"vscode:/vscode.git/clone" did not exist on "2d0a7173d4891e7cd5f9b77f8e0987b82a339e51"
test_transforms_tensor.py 31.1 KB
Newer Older
1
import os
2
3
4
import torch
from torchvision import transforms as T
from torchvision.transforms import functional as F
5
from torchvision.transforms import InterpolationMode
6
7
8
9

import numpy as np

import unittest
10
import pytest
11
from typing import Sequence
12

Nicolas Hug's avatar
Nicolas Hug committed
13
14
15
16
17
18
19
20
from common_utils import (
    get_tmp_dir,
    int_dtypes,
    float_dtypes,
    _create_data,
    _create_data_batch,
    _assert_equal_tensor_to_pil,
    _assert_approx_equal_tensor_to_pil,
21
    cpu_and_gpu,
Nicolas Hug's avatar
Nicolas Hug committed
22
)
23
from _assert_utils import assert_equal
24
25


26
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
27
28


29
30
31
32
33
34
def _test_transform_vs_scripted(transform, s_transform, tensor, msg=None):
    torch.manual_seed(12)
    out1 = transform(tensor)
    torch.manual_seed(12)
    out2 = s_transform(tensor)
    assert_equal(out1, out2, msg=msg)
35

36

37
38
39
def _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors, msg=None):
    torch.manual_seed(12)
    transformed_batch = transform(batch_tensors)
40

41
42
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
43
        torch.manual_seed(12)
44
45
        transformed_img = transform(img_tensor)
        assert_equal(transformed_img, transformed_batch[i, ...], msg=msg)
46

47
48
49
    torch.manual_seed(12)
    s_transformed_batch = s_transform(batch_tensors)
    assert_equal(transformed_batch, s_transformed_batch, msg=msg)
50
51


52
53
def _test_functional_op(f, device, fn_kwargs=None, test_exact_match=True, **match_kwargs):
    fn_kwargs = fn_kwargs or {}
54

55
56
57
58
59
60
61
    tensor, pil_img = _create_data(height=10, width=10, device=device)
    transformed_tensor = f(tensor, **fn_kwargs)
    transformed_pil_img = f(pil_img, **fn_kwargs)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
vfdev's avatar
vfdev committed
62
63


64
65
66
def _test_class_op(method, device, meth_kwargs=None, test_exact_match=True, **match_kwargs):
    # TODO: change the name: it's not a method, it's a class.
    meth_kwargs = meth_kwargs or {}
67

68
69
70
    # test for class interface
    f = method(**meth_kwargs)
    scripted_fn = torch.jit.script(f)
71

72
73
74
75
76
77
78
79
80
81
    tensor, pil_img = _create_data(26, 34, device=device)
    # set seed to reproduce the same transformation for tensor and PIL image
    torch.manual_seed(12)
    transformed_tensor = f(tensor)
    torch.manual_seed(12)
    transformed_pil_img = f(pil_img)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor.float(), transformed_pil_img, **match_kwargs)
82

83
84
85
86
87
88
89
90
91
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
    assert_equal(transformed_tensor, transformed_tensor_script)

    batch_tensors = _create_data_batch(height=23, width=34, channels=3, num_samples=4, device=device)
    _test_transform_vs_scripted_on_batch(f, scripted_fn, batch_tensors)

    with get_tmp_dir() as tmp_dir:
        scripted_fn.save(os.path.join(tmp_dir, f"t_{method.__name__}.pt"))
92

93
94
95
96
97
98
99
100
101
102

def _test_op(func, method, device, fn_kwargs=None, meth_kwargs=None, test_exact_match=True, **match_kwargs):
    _test_functional_op(func, device, fn_kwargs, test_exact_match=test_exact_match, **match_kwargs)
    _test_class_op(method, device, meth_kwargs, test_exact_match=test_exact_match, **match_kwargs)


class Tester(unittest.TestCase):

    def setUp(self):
        self.device = "cpu"
103
104

    def test_random_horizontal_flip(self):
105
        _test_op(F.hflip, T.RandomHorizontalFlip, device=self.device)
106
107

    def test_random_vertical_flip(self):
108
        _test_op(F.vflip, T.RandomVerticalFlip, device=self.device)
109

