_np, y_th.numpy())


def test_adjust_gamma():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1182
    x_pil = Image.fromarray(x_np, mode="RGB")
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207

    # test 0
    y_pil = F.adjust_gamma(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_gamma(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 35, 57, 117, 186, 241, 97, 45, 245, 152, 255, 16]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_gamma(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 11, 71, 201, 5, 0, 215, 31, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjusts_L_mode():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1208
    x_rgb = Image.fromarray(x_np, mode="RGB")
1209

1210
1211
1212
1213
1214
1215
1216
    x_l = x_rgb.convert("L")
    assert F.adjust_brightness(x_l, 2).mode == "L"
    assert F.adjust_saturation(x_l, 2).mode == "L"
    assert F.adjust_contrast(x_l, 2).mode == "L"
    assert F.adjust_hue(x_l, 0.4).mode == "L"
    assert F.adjust_sharpness(x_l, 2).mode == "L"
    assert F.adjust_gamma(x_l, 0.5).mode == "L"
1217
1218


1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
def test_rotate():
    x = np.zeros((100, 100, 3), dtype=np.uint8)
    x[40, 40] = [255, 255, 255]

    with pytest.raises(TypeError, match=r"img should be PIL Image"):
        F.rotate(x, 10)

    img = F.to_pil_image(x)

    result = F.rotate(img, 45)
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [49, 50])
    assert all(x in c for x in [36])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, expand=True)
    assert result.size == (142, 142)
    r, c, ch = np.where(result)
    assert all(x in r for x in [70, 71])
    assert all(x in c for x in [57])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, center=(40, 40))
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [40])
    assert all(x in c for x in [40])
    assert all(x in ch for x in [0, 1, 2])

    result_a = F.rotate(img, 90)
    result_b = F.rotate(img, -270)

    assert_equal(np.array(result_a), np.array(result_b))


1255
@pytest.mark.parametrize("mode", ["L", "RGB", "F"])
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
def test_rotate_fill(mode):
    img = F.to_pil_image(np.ones((100, 100, 3), dtype=np.uint8) * 255, "RGB")

    num_bands = len(mode)
    wrong_num_bands = num_bands + 1
    fill = 127

    img_conv = img.convert(mode)
    img_rot = F.rotate(img_conv, 45.0, fill=fill)
    pixel = img_rot.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    with pytest.raises(ValueError):
        F.rotate(img_conv, 45.0, fill=tuple([fill] * wrong_num_bands))


def test_gaussian_blur_asserts():
    np_img = np.ones((100, 100, 3), dtype=np.uint8) * 255
    img = F.to_pil_image(np_img, "RGB")

    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3])
    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3, 3, 3])
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur([3, 3, 3])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [4, 4])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([4, 4])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [-3, -3])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([-3, -3])

    with pytest.raises(ValueError, match=r"If sigma is a sequence, its length should be 2"):
        F.gaussian_blur(img, 3, [1, 1, 1])
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, [1, 1, 1])

    with pytest.raises(ValueError, match=r"sigma should have positive values"):
        F.gaussian_blur(img, 3, -1.0)
    with pytest.raises(ValueError, match=r"If sigma is a single number, it must be positive"):
        transforms.GaussianBlur(3, -1.0)

    with pytest.raises(TypeError, match=r"kernel_size should be int or a sequence of integers"):
        F.gaussian_blur(img, "kernel_size_string")
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur("kernel_size_string")

    with pytest.raises(TypeError, match=r"sigma should be either float or sequence of floats"):
        F.gaussian_blur(img, 3, "sigma_string")
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, "sigma_string")


def test_lambda():
    trans = transforms.Lambda(lambda x: x.add(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, torch.add(x, 10))

    trans = transforms.Lambda(lambda x: x.add_(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, x)

    # Checking if Lambda can be printed as string
    trans.__repr__()


1332
1333
1334
1335
1336
1337
def test_to_grayscale():
    """Unit tests for grayscale transform"""

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1338
1339
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1340
1341
1342
1343
1344
1345
1346
    gray_np = np.array(x_pil_2)

    # Test Set: Grayscale an image with desired number of output channels
    # Case 1: RGB -> 1 channel grayscale
    trans1 = transforms.Grayscale(num_output_channels=1)
    gray_pil_1 = trans1(x_pil)
    gray_np_1 = np.array(gray_pil_1)
1347
1348
    assert gray_pil_1.mode == "L", "mode should be L"
    assert gray_np_1.shape == tuple(x_shape[0:2]), "should be 1 channel"
1349
1350
1351
1352
1353
1354
    assert_equal(gray_np, gray_np_1)

