test_transforms.py 54.1 KB
Newer Older
1
from __future__ import division
2
import os
3
4
import torch
import torchvision.transforms as transforms
5
import torchvision.transforms.functional as F
6
from torch._utils_internal import get_file_path_2
7
import unittest
8
import math
9
import random
10
import numpy as np
11
12
13
14
15
16
from PIL import Image
try:
    import accimage
except ImportError:
    accimage = None

17
18
19
20
21
try:
    from scipy import stats
except ImportError:
    stats = None

22
23
GRACE_HOPPER = get_file_path_2(
    os.path.dirname(os.path.abspath(__file__)), 'assets', 'grace_hopper_517x606.jpg')
24

25

26
class Tester(unittest.TestCase):
27

28
29
30
31
    def test_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
32
33
        owidth = random.randint(5, (width - 2) / 2) * 2

34
        img = torch.ones(3, height, width)
35
36
37
        oh1 = (height - oheight) // 2
        ow1 = (width - owidth) // 2
        imgnarrow = img[:, oh1:oh1 + oheight, ow1:ow1 + owidth]
38
39
40
41
42
43
44
        imgnarrow.fill_(0)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        assert result.sum() == 0, "height: " + str(height) + " width: " \
45
                                  + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
46
47
48
49
50
51
52
53
54
        oheight += 1
        owidth += 1
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum1 = result.sum()
        assert sum1 > 1, "height: " + str(height) + " width: " \
55
                         + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
56
        oheight += 1
57
        owidth += 1
58
59
60
61
62
63
64
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        sum2 = result.sum()
        assert sum2 > 0, "height: " + str(height) + " width: " \
65
                         + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
66
        assert sum2 > sum1, "height: " + str(height) + " width: " \
67
                            + str(width) + " oheight: " + str(oheight) + " owidth: " + str(owidth)
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    def test_five_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for single_dim in [True, False]:
            crop_h = random.randint(1, h)
            crop_w = random.randint(1, w)
            if single_dim:
                crop_h = min(crop_h, crop_w)
                crop_w = crop_h
                transform = transforms.FiveCrop(crop_h)
            else:
                transform = transforms.FiveCrop((crop_h, crop_w))

            img = torch.FloatTensor(3, h, w).uniform_()
            results = transform(to_pil_image(img))

            assert len(results) == 5
            for crop in results:
                assert crop.size == (crop_w, crop_h)

            to_pil_image = transforms.ToPILImage()
            tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
            tr = to_pil_image(img[:, 0:crop_h, w - crop_w:])
            bl = to_pil_image(img[:, h - crop_h:, 0:crop_w])
            br = to_pil_image(img[:, h - crop_h:, w - crop_w:])
            center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
            expected_output = (tl, tr, bl, br, center)
            assert results == expected_output

    def test_ten_crop(self):
        to_pil_image = transforms.ToPILImage()
        h = random.randint(5, 25)
        w = random.randint(5, 25)
        for should_vflip in [True, False]:
            for single_dim in [True, False]:
                crop_h = random.randint(1, h)
                crop_w = random.randint(1, w)
                if single_dim:
                    crop_h = min(crop_h, crop_w)
                    crop_w = crop_h
110
111
                    transform = transforms.TenCrop(crop_h,
                                                   vertical_flip=should_vflip)
112
113
                    five_crop = transforms.FiveCrop(crop_h)
                else:
114
115
                    transform = transforms.TenCrop((crop_h, crop_w),
                                                   vertical_flip=should_vflip)
116
117
118
119
120
                    five_crop = transforms.FiveCrop((crop_h, crop_w))

                img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
                results = transform(img)
                expected_output = five_crop(img)
121
122
123
124
125

                # Checking if FiveCrop and TenCrop can be printed as string
                transform.__repr__()
                five_crop.__repr__()

126
127
128
129
130
131
132
133
134
135
                if should_vflip:
                    vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
                    expected_output += five_crop(vflipped_img)
                else:
                    hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
                    expected_output += five_crop(hflipped_img)

                assert len(results) == 10
                assert expected_output == results

136
137
138
139
140
141
142
143
    def test_randomresized_params(self):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        size = 100
        epsilon = 0.05
Francisco Massa's avatar
Francisco Massa committed
144
        for _ in range(10):
145
146
            scale_min = round(random.random(), 2)
            scale_range = (scale_min, scale_min + round(random.random(), 2))
147
            aspect_min = max(round(random.random(), 2), epsilon)
148
149
            aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
            randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range)
150
            i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
151
152
153
            aspect_ratio_obtained = w / h
            assert (min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon or
                    aspect_ratio_obtained == 1.0)
154
155
156
157
            assert isinstance(i, int)
            assert isinstance(j, int)
            assert isinstance(h, int)
            assert isinstance(w, int)
158