110
    def test_random_invert(self):
111
        _test_op(F.invert, T.RandomInvert, device=self.device)
112
113
114

    def test_random_posterize(self):
        fn_kwargs = meth_kwargs = {"bits": 4}
115
116
117
        _test_op(
            F.posterize, T.RandomPosterize, device=self.device, fn_kwargs=fn_kwargs,
            meth_kwargs=meth_kwargs
118
119
120
121
        )

    def test_random_solarize(self):
        fn_kwargs = meth_kwargs = {"threshold": 192.0}
122
123
124
        _test_op(
            F.solarize, T.RandomSolarize, device=self.device, fn_kwargs=fn_kwargs,
            meth_kwargs=meth_kwargs
125
126
127
128
        )

    def test_random_adjust_sharpness(self):
        fn_kwargs = meth_kwargs = {"sharpness_factor": 2.0}
129
130
131
        _test_op(
            F.adjust_sharpness, T.RandomAdjustSharpness, device=self.device, fn_kwargs=fn_kwargs,
            meth_kwargs=meth_kwargs
132
133
134
        )

    def test_random_autocontrast(self):
135
136
        # We check the max abs difference because on some (very rare) pixels, the actual value may be different
        # between PIL and tensors due to floating approximations.
137
138
139
140
        _test_op(
            F.autocontrast, T.RandomAutocontrast, device=self.device, test_exact_match=False,
            agg_method='max', tol=(1 + 1e-5), allowed_percentage_diff=.05
        )
141
142

    def test_random_equalize(self):
143
        _test_op(F.equalize, T.RandomEqualize, device=self.device)
144

145
    def _test_op_list_output(self, func, method, out_length, fn_kwargs=None, meth_kwargs=None):
vfdev's avatar
vfdev committed
146
147
148
149
        if fn_kwargs is None:
            fn_kwargs = {}
        if meth_kwargs is None:
            meth_kwargs = {}
150
151
152
153

        fn = getattr(F, func)
        scripted_fn = torch.jit.script(fn)

Nicolas Hug's avatar
Nicolas Hug committed
154
        tensor, pil_img = _create_data(height=20, width=20, device=self.device)
155
156
        transformed_t_list = fn(tensor, **fn_kwargs)
        transformed_p_list = fn(pil_img, **fn_kwargs)
vfdev's avatar
vfdev committed
157
158
159
        self.assertEqual(len(transformed_t_list), len(transformed_p_list))
        self.assertEqual(len(transformed_t_list), out_length)
        for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
Nicolas Hug's avatar
Nicolas Hug committed
160
            _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img)
vfdev's avatar
vfdev committed
161
162
163
164
165

        transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
        self.assertEqual(len(transformed_t_list), len(transformed_t_list_script))
        self.assertEqual(len(transformed_t_list_script), out_length)
        for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
166
167
168
169
170
            assert_equal(
                transformed_tensor,
                transformed_tensor_script,
                msg="{} vs {}".format(transformed_tensor, transformed_tensor_script),
            )
vfdev's avatar
vfdev committed
171
172

        # test for class interface
173
174
        fn = getattr(T, method)(**meth_kwargs)
        scripted_fn = torch.jit.script(fn)
vfdev's avatar
vfdev committed
175
176
177
        output = scripted_fn(tensor)
        self.assertEqual(len(output), len(transformed_t_list_script))

178
        # test on batch of tensors
Nicolas Hug's avatar
Nicolas Hug committed
179
        batch_tensors = _create_data_batch(height=23, width=34, channels=3, num_samples=4, device=self.device)
180
181
182
183
184
185
186
187
        torch.manual_seed(12)
        transformed_batch_list = fn(batch_tensors)