    # Case 2: RGB -> 3 channel grayscale
    trans2 = transforms.Grayscale(num_output_channels=3)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
1355
1356
    assert gray_pil_2.mode == "RGB", "mode should be RGB"
    assert gray_np_2.shape == tuple(x_shape), "should be 3 channel"
1357
1358
    assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
    assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
1359
    assert_equal(gray_np, gray_np_2[:, :, 0])
1360
1361
1362
1363
1364

    # Case 3: 1 channel grayscale -> 1 channel grayscale
    trans3 = transforms.Grayscale(num_output_channels=1)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
1365
1366
    assert gray_pil_3.mode == "L", "mode should be L"
    assert gray_np_3.shape == tuple(x_shape[0:2]), "should be 1 channel"
1367
1368
1369
1370
1371
1372
    assert_equal(gray_np, gray_np_3)

    # Case 4: 1 channel grayscale -> 3 channel grayscale
    trans4 = transforms.Grayscale(num_output_channels=3)
    gray_pil_4 = trans4(x_pil_2)
    gray_np_4 = np.array(gray_pil_4)
1373
1374
    assert gray_pil_4.mode == "RGB", "mode should be RGB"
    assert gray_np_4.shape == tuple(x_shape), "should be 3 channel"
1375
1376
    assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
    assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
1377
    assert_equal(gray_np, gray_np_4[:, :, 0])
1378
1379
1380
1381
1382

    # Checking if Grayscale can be printed as string
    trans4.__repr__()


1383
1384
1385
1386
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("p", (0, 1))
def test_random_apply(p, seed):
    torch.manual_seed(seed)
1387
    random_apply_transform = transforms.RandomApply([transforms.RandomRotation((45, 50))], p=p)
1388
1389
1390
1391
1392
1393
    img = transforms.ToPILImage()(torch.rand(3, 30, 40))
    out = random_apply_transform(img)
    if p == 0:
        assert out == img
    elif p == 1:
        assert out != img
1394

1395
1396
    # Checking if RandomApply can be printed as string
    random_apply_transform.__repr__()
1397
1398


1399
1400
1401
1402
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("proba_passthrough", (0, 1))
def test_random_choice(proba_passthrough, seed):
    random.seed(seed)  # RandomChoice relies on python builtin random.choice, not pytorch
1403

1404
    random_choice_transform = transforms.RandomChoice(
1405
        [
1406
            lambda x: x,  # passthrough
1407
            transforms.RandomRotation((45, 50)),
1408
        ],
1409
        p=[proba_passthrough, 1 - proba_passthrough],
1410
1411
    )

1412
1413
1414
1415
1416
1417
    img = transforms.ToPILImage()(torch.rand(3, 30, 40))
    out = random_choice_transform(img)
    if proba_passthrough == 1:
        assert out == img
    elif proba_passthrough == 0:
        assert out != img
1418
1419
1420
1421
1422

    # Checking if RandomChoice can be printed as string
    random_choice_transform.__repr__()


1423
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1424
1425
1426
def test_random_order():
    random_state = random.getstate()
    random.seed(42)
1427
    random_order_transform = transforms.RandomOrder([transforms.Resize(20), transforms.CenterCrop(10)])
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
    img = transforms.ToPILImage()(torch.rand(3, 25, 25))
    num_samples = 250
    num_normal_order = 0
    resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
    for _ in range(num_samples):
        out = random_order_transform(img)
        if out == resize_crop_out:
            num_normal_order += 1

    p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomOrder can be printed as string
    random_order_transform.__repr__()


1445
1446
1447
1448
1449
1450
1451
1452
def test_linear_transformation():
    num_samples = 1000
    x = torch.randn(num_samples, 3, 10, 10)
    flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
    # compute principal components
    sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
    u, s, _ = np.linalg.svd(sigma.numpy())
    zca_epsilon = 1e-10  # avoid division by 0
1453
    d = torch.Tensor(np.diag(1.0 / np.sqrt(s + zca_epsilon)))
1454
1455
    u = torch.Tensor(u)
    principal_components = torch.mm(torch.mm(u, d), u.t())
1456
    mean_vector = torch.sum(flat_x, dim=0) / flat_x.size(0)
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
    # initialize whitening matrix
    whitening = transforms.LinearTransformation(principal_components, mean_vector)
    # estimate covariance and mean using weak law of large number
    num_features = flat_x.size(1)
    cov = 0.0
    mean = 0.0
    for i in x:
        xwhite = whitening(i)
        xwhite = xwhite.view(1, -1).numpy()
        cov += np.dot(xwhite, xwhite.T) / num_features
        mean += np.sum(xwhite) / num_features
    # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
1469
1470
1471
1472
1473
1474
    torch.testing.assert_close(
        cov / num_samples, np.identity(1), rtol=2e-3, atol=1e-8, check_dtype=False, msg="cov not close to 1"
    )
    torch.testing.assert_close(
        mean / num_samples, 0, rtol=1e-3, atol=1e-8, check_dtype=False, msg="mean not close to 0"
    )
1475
1476
1477
1478
1479