159
    def test_randomperspective(self):
Francisco Massa's avatar
Francisco Massa committed
160
        for _ in range(10):
161
162
163
164
165
166
167
168
169
170
171
172
173
174
            height = random.randint(24, 32) * 2
            width = random.randint(24, 32) * 2
            img = torch.ones(3, height, width)
            to_pil_image = transforms.ToPILImage()
            img = to_pil_image(img)
            perp = transforms.RandomPerspective()
            startpoints, endpoints = perp.get_params(width, height, 0.5)
            tr_img = F.perspective(img, startpoints, endpoints)
            tr_img2 = F.to_tensor(F.perspective(tr_img, endpoints, startpoints))
            tr_img = F.to_tensor(tr_img)
            assert img.size[0] == width and img.size[1] == height
            assert torch.nn.functional.mse_loss(tr_img, F.to_tensor(img)) + 0.3 > \
                torch.nn.functional.mse_loss(tr_img2, F.to_tensor(img))

175
    def test_resize(self):
176
177
178
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        osize = random.randint(5, 12) * 2
179

180
181
182
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
183
            transforms.Resize(osize),
184
185
186
187
            transforms.ToTensor(),
        ])(img)
        assert osize in result.size()
        if height < width:
188
            assert result.size(1) <= result.size(2)
189
190
191
        elif width < height:
            assert result.size(1) >= result.size(2)

192
193
        result = transforms.Compose([
            transforms.ToPILImage(),
194
            transforms.Resize([osize, osize]),
195
196
197
198
199
200
            transforms.ToTensor(),
        ])(img)
        assert osize in result.size()
        assert result.size(1) == osize
        assert result.size(2) == osize

201
202
203
204
        oheight = random.randint(5, 12) * 2
        owidth = random.randint(5, 12) * 2
        result = transforms.Compose([
            transforms.ToPILImage(),
205
            transforms.Resize((oheight, owidth)),
206
207
208
209
210
211
212
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

        result = transforms.Compose([
            transforms.ToPILImage(),
213
            transforms.Resize([oheight, owidth]),
214
215
216
217
218
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

219
220
221
222
    def test_random_crop(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        oheight = random.randint(5, (height - 2) / 2) * 2
223
        owidth = random.randint(5, (width - 2) / 2) * 2
224
225
226
227
228
229
230
231
232
        img = torch.ones(3, height, width)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

233
234
235
236
237
238
239
240
241
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == oheight
        assert result.size(2) == owidth

242
243
244
245
246
247
248
249
250
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height, width)),
            transforms.ToTensor()
        ])(img)
        assert result.size(1) == height
        assert result.size(2) == width
        assert np.allclose(img.numpy(), result.numpy())

251
252
253
254
255
256
257
258
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
            transforms.ToTensor(),
        ])(img)
        assert result.size(1) == height + 1
        assert result.size(2) == width + 1

259
260
261
262
263
264
265
266
267
268
    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
        result = transforms.Compose([
            transforms.ToPILImage(),
            transforms.Pad(padding),
            transforms.ToTensor(),
        ])(img)
269
270
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
Soumith Chintala's avatar
Soumith Chintala committed
271

272
273
274
275
276
277
278
279
280
281
282
283
284
285
    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

        padding = tuple([random.randint(1, 20) for _ in range(2)])
        output = transforms.Pad(padding)(img)
        assert output.size == (width + padding[0] * 2, height + padding[1] * 2)

        padding = tuple([random.randint(1, 20) for _ in range(4)])
        output = transforms.Pad(padding)(img)
        assert output.size[0] == width + padding[0] + padding[2]
        assert output.size[1] == height + padding[1] + padding[3]