        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            torch.manual_seed(12)
            transformed_img_list = fn(img_tensor)
            for transformed_img, transformed_batch in zip(transformed_img_list, transformed_batch_list):
188
189
190
191
192
                assert_equal(
                    transformed_img,
                    transformed_batch[i, ...],
                    msg="{} vs {}".format(transformed_img, transformed_batch[i, ...]),
                )
193

194
195
196
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_op_list_{}.pt".format(method)))

vfdev's avatar
vfdev committed
197
198
    def test_five_crop(self):
        fn_kwargs = meth_kwargs = {"size": (5,)}
199
        self._test_op_list_output(
vfdev's avatar
vfdev committed
200
201
202
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [5, ]}
203
        self._test_op_list_output(
vfdev's avatar
vfdev committed
204
205
206
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": (4, 5)}
207
        self._test_op_list_output(
vfdev's avatar
vfdev committed
208
209
210
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [4, 5]}
211
        self._test_op_list_output(
vfdev's avatar
vfdev committed
212
213
214
215
216
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_ten_crop(self):
        fn_kwargs = meth_kwargs = {"size": (5,)}
217
        self._test_op_list_output(
vfdev's avatar
vfdev committed
218
219
220
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [5, ]}
221
        self._test_op_list_output(
vfdev's avatar
vfdev committed
222
223
224
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": (4, 5)}
225
        self._test_op_list_output(
vfdev's avatar
vfdev committed
226
227
228
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [4, 5]}
229
        self._test_op_list_output(
vfdev's avatar
vfdev committed
230
231
232
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

vfdev's avatar
vfdev committed
233
    def test_resize(self):
234
235
236
237
238
239
240
241
242
243
244

        # TODO: Minimal check for bug-fix, improve this later
        x = torch.rand(3, 32, 46)
        t = T.Resize(size=38)
        y = t(x)
        # If size is an int, smaller edge of the image will be matched to this number.
        # i.e, if height > width, then image will be rescaled to (size * height / width, size).
        self.assertTrue(isinstance(y, torch.Tensor))
        self.assertEqual(y.shape[1], 38)
        self.assertEqual(y.shape[2], int(38 * 46 / 32))

Nicolas Hug's avatar
Nicolas Hug committed
245
        tensor, _ = _create_data(height=34, width=36, device=self.device)
246
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
vfdev's avatar
vfdev committed
247
248
249
250
251

        for dt in [None, torch.float32, torch.float64]:
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
252
            for size in [32, 34, [32, ], [32, 32], (32, 32), [34, 35]]:
253
254
255
256
                for max_size in (None, 35, 1000):
                    if max_size is not None and isinstance(size, Sequence) and len(size) != 1:
                        continue  # Not supported
                    for interpolation in [BILINEAR, BICUBIC, NEAREST]:
vfdev's avatar
vfdev committed
257

258
259
260
261
                        if isinstance(size, int):
                            script_size = [size, ]
                        else:
                            script_size = size
vfdev's avatar
vfdev committed
262

263
264
                        transform = T.Resize(size=script_size, interpolation=interpolation, max_size=max_size)
                        s_transform = torch.jit.script(transform)
265
266
                        _test_transform_vs_scripted(transform, s_transform, tensor)
                        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
vfdev's avatar
vfdev committed
267

268
        with get_tmp_dir() as tmp_dir:
269
            s_transform.save(os.path.join(tmp_dir, "t_resize.pt"))
270

271
    def test_resized_crop(self):
272
273
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
274

275
276
        for scale in [(0.7, 1.2), [0.7, 1.2]]:
            for ratio in [(0.75, 1.333), [0.75, 1.333]]:
277
                for size in [(32, ), [44, ], [32, ], [32, 32], (32, 32), [44, 55]]:
278
279
280
281
282
                    for interpolation in [NEAREST, BILINEAR, BICUBIC]:
                        transform = T.RandomResizedCrop(
                            size=size, scale=scale, ratio=ratio, interpolation=interpolation
                        )
                        s_transform = torch.jit.script(transform)
283
284
                        _test_transform_vs_scripted(transform, s_transform, tensor)
                        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
285