    # Checking if LinearTransformation can be printed as string
    whitening.__repr__()


1480
@pytest.mark.parametrize("dtype", int_dtypes())
1481
1482
1483
1484
1485
1486
1487
1488
1489
def test_max_value(dtype):

    assert F_t._max_value(dtype) == torch.iinfo(dtype).max
    # remove float testing as it can lead to errors such as
    # runtime error: 5.7896e+76 is outside the range of representable values of type 'float'
    # for dtype in float_dtypes():
    # self.assertGreater(F_t._max_value(dtype), torch.finfo(dtype).max)


1490
1491
1492
1493
1494
1495
1496
1497
1498
@pytest.mark.xfail(
    reason="torch.iinfo() is not supported by torchscript. See https://github.com/pytorch/pytorch/issues/41492."
)
def test_max_value_iinfo():
    @torch.jit.script
    def max_value(image: torch.Tensor) -> int:
        return 1 if image.is_floating_point() else torch.iinfo(image.dtype).max


1499
1500
@pytest.mark.parametrize("should_vflip", [True, False])
@pytest.mark.parametrize("single_dim", [True, False])
1501
1502
1503
1504
1505
1506
1507
1508
1509
def test_ten_crop(should_vflip, single_dim):
    to_pil_image = transforms.ToPILImage()
    h = random.randint(5, 25)
    w = random.randint(5, 25)
    crop_h = random.randint(1, h)
    crop_w = random.randint(1, w)
    if single_dim:
        crop_h = min(crop_h, crop_w)
        crop_w = crop_h
1510
        transform = transforms.TenCrop(crop_h, vertical_flip=should_vflip)
1511
1512
        five_crop = transforms.FiveCrop(crop_h)
    else:
1513
        transform = transforms.TenCrop((crop_h, crop_w), vertical_flip=should_vflip)
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
        five_crop = transforms.FiveCrop((crop_h, crop_w))

    img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
    results = transform(img)
    expected_output = five_crop(img)

    # Checking if FiveCrop and TenCrop can be printed as string
    transform.__repr__()
    five_crop.__repr__()

    if should_vflip:
vfdev's avatar
vfdev committed
1525
        vflipped_img = img.transpose(_pil_constants.FLIP_TOP_BOTTOM)
1526
1527
        expected_output += five_crop(vflipped_img)
    else:
vfdev's avatar
vfdev committed
1528
        hflipped_img = img.transpose(_pil_constants.FLIP_LEFT_RIGHT)
1529
1530
1531
1532
1533
1534
        expected_output += five_crop(hflipped_img)

    assert len(results) == 10
    assert results == expected_output


1535
@pytest.mark.parametrize("single_dim", [True, False])
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
def test_five_crop(single_dim):
    to_pil_image = transforms.ToPILImage()
    h = random.randint(5, 25)
    w = random.randint(5, 25)
    crop_h = random.randint(1, h)
    crop_w = random.randint(1, w)
    if single_dim:
        crop_h = min(crop_h, crop_w)
        crop_w = crop_h
        transform = transforms.FiveCrop(crop_h)
    else:
        transform = transforms.FiveCrop((crop_h, crop_w))

    img = torch.FloatTensor(3, h, w).uniform_()

    results = transform(to_pil_image(img))

    assert len(results) == 5
    for crop in results:
        assert crop.size == (crop_w, crop_h)

    to_pil_image = transforms.ToPILImage()
    tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
1559
1560
1561
    tr = to_pil_image(img[:, 0:crop_h, w - crop_w :])
    bl = to_pil_image(img[:, h - crop_h :, 0:crop_w])
    br = to_pil_image(img[:, h - crop_h :, w - crop_w :])
1562
1563
1564
1565
1566
    center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
    expected_output = (tl, tr, bl, br, center)
    assert results == expected_output