286
287
288
        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

289
290
    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
vfdev's avatar
vfdev committed
291
        img = torch.zeros(3, 27, 27).byte()
292
293
294
295
296
297
298
299
300
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
        edge_padded_img = F.pad(img, 3, padding_mode='edge')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
vfdev's avatar
vfdev committed
301
        assert np.all(edge_middle_slice == np.asarray([200, 200, 200, 200, 1, 0]))
302
303
304
305
306
307
308
        assert transforms.ToTensor()(edge_padded_img).size() == (3, 35, 35)

        # Pad 3 to left/right, 2 to top/bottom
        reflect_padded_img = F.pad(img, (3, 2), padding_mode='reflect')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
vfdev's avatar
vfdev committed
309
        assert np.all(reflect_middle_slice == np.asarray([0, 0, 1, 200, 1, 0]))
310
311
312
313
314
315
316
        assert transforms.ToTensor()(reflect_padded_img).size() == (3, 33, 35)

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode='symmetric')
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
vfdev's avatar
vfdev committed
317
        assert np.all(symmetric_middle_slice == np.asarray([0, 1, 200, 200, 1, 0]))
318
319
        assert transforms.ToTensor()(symmetric_padded_img).size() == (3, 32, 34)

320
    def test_pad_raises_with_invalid_pad_sequence_len(self):
321
322
323
324
325
326
327
328
329
        with self.assertRaises(ValueError):
            transforms.Pad(())

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3))

        with self.assertRaises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

Soumith Chintala's avatar
Soumith Chintala committed
330
331
332
333
    def test_lambda(self):
        trans = transforms.Lambda(lambda x: x.add(10))
        x = torch.randn(10)
        y = trans(x)
334
        assert (y.equal(torch.add(x, 10)))
Soumith Chintala's avatar
Soumith Chintala committed
335
336
337
338

        trans = transforms.Lambda(lambda x: x.add_(10))
        x = torch.randn(10)
        y = trans(x)
339
340
        assert (y.equal(x))

341
342
343
        # Checking if Lambda can be printed as string
        trans.__repr__()

344
    @unittest.skipIf(stats is None, 'scipy.stats not available')
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
    def test_random_apply(self):
        random_state = random.getstate()
        random.seed(42)
        random_apply_transform = transforms.RandomApply(
            [
                transforms.RandomRotation((-45, 45)),
                transforms.RandomHorizontalFlip(),
                transforms.RandomVerticalFlip(),
            ], p=0.75
        )
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        num_samples = 250
        num_applies = 0
        for _ in range(num_samples):
            out = random_apply_transform(img)
            if out != img:
                num_applies += 1

        p_value = stats.binom_test(num_applies, num_samples, p=0.75)
        random.setstate(random_state)
        assert p_value > 0.0001

        # Checking if RandomApply can be printed as string
        random_apply_transform.__repr__()

370
    @unittest.skipIf(stats is None, 'scipy.stats not available')
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
    def test_random_choice(self):
        random_state = random.getstate()
        random.seed(42)
        random_choice_transform = transforms.RandomChoice(
            [
                transforms.Resize(15),
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_resize_15 = 0
        num_resize_20 = 0
        num_crop_10 = 0
        for _ in range(num_samples):
            out = random_choice_transform(img)
            if out.size == (15, 15):
                num_resize_15 += 1
            elif out.size == (20, 20):
                num_resize_20 += 1
            elif out.size == (10, 10):
                num_crop_10 += 1

        p_value = stats.binom_test(num_resize_15, num_samples, p=0.33333)
        assert p_value > 0.0001
        p_value = stats.binom_test(num_resize_20, num_samples, p=0.33333)
        assert p_value > 0.0001
        p_value = stats.binom_test(num_crop_10, num_samples, p=0.33333)
        assert p_value > 0.0001

        random.setstate(random_state)
        # Checking if RandomChoice can be printed as string
        random_choice_transform.__repr__()

406
    @unittest.skipIf(stats is None, 'scipy.stats not available')
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    def test_random_order(self):
        random_state = random.getstate()
        random.seed(42)
        random_order_transform = transforms.RandomOrder(
            [
                transforms.Resize(20),
                transforms.CenterCrop(10)
            ]
        )
        img = transforms.ToPILImage()(torch.rand(3, 25, 25))
        num_samples = 250
        num_normal_order = 0
        resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
        for _ in range(num_samples):
            out = random_order_transform(img)
            if out == resize_crop_out:
                num_normal_order += 1

        p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001

        # Checking if RandomOrder can be printed as string
        random_order_transform.__repr__()

432
    def test_to_tensor(self):
433
        test_channels = [1, 3, 4]
434
435
        height, width = 4, 4
        trans = transforms.ToTensor()
436
437
438
439
440
441
442

        for channels in test_channels:
            input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
            img = transforms.ToPILImage()(input_data)
            output = trans(img)
            assert np.allclose(input_data.numpy(), output.numpy())