286
287
288
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_resized_crop.pt"))

289
    def test_normalize(self):
290
        fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
Nicolas Hug's avatar
Nicolas Hug committed
291
        tensor, _ = _create_data(26, 34, device=self.device)
292

293
294
295
296
        with self.assertRaisesRegex(TypeError, r"Input tensor should be a float tensor"):
            fn(tensor)

        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)
297
298
299
300
        tensor = tensor.to(dtype=torch.float32) / 255.0
        # test for class interface
        scripted_fn = torch.jit.script(fn)

301
302
        _test_transform_vs_scripted(fn, scripted_fn, tensor)
        _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)
303

304
305
306
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))

307
308
309
    def test_linear_transformation(self):
        c, h, w = 3, 24, 32

Nicolas Hug's avatar
Nicolas Hug committed
310
        tensor, _ = _create_data(h, w, channels=c, device=self.device)
311
312
313
314
315
316
317

        matrix = torch.rand(c * h * w, c * h * w, device=self.device)
        mean_vector = torch.rand(c * h * w, device=self.device)

        fn = T.LinearTransformation(matrix, mean_vector)
        scripted_fn = torch.jit.script(fn)

318
        _test_transform_vs_scripted(fn, scripted_fn, tensor)
319
320
321
322
323
324
325
326

        batch_tensors = torch.rand(4, c, h, w, device=self.device)
        # We skip some tests from _test_transform_vs_scripted_on_batch as
        # results for scripted and non-scripted transformations are not exactly the same
        torch.manual_seed(12)
        transformed_batch = fn(batch_tensors)
        torch.manual_seed(12)
        s_transformed_batch = scripted_fn(batch_tensors)
327
        assert_equal(transformed_batch, s_transformed_batch)
328

329
330
331
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))

332
    def test_compose(self):
Nicolas Hug's avatar
Nicolas Hug committed
333
        tensor, _ = _create_data(26, 34, device=self.device)
334
335
336
337
338
339
340
341
342
343
344
345
346
        tensor = tensor.to(dtype=torch.float32) / 255.0

        transforms = T.Compose([
            T.CenterCrop(10),
            T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ])
        s_transforms = torch.nn.Sequential(*transforms.transforms)

        scripted_fn = torch.jit.script(s_transforms)
        torch.manual_seed(12)
        transformed_tensor = transforms(tensor)
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
347
        assert_equal(transformed_tensor, transformed_tensor_script, msg="{}".format(transforms))
348
349
350
351
352
353
354

        t = T.Compose([
            lambda x: x,
        ])
        with self.assertRaisesRegex(RuntimeError, r"Could not get name of python class object"):
            torch.jit.script(t)

355
    def test_random_apply(self):
Nicolas Hug's avatar
Nicolas Hug committed
356
        tensor, _ = _create_data(26, 34, device=self.device)
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
        tensor = tensor.to(dtype=torch.float32) / 255.0

        transforms = T.RandomApply([
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ], p=0.4)
        s_transforms = T.RandomApply(torch.nn.ModuleList([
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ]), p=0.4)

        scripted_fn = torch.jit.script(s_transforms)
        torch.manual_seed(12)
        transformed_tensor = transforms(tensor)
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
373
        assert_equal(transformed_tensor, transformed_tensor_script, msg="{}".format(transforms))
374
375
376
377
378
379
380
381
382
383

        if torch.device(self.device).type == "cpu":
            # Can't check this twice, otherwise
            # "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
            transforms = T.RandomApply([
                T.ColorJitter(),
            ], p=0.3)
            with self.assertRaisesRegex(RuntimeError, r"Module 'RandomApply' has no attribute 'transforms'"):
                torch.jit.script(transforms)

384
385
    def test_gaussian_blur(self):
        tol = 1.0 + 1e-10
386
387
388
        _test_class_op(
            T.GaussianBlur, meth_kwargs={"kernel_size": 3, "sigma": 0.75},
            test_exact_match=False, device=self.device, agg_method="max", tol=tol
389
390
        )