1567
1568
1569
@pytest.mark.parametrize("policy", transforms.AutoAugmentPolicy)
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("grayscale", [True, False])
1570
def test_autoaugment(policy, fill, grayscale):
1571
1572
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1573
1574
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1575
1576
1577
1578
1579
1580
    transform = transforms.AutoAugment(policy=policy, fill=fill)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1581
1582
1583
1584
@pytest.mark.parametrize("num_ops", [1, 2, 3])
@pytest.mark.parametrize("magnitude", [7, 9, 11])
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("grayscale", [True, False])
1585
def test_randaugment(num_ops, magnitude, fill, grayscale):
1586
1587
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1588
1589
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1590
1591
1592
1593
1594
1595
    transform = transforms.RandAugment(num_ops=num_ops, magnitude=magnitude, fill=fill)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1596
1597
1598
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("num_magnitude_bins", [10, 13, 30])
@pytest.mark.parametrize("grayscale", [True, False])
1599
def test_trivialaugmentwide(fill, num_magnitude_bins, grayscale):
1600
1601
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1602
1603
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1604
1605
1606
1607
1608
1609
    transform = transforms.TrivialAugmentWide(fill=fill, num_magnitude_bins=num_magnitude_bins)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("severity", [1, 10])
@pytest.mark.parametrize("mixture_width", [1, 2])
@pytest.mark.parametrize("chain_depth", [-1, 2])
@pytest.mark.parametrize("all_ops", [True, False])
@pytest.mark.parametrize("grayscale", [True, False])
def test_augmix(fill, severity, mixture_width, chain_depth, all_ops, grayscale):
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
    transform = transforms.AugMix(
        fill=fill, severity=severity, mixture_width=mixture_width, chain_depth=chain_depth, all_ops=all_ops
    )
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1629
1630
1631
1632
1633
def test_random_crop():
    height = random.randint(10, 32) * 2
    width = random.randint(10, 32) * 2
    oheight = random.randint(5, (height - 2) / 2) * 2
    owidth = random.randint(5, (width - 2) / 2) * 2
1634
    img = torch.ones(3, height, width, dtype=torch.uint8)
1635
1636
1637
1638
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
1639
            transforms.PILToTensor(),
1640
1641
        ]
    )(img)
1642
1643
1644
1645
    assert result.size(1) == oheight
    assert result.size(2) == owidth

    padding = random.randint(1, 20)
1646
1647
1648
1649
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
1650
            transforms.PILToTensor(),
1651
1652
        ]
    )(img)
1653
1654
1655
    assert result.size(1) == oheight
    assert result.size(2) == owidth

1656
    result = transforms.Compose(
1657
        [transforms.ToPILImage(), transforms.RandomCrop((height, width)), transforms.PILToTensor()]
1658
    )(img)
1659
1660
1661
1662
    assert result.size(1) == height
    assert result.size(2) == width
    torch.testing.assert_close(result, img)

1663
1664
1665
1666
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
1667
            transforms.PILToTensor(),
1668
1669
        ]
    )(img)
1670
1671
1672
    assert result.size(1) == height + 1
    assert result.size(2) == width + 1

1673
    t = transforms.RandomCrop(33)
1674
    img = torch.ones(3, 32, 32)
Nicolas Hug's avatar
Nicolas Hug committed
1675
    with pytest.raises(ValueError, match=r"Required crop size .+ is larger than input image size .+"):
1676
1677
1678
        t(img)


1679
1680
1681
1682
1683
1684
def test_center_crop():
    height = random.randint(10, 32) * 2
    width = random.randint(10, 32) * 2
    oheight = random.randint(5, (height - 2) / 2) * 2
    owidth = random.randint(5, (width - 2) / 2) * 2

1685
    img = torch.ones(3, height, width, dtype=torch.uint8)
1686
1687
    oh1 = (height - oheight) // 2
    ow1 = (width - owidth) // 2
1688
    imgnarrow = img[:, oh1 : oh1 + oheight, ow1 : ow1 + owidth]
1689
    imgnarrow.fill_(0)
1690
1691
1692
1693
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
1694
            transforms.PILToTensor(),
1695
1696
        ]
    )(img)
1697
1698
1699
    assert result.sum() == 0
    oheight += 1
    owidth += 1
1700
1701
1702
1703
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
1704
            transforms.PILToTensor(),
1705
1706
        ]
    )(img)
1707
1708
1709
1710
    sum1 = result.sum()
    assert sum1 > 1
    oheight += 1
    owidth += 1
1711
1712
1713
1714
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
1715
            transforms.PILToTensor(),
1716
1717
        ]
    )(img)
1718
1719
1720
1721
1722
    sum2 = result.sum()
    assert sum2 > 0
    assert sum2 > sum1


1723
1724
1725
1726
@pytest.mark.parametrize("odd_image_size", (True, False))
@pytest.mark.parametrize("delta", (1, 3, 5))
@pytest.mark.parametrize("delta_width", (-2, -1, 0, 1, 2))
@pytest.mark.parametrize("delta_height", (-2, -1, 0, 1, 2))
1727
def test_center_crop_2(odd_image_size, delta, delta_width, delta_height):
1728
    """Tests when center crop size is larger than image size, along any dimension"""
1729
1730
1731
1732
1733
1734
1735
1736
1737

    # Since height is independent of width, we can ignore images with odd height and even width and vice-versa.
    input_image_size = (random.randint(10, 32) * 2, random.randint(10, 32) * 2)
    if odd_image_size:
        input_image_size = (input_image_size[0] + 1, input_image_size[1] + 1)

    delta_height *= delta
    delta_width *= delta

1738
    img = torch.ones(3, *input_image_size, dtype=torch.uint8)
1739
1740
1741
    crop_size = (input_image_size[0] + delta_height, input_image_size[1] + delta_width)

    # Test both transforms, one with PIL input and one with tensor
1742
    output_pil = transforms.Compose(
1743
        [transforms.ToPILImage(), transforms.CenterCrop(crop_size), transforms.PILToTensor()],
1744
1745
1746
1747
1748
1749
1750
1751
    )(img)
    assert output_pil.size()[1:3] == crop_size

    output_tensor = transforms.CenterCrop(crop_size)(img)
    assert output_tensor.size()[1:3] == crop_size

    # Ensure output for PIL and Tensor are equal
    assert_equal(
1752
1753
        output_tensor,
        output_pil,
1754
        msg=f"image_size: {input_image_size} crop_size: {crop_size}",
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
    )

    # Check if content in center of both image and cropped output is same.
    center_size = (min(crop_size[0], input_image_size[0]), min(crop_size[1], input_image_size[1]))
    crop_center_tl, input_center_tl = [0, 0], [0, 0]
    for index in range(2):
        if crop_size[index] > input_image_size[index]:
            crop_center_tl[index] = (crop_size[index] - input_image_size[index]) // 2
        else:
            input_center_tl[index] = (input_image_size[index] - crop_size[index]) // 2

    output_center = output_pil[
        :,
1768
1769
        crop_center_tl[0] : crop_center_tl[0] + center_size[0],
        crop_center_tl[1] : crop_center_tl[1] + center_size[1],
1770
1771
1772
1773
    ]

    img_center = img[
        :,
1774
1775
        input_center_tl[0] : input_center_tl[0] + center_size[0],
        input_center_tl[1] : input_center_tl[1] + center_size[1],
1776
1777
    ]

1778
    assert_equal(output_center, img_center)
1779
1780
1781
1782
1783
1784
1785
1786


def test_color_jitter():
    color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1787
1788
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800

    for _ in range(10):
        y_pil = color_jitter(x_pil)
        assert y_pil.mode == x_pil.mode

        y_pil_2 = color_jitter(x_pil_2)
        assert y_pil_2.mode == x_pil_2.mode

    # Checking if ColorJitter can be printed as string
    color_jitter.__repr__()


1801
@pytest.mark.parametrize("seed", range(10))
1802
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1803
1804
def test_random_erasing(seed):
    torch.random.manual_seed(seed)
1805
1806
    img = torch.ones(3, 128, 128)

1807
1808
1809
1810
1811
1812
1813
1814
1815
    t = transforms.RandomErasing(scale=(0.1, 0.1), ratio=(1 / 3, 3.0))
    y, x, h, w, v = t.get_params(
        img,
        t.scale,
        t.ratio,
        [
            t.value,
        ],
    )
1816
1817
1818
    aspect_ratio = h / w
    # Add some tolerance due to the rounding and int conversion used in the transform
    tol = 0.05
1819
    assert 1 / 3 - tol <= aspect_ratio <= 3 + tol
1820

1821
    # Make sure that h > w and h < w are equaly likely (log-scale sampling)
1822
1823
1824
1825
    aspect_ratios = []
    random.seed(42)
    trial = 1000
    for _ in range(trial):
1826
1827
1828
1829
1830
1831
1832
1833
        y, x, h, w, v = t.get_params(
            img,
            t.scale,
            t.ratio,
            [
                t.value,
            ],
        )
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
        aspect_ratios.append(h / w)

    count_bigger_then_ones = len([1 for aspect_ratio in aspect_ratios if aspect_ratio > 1])
    p_value = stats.binom_test(count_bigger_then_ones, trial, p=0.5)
    assert p_value > 0.0001

    # Checking if RandomErasing can be printed as string
    t.__repr__()


def test_random_rotation():

    with pytest.raises(ValueError):
        transforms.RandomRotation(-0.7)

    with pytest.raises(ValueError):
        transforms.RandomRotation([-0.7])

    with pytest.raises(ValueError):
        transforms.RandomRotation([-0.7, 0, 0.7])

    t = transforms.RandomRotation(0, fill=None)
    assert t.fill == 0

    t = transforms.RandomRotation(10)
    angle = t.get_params(t.degrees)
1860
    assert angle > -10 and angle < 10
1861
1862
1863

    t = transforms.RandomRotation((-10, 10))
    angle = t.get_params(t.degrees)
1864
    assert -10 < angle < 10
1865
1866
1867
1868
1869