391
392
393
        _test_class_op(
            T.GaussianBlur, meth_kwargs={"kernel_size": 23, "sigma": [0.1, 2.0]},
            test_exact_match=False, device=self.device, agg_method="max", tol=tol
394
395
        )

396
397
398
        _test_class_op(
            T.GaussianBlur, meth_kwargs={"kernel_size": 23, "sigma": (0.1, 2.0)},
            test_exact_match=False, device=self.device, agg_method="max", tol=tol
399
400
        )

401
402
403
        _test_class_op(
            T.GaussianBlur, meth_kwargs={"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
            test_exact_match=False, device=self.device, agg_method="max", tol=tol
404
405
        )

406
407
408
        _test_class_op(
            T.GaussianBlur, meth_kwargs={"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
            test_exact_match=False, device=self.device, agg_method="max", tol=tol
409
410
        )

411
412
413
        _test_class_op(
            T.GaussianBlur, meth_kwargs={"kernel_size": [23], "sigma": 0.75},
            test_exact_match=False, device=self.device, agg_method="max", tol=tol
414
415
        )

vfdev's avatar
vfdev committed
416
417
418
419
420
421
422
423
    def test_random_erasing(self):
        img = torch.rand(3, 60, 60)

        # Test Set 0: invalid value
        random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0)
        with self.assertRaises(ValueError, msg="If value is a sequence, it should have either a single value or 3"):
            random_erasing(img)

Nicolas Hug's avatar
Nicolas Hug committed
424
        tensor, _ = _create_data(24, 32, channels=3, device=self.device)
vfdev's avatar
vfdev committed
425
426
427
428
429
430
431
432
433
434
435
436
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        test_configs = [
            {"value": 0.2},
            {"value": "random"},
            {"value": (0.2, 0.2, 0.2)},
            {"value": "random", "ratio": (0.1, 0.2)},
        ]

        for config in test_configs:
            fn = T.RandomErasing(**config)
            scripted_fn = torch.jit.script(fn)
437
438
            _test_transform_vs_scripted(fn, scripted_fn, tensor)
            _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)
vfdev's avatar
vfdev committed
439

440
441
442
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_random_erasing.pt"))

443
    def test_convert_image_dtype(self):
Nicolas Hug's avatar
Nicolas Hug committed
444
        tensor, _ = _create_data(26, 34, device=self.device)
445
446
447
448
449
450
451
452
453
454
455
456
457
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        for in_dtype in int_dtypes() + float_dtypes():
            in_tensor = tensor.to(in_dtype)
            in_batch_tensors = batch_tensors.to(in_dtype)
            for out_dtype in int_dtypes() + float_dtypes():

                fn = T.ConvertImageDtype(dtype=out_dtype)
                scripted_fn = torch.jit.script(fn)

                if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or \
                        (in_dtype == torch.float64 and out_dtype == torch.int64):
                    with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"):
458
                        _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
459
                    with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"):
460
                        _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
461
462
                    continue

463
464
                _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
                _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
465
466
467
468

        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_convert_dtype.pt"))

469
470
471
472
    def test_autoaugment(self):
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)

473
        s_transform = None
474
475
        for policy in T.AutoAugmentPolicy:
            for fill in [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
476
477
                transform = T.AutoAugment(policy=policy, fill=fill)
                s_transform = torch.jit.script(transform)
478
                for _ in range(25):
479
480
                    _test_transform_vs_scripted(transform, s_transform, tensor)
                    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
481

482
483
484
        if s_transform is not None:
            with get_tmp_dir() as tmp_dir:
                s_transform.save(os.path.join(tmp_dir, "t_autoaugment.pt"))
485

486

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
@pytest.mark.parametrize('device', cpu_and_gpu())
class TestColorJitter:

    @pytest.mark.parametrize('brightness', [0.1, 0.5, 1.0, 1.34, (0.3, 0.7), [0.4, 0.5]])
    def test_color_jitter_brightness(self, brightness, device):
        tol = 1.0 + 1e-10
        meth_kwargs = {"brightness": brightness}
        _test_class_op(
            T.ColorJitter, meth_kwargs=meth_kwargs, test_exact_match=False, device=device,
            tol=tol, agg_method="max"
        )