    # Checking if RandomRotation can be printed as string
    t.__repr__()

    # assert changed type warning
1870
1871
1872
1873
1874
1875
1876
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
            "Please use InterpolationMode enum."
        ),
    ):
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
        t = transforms.RandomRotation((-10, 10), interpolation=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR


def test_random_rotation_error():
    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomRotation(0, fill={})


def test_randomperspective():
    for _ in range(10):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        perp = transforms.RandomPerspective()
        startpoints, endpoints = perp.get_params(width, height, 0.5)
        tr_img = F.perspective(img, startpoints, endpoints)
1897
1898
        tr_img2 = F.convert_image_dtype(F.pil_to_tensor(F.perspective(tr_img, endpoints, startpoints)))
        tr_img = F.convert_image_dtype(F.pil_to_tensor(tr_img))
1899
1900
        assert img.size[0] == width
        assert img.size[1] == height
1901
1902
1903
        assert torch.nn.functional.mse_loss(
            tr_img, F.convert_image_dtype(F.pil_to_tensor(img))
        ) + 0.3 > torch.nn.functional.mse_loss(tr_img2, F.convert_image_dtype(F.pil_to_tensor(img)))
1904
1905


1906
@pytest.mark.parametrize("seed", range(10))
1907
@pytest.mark.parametrize("mode", ["L", "RGB", "F"])
1908
1909
def test_randomperspective_fill(mode, seed):
    torch.random.manual_seed(seed)
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947

    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomPerspective(fill={})

    t = transforms.RandomPerspective(fill=None)
    assert t.fill == 0

    height = 100
    width = 100
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    fill = 127
    num_bands = len(mode)

    img_conv = img.convert(mode)
    perspective = transforms.RandomPerspective(p=1, fill=fill)
    tr_img = perspective(img_conv)
    pixel = tr_img.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    startpoints, endpoints = transforms.RandomPerspective.get_params(width, height, 0.5)
    tr_img = F.perspective(img_conv, startpoints, endpoints, fill=fill)
    pixel = tr_img.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    wrong_num_bands = num_bands + 1
    with pytest.raises(ValueError):
        F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))


1948
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1949
1950
def test_normalize():
    def samples_from_standard_normal(tensor):
1951
        p_value = stats.kstest(list(tensor.view(-1)), "norm", args=(0, 1)).pvalue
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
        return p_value > 0.0001

    random_state = random.getstate()
    random.seed(42)
    for channels in [1, 3]:
        img = torch.rand(channels, 10, 10)
        mean = [img[c].mean() for c in range(channels)]
        std = [img[c].std() for c in range(channels)]
        normalized = transforms.Normalize(mean, std)(img)
        assert samples_from_standard_normal(normalized)
    random.setstate(random_state)

    # Checking if Normalize can be printed as string
    transforms.Normalize(mean, std).__repr__()

    # Checking the optional in-place behaviour
    tensor = torch.rand((1, 16, 16))
    tensor_inplace = transforms.Normalize((0.5,), (0.5,), inplace=True)(tensor)
    assert_equal(tensor, tensor_inplace)


1973
1974
@pytest.mark.parametrize("dtype1", [torch.float32, torch.float64])
@pytest.mark.parametrize("dtype2", [torch.int64, torch.float32, torch.float64])
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
def test_normalize_different_dtype(dtype1, dtype2):
    img = torch.rand(3, 10, 10, dtype=dtype1)
    mean = torch.tensor([1, 2, 3], dtype=dtype2)
    std = torch.tensor([1, 2, 1], dtype=dtype2)
    # checks that it doesn't crash
    transforms.functional.normalize(img, mean, std)


def test_normalize_3d_tensor():
    torch.manual_seed(28)
    n_channels = 3
    img_size = 10
    mean = torch.rand(n_channels)
    std = torch.rand(n_channels)
    img = torch.rand(n_channels, img_size, img_size)
    target = F.normalize(img, mean, std)

    mean_unsqueezed = mean.view(-1, 1, 1)
    std_unsqueezed = std.view(-1, 1, 1)
    result1 = F.normalize(img, mean_unsqueezed, std_unsqueezed)
1995
1996
1997
    result2 = F.normalize(
        img, mean_unsqueezed.repeat(1, img_size, img_size), std_unsqueezed.repeat(1, img_size, img_size)
    )
1998
1999
2000
2001
    torch.testing.assert_close(target, result1)
    torch.testing.assert_close(target, result2)


2002
class TestAffine:
2003
    @pytest.fixture(scope="class")
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
    def input_img(self):
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
        for pt in [(16, 16), (20, 16), (20, 20)]:
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]
        return input_img

    def test_affine_translate_seq(self, input_img):
        with pytest.raises(TypeError, match=r"Argument translate should be a sequence"):
            F.affine(input_img, 10, translate=0, scale=1, shear=1)

2016
    @pytest.fixture(scope="class")
2017
2018
2019
2020
2021
2022
2023
2024
2025
    def pil_image(self, input_img):
        return F.to_pil_image(input_img)

    def _to_3x3_inv(self, inv_result_matrix):
        result_matrix = np.zeros((3, 3))
        result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
        result_matrix[2, 2] = 1
        return np.linalg.inv(result_matrix)

2026
    def _test_transformation(self, angle, translate, scale, shear, pil_image, input_img, center=None):
2027
2028
2029

        a_rad = math.radians(angle)
        s_rad = [math.radians(sh_) for sh_ in shear]
2030
        cnt = [20, 20] if center is None else center
2031
2032
2033
2034
2035
2036
        cx, cy = cnt
        tx, ty = translate
        sx, sy = s_rad
        rot = a_rad

        # 1) Check transformation matrix:
2037
2038
        C = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
        T = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
2039
2040
2041
        Cinv = np.linalg.inv(C)

        RS = np.array(
2042
2043
2044
2045
2046
2047
            [
                [scale * math.cos(rot), -scale * math.sin(rot), 0],
                [scale * math.sin(rot), scale * math.cos(rot), 0],
                [0, 0, 1],
            ]
        )
2048

2049
        SHx = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
2050

2051
        SHy = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
2052
2053
2054
2055
2056

        RSS = np.matmul(RS, np.matmul(SHy, SHx))

        true_matrix = np.matmul(T, np.matmul(C, np.matmul(RSS, Cinv)))

2057
2058
2059
        result_matrix = self._to_3x3_inv(
            F._get_inverse_affine_matrix(center=cnt, angle=angle, translate=translate, scale=scale, shear=shear)
        )
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
        assert np.sum(np.abs(true_matrix - result_matrix)) < 1e-10
        # 2) Perform inverse mapping:
        true_result = np.zeros((40, 40, 3), dtype=np.uint8)
        inv_true_matrix = np.linalg.inv(true_matrix)
        for y in range(true_result.shape[0]):
            for x in range(true_result.shape[1]):
                # Same as for PIL:
                # https://github.com/python-pillow/Pillow/blob/71f8ec6a0cfc1008076a023c0756542539d057ab/
                # src/libImaging/Geometry.c#L1060
                input_pt = np.array([x + 0.5, y + 0.5, 1.0])
                res = np.floor(np.dot(inv_true_matrix, input_pt)).astype(np.int)
                _x, _y = res[:2]
                if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                    true_result[y, x, :] = input_img[_y, _x, :]

2075
        result = F.affine(pil_image, angle=angle, translate=translate, scale=scale, shear=shear, center=center)
2076
2077
2078
2079
2080
        assert result.size == pil_image.size
        # Compute number of different pixels:
        np_result = np.array(result)
        n_diff_pixels = np.sum(np_result != true_result) / 3
        # Accept 3 wrong pixels
2081
2082
2083
        error_msg = (
            f"angle={angle}, translate={translate}, scale={scale}, shear={shear}\nn diff pixels={n_diff_pixels}\n"
        )
2084
2085
2086
2087
2088
        assert n_diff_pixels < 3, error_msg

    def test_transformation_discrete(self, pil_image, input_img):
        # Test rotation
        angle = 45
2089
2090
2091
        self._test_transformation(
            angle=angle, translate=(0, 0), scale=1.0, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2092

2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
        # Test rotation
        angle = 45
        self._test_transformation(
            angle=angle,
            translate=(0, 0),
            scale=1.0,
            shear=(0.0, 0.0),
            pil_image=pil_image,
            input_img=input_img,
            center=[0, 0],
        )

2105
2106
        # Test translation
        translate = [10, 15]
2107
2108
2109
        self._test_transformation(
            angle=0.0, translate=translate, scale=1.0, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2110
2111
2112

        # Test scale
        scale = 1.2
2113
2114
2115
        self._test_transformation(
            angle=0.0, translate=(0.0, 0.0), scale=scale, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2116
2117
2118

        # Test shear
        shear = [45.0, 25.0]
2119
2120
2121
        self._test_transformation(
            angle=0.0, translate=(0.0, 0.0), scale=1.0, shear=shear, pil_image=pil_image, input_img=input_img
        )
2122