    @pytest.mark.parametrize('contrast', [0.2, 0.5, 1.0, 1.5, (0.3, 0.7), [0.4, 0.5]])
    def test_color_jitter_contrast(self, contrast, device):
        tol = 1.0 + 1e-10
        meth_kwargs = {"contrast": contrast}
        _test_class_op(
            T.ColorJitter, meth_kwargs=meth_kwargs, test_exact_match=False, device=device,
            tol=tol, agg_method="max"
        )

    @pytest.mark.parametrize('saturation', [0.5, 0.75, 1.0, 1.25, (0.3, 0.7), [0.3, 0.4]])
    def test_color_jitter_saturation(self, saturation, device):
        tol = 1.0 + 1e-10
        meth_kwargs = {"saturation": saturation}
        _test_class_op(
            T.ColorJitter, meth_kwargs=meth_kwargs, test_exact_match=False, device=device,
            tol=tol, agg_method="max"
        )

    @pytest.mark.parametrize('hue', [0.2, 0.5, (-0.2, 0.3), [-0.4, 0.5]])
    def test_color_jitter_hue(self, hue, device):
        meth_kwargs = {"hue": hue}
        _test_class_op(
            T.ColorJitter, meth_kwargs=meth_kwargs, test_exact_match=False, device=device,
            tol=16.1, agg_method="max"
        )

    def test_color_jitter_all(self, device):
        # All 4 parameters together
        meth_kwargs = {"brightness": 0.2, "contrast": 0.2, "saturation": 0.2, "hue": 0.2}
        _test_class_op(
            T.ColorJitter, meth_kwargs=meth_kwargs, test_exact_match=False, device=device,
            tol=12.1, agg_method="max"
        )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('m', ["constant", "edge", "reflect", "symmetric"])
@pytest.mark.parametrize('mul', [1, -1])
def test_pad(m, mul, device):
    fill = 127 if m == "constant" else 0

    # Test functional.pad (PIL and Tensor) with padding as single int
    _test_functional_op(
        F.pad, fn_kwargs={"padding": mul * 2, "fill": fill, "padding_mode": m},
        device=device
    )
    # Test functional.pad and transforms.Pad with padding as [int, ]
    fn_kwargs = meth_kwargs = {"padding": [mul * 2, ], "fill": fill, "padding_mode": m}
    _test_op(
        F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
    )
    # Test functional.pad and transforms.Pad with padding as list
    fn_kwargs = meth_kwargs = {"padding": [mul * 4, 4], "fill": fill, "padding_mode": m}
    _test_op(
        F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
    )
    # Test functional.pad and transforms.Pad with padding as tuple
    fn_kwargs = meth_kwargs = {"padding": (mul * 2, 2, 2, mul * 2), "fill": fill, "padding_mode": m}
    _test_op(
        F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_crop(device):
    fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
    # Test transforms.RandomCrop with size and padding as tuple
    meth_kwargs = {"size": (4, 5), "padding": (4, 4), "pad_if_needed": True, }
    _test_op(
        F.crop, T.RandomCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
    )

    # Test transforms.functional.crop including outside the image area
    fn_kwargs = {"top": -2, "left": 3, "height": 4, "width": 5}  # top
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 1, "left": -3, "height": 4, "width": 5}  # left
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 7, "left": 3, "height": 4, "width": 5}  # bottom
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 3, "left": 8, "height": 4, "width": 5}  # right
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": -3, "left": -3, "height": 15, "width": 15}  # all
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('padding_config', [
    {"padding_mode": "constant", "fill": 0},
    {"padding_mode": "constant", "fill": 10},
    {"padding_mode": "constant", "fill": 20},
    {"padding_mode": "edge"},
    {"padding_mode": "reflect"}
])
@pytest.mark.parametrize('size', [5, [5, ], [6, 6]])
def test_crop_pad(size, padding_config, device):
    config = dict(padding_config)
    config["size"] = size
    _test_class_op(T.RandomCrop, device, config)