2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
        # Test shear with top-left as center
        shear = [45.0, 25.0]
        self._test_transformation(
            angle=0.0,
            translate=(0.0, 0.0),
            scale=1.0,
            shear=shear,
            pil_image=pil_image,
            input_img=input_img,
            center=[0, 0],
        )

2135
2136
2137
2138
2139
    @pytest.mark.parametrize("angle", range(-90, 90, 36))
    @pytest.mark.parametrize("translate", range(-10, 10, 5))
    @pytest.mark.parametrize("scale", [0.77, 1.0, 1.27])
    @pytest.mark.parametrize("shear", range(-15, 15, 5))
    def test_transformation_range(self, angle, translate, scale, shear, pil_image, input_img):
2140
2141
2142
2143
2144
2145
2146
2147
        self._test_transformation(
            angle=angle,
            translate=(translate, translate),
            scale=scale,
            shear=(shear, shear),
            pil_image=pil_image,
            input_img=input_img,
        )
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194


def test_random_affine():

    with pytest.raises(ValueError):
        transforms.RandomAffine(-0.7)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-0.7])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-0.7, 0, 0.7])
    with pytest.raises(TypeError):
        transforms.RandomAffine([-90, 90], translate=2.0)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10, 0, 10])

    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomAffine(0, fill={})

    t = transforms.RandomAffine(0, fill=None)
    assert t.fill == 0

    x = np.zeros((100, 100, 3), dtype=np.uint8)
    img = F.to_pil_image(x)

    t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10, 20, 40])
    for _ in range(100):
2195
        angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear, img_size=img.size)
2196
        assert -10 < angle < 10
2197
2198
        assert -img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5
        assert -img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
        assert 0.7 < scale < 1.3
        assert -10 < shear[0] < 10
        assert -20 < shear[1] < 40

    # Checking if RandomAffine can be printed as string
    t.__repr__()

    t = transforms.RandomAffine(10, interpolation=transforms.InterpolationMode.BILINEAR)
    assert "bilinear" in t.__repr__()

    # assert changed type warning
2210
2211
2212
2213
2214
2215
2216
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
            "Please use InterpolationMode enum."
        ),
    ):
2217
2218
2219
2220
        t = transforms.RandomAffine(10, interpolation=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR


2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
def test_elastic_transformation():
    with pytest.raises(TypeError, match=r"alpha should be float or a sequence of floats"):
        transforms.ElasticTransform(alpha=True, sigma=2.0)
    with pytest.raises(TypeError, match=r"alpha should be a sequence of floats"):
        transforms.ElasticTransform(alpha=[1.0, True], sigma=2.0)
    with pytest.raises(ValueError, match=r"alpha is a sequence its length should be 2"):
        transforms.ElasticTransform(alpha=[1.0, 0.0, 1.0], sigma=2.0)

    with pytest.raises(TypeError, match=r"sigma should be float or a sequence of floats"):
        transforms.ElasticTransform(alpha=2.0, sigma=True)
    with pytest.raises(TypeError, match=r"sigma should be a sequence of floats"):
        transforms.ElasticTransform(alpha=2.0, sigma=[1.0, True])
    with pytest.raises(ValueError, match=r"sigma is a sequence its length should be 2"):
        transforms.ElasticTransform(alpha=2.0, sigma=[1.0, 0.0, 1.0])

    with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
        t = transforms.transforms.ElasticTransform(alpha=2.0, sigma=2.0, interpolation=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR

    with pytest.raises(TypeError, match=r"fill should be int or float"):
        transforms.ElasticTransform(alpha=1.0, sigma=1.0, fill={})

    x = torch.randint(0, 256, (3, 32, 32), dtype=torch.uint8)
    img = F.to_pil_image(x)
    t = transforms.ElasticTransform(alpha=0.0, sigma=0.0)
    transformed_img = t(img)
    assert transformed_img == img

    # Smoke test on PIL images
    t = transforms.ElasticTransform(alpha=0.5, sigma=0.23)
    transformed_img = t(img)
    assert isinstance(transformed_img, Image.Image)

    # Checking if ElasticTransform can be printed as string
    t.__repr__()


2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
def test_random_grayscale_with_grayscale_input():
    transform = transforms.RandomGrayscale(p=1.0)

    image_tensor = torch.randint(0, 256, (1, 16, 16), dtype=torch.uint8)
    output_tensor = transform(image_tensor)
    torch.testing.assert_close(output_tensor, image_tensor)

    image_pil = F.to_pil_image(image_tensor)
    output_pil = transform(image_pil)
    torch.testing.assert_close(F.pil_to_tensor(output_pil), image_tensor)


2270
if __name__ == "__main__":
2271
    pytest.main([__file__])