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_center_crop(device):
    fn_kwargs = {"output_size": (4, 5)}
    meth_kwargs = {"size": (4, 5), }
    _test_op(
        F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs,
        meth_kwargs=meth_kwargs
    )
    fn_kwargs = {"output_size": (5,)}
    meth_kwargs = {"size": (5, )}
    _test_op(
        F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs,
        meth_kwargs=meth_kwargs
    )
    tensor = torch.randint(0, 256, (3, 10, 10), dtype=torch.uint8, device=device)
    # Test torchscript of transforms.CenterCrop with size as int
    f = T.CenterCrop(size=5)
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as [int, ]
    f = T.CenterCrop(size=[5, ])
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as tuple
    f = T.CenterCrop(size=(6, 6))
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    with get_tmp_dir() as tmp_dir:
        scripted_fn.save(os.path.join(tmp_dir, "t_center_crop.pt"))


637
638
639
640
@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):

    def setUp(self):
641
        torch.set_deterministic(False)
642
643
644
        self.device = "cuda"


645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
def _test_random_affine_helper(device, **kwargs):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
    transform = T.RandomAffine(**kwargs)
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_random_affine(device):
    transform = T.RandomAffine(degrees=45.0)
    s_transform = torch.jit.script(transform)
    with get_tmp_dir() as tmp_dir:
        s_transform.save(os.path.join(tmp_dir, "t_random_affine.pt"))


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('shear', [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]])
def test_random_affine_shear(device, interpolation, shear):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, shear=shear)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('scale', [(0.7, 1.2), [0.7, 1.2]])
def test_random_affine_scale(device, interpolation, scale):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, scale=scale)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('translate', [(0.1, 0.2), [0.2, 0.1]])
def test_random_affine_translate(device, interpolation, translate):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, translate=translate)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('degrees', [45, 35.0, (-45, 45), [-90.0, 90.0]])
def test_random_affine_degrees(device, interpolation, degrees):
    _test_random_affine_helper(device, degrees=degrees, interpolation=interpolation)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('fill', [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1])
def test_random_affine_fill(device, interpolation, fill):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, fill=fill)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('center', [(0, 0), [10, 10], None, (56, 44)])
@pytest.mark.parametrize('expand', [True, False])
@pytest.mark.parametrize('degrees', [45, 35.0, (-45, 45), [-90.0, 90.0]])
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('fill', [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1])
def test_random_rotate(device, center, expand, degrees, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.RandomRotation(
        degrees=degrees, interpolation=interpolation, expand=expand, center=center, fill=fill
    )
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


def test_random_rotate_save():
    transform = T.RandomRotation(degrees=45.0)
    s_transform = torch.jit.script(transform)
    with get_tmp_dir() as tmp_dir:
        s_transform.save(os.path.join(tmp_dir, "t_random_rotate.pt"))


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('distortion_scale', np.linspace(0.1, 1.0, num=20))
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('fill', [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1])
def test_random_perspective(device, distortion_scale, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.RandomPerspective(
        distortion_scale=distortion_scale,
        interpolation=interpolation,
        fill=fill
    )
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


def test_random_perspective_save():
    transform = T.RandomPerspective()
    s_transform = torch.jit.script(transform)
    with get_tmp_dir() as tmp_dir:
        s_transform.save(os.path.join(tmp_dir, "t_perspective.pt"))


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('Klass, meth_kwargs', [
    (T.Grayscale, {"num_output_channels": 1}),
    (T.Grayscale, {"num_output_channels": 3}),
    (T.RandomGrayscale, {})
])
def test_to_grayscale(device, Klass, meth_kwargs):

    tol = 1.0 + 1e-10
    _test_class_op(
        Klass, meth_kwargs=meth_kwargs, test_exact_match=False, device=device,
        tol=tol, agg_method="max"
    )


765
766
if __name__ == '__main__':
    unittest.main()