443
            ndarray = np.random.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
444
445
446
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1)) / 255.0
            assert np.allclose(output.numpy(), expected_output)
447

448
449
450
451
452
            ndarray = np.random.rand(height, width, channels).astype(np.float32)
            output = trans(ndarray)
            expected_output = ndarray.transpose((2, 0, 1))
            assert np.allclose(output.numpy(), expected_output)

453
454
455
456
457
458
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
        img = transforms.ToPILImage()(input_data.mul(255)).convert('1')
        output = trans(img)
        assert np.allclose(input_data.numpy(), output.numpy())

459
460
461
462
463
464
465
466
467
468
469
470
471
    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        assert np.allclose(output.numpy(), expected_output.numpy())

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_resize(self):
        trans = transforms.Compose([
472
            transforms.Resize(256, interpolation=Image.LINEAR),
473
474
475
            transforms.ToTensor(),
        ])

476
477
478
        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        self.assertLess(np.abs((expected_output - output).mean()), 1e-3)
        self.assertLess((expected_output - output).var(), 1e-5)
        # note the high absolute tolerance
        assert np.allclose(output.numpy(), expected_output.numpy(), atol=5e-2)

    @unittest.skipIf(accimage is None, 'accimage not available')
    def test_accimage_crop(self):
        trans = transforms.Compose([
            transforms.CenterCrop(256),
            transforms.ToTensor(),
        ])

495
496
497
        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

498
499
500
501
502
503
        expected_output = trans(Image.open(GRACE_HOPPER).convert('RGB'))
        output = trans(accimage.Image(GRACE_HOPPER))

        self.assertEqual(expected_output.size(), output.size())
        assert np.allclose(output.numpy(), expected_output.numpy())

504
    def test_1_channel_tensor_to_pil_image(self):
505
506
        to_tensor = transforms.ToTensor()

507
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
508
509
510
511
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        img_data_int = torch.IntTensor(1, 4, 4).random_()

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
                assert img.mode == mode
                assert np.allclose(expected_output, to_tensor(img).numpy())

    def test_1_channel_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4, 1).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4, 1).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4, 1).random_().numpy()
        img_data_int = torch.IntTensor(4, 4, 1).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
                assert img.mode == mode
                assert np.allclose(img_data[:, :, 0], img)

surgan12's avatar
surgan12 committed
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
    def test_2_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'LA'  # default should assume LA
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode
            split = img.split()
            for i in range(2):
                assert np.allclose(img_data[:, :, i], split[i])

        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        for mode in [None, 'LA']:
            verify_img_data(img_data, mode)

        transforms.ToPILImage().__repr__()

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

    def test_2_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'LA'  # default should assume LA
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode
            split = img.split()
            for i in range(2):
                assert np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy())

        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'LA']:
            verify_img_data(img_data, expected_output, mode=mode)

        with self.assertRaises(ValueError):
            # should raise if we try a mode for 4 or 1 or 3 channel images
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
            transforms.ToPILImage(mode='RGB')(img_data)

586
587
588
589
590
591
592
593
594
595
    def test_3_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'RGB'  # default should assume RGB
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode
            split = img.split()
            for i in range(3):
596
                assert np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy())
597

598
599
600
601
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, expected_output, mode=mode)
602

603
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
604
            # should raise if we try a mode for 4 or 1 or 2 channel images
605
606
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
607
            transforms.ToPILImage(mode='LA')(img_data)
608

Varun Agrawal's avatar
Varun Agrawal committed
609
610
611
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

612
613
614
615
616
617
618
619
620
621
622
    def test_3_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'RGB'  # default should assume RGB
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode
            split = img.split()
            for i in range(3):
                assert np.allclose(img_data[:, :, i], split[i])
623

624
625
626
627
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()
        for mode in [None, 'RGB', 'HSV', 'YCbCr']:
            verify_img_data(img_data, mode)

628
629
630
        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

631
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
632
            # should raise if we try a mode for 4 or 1 or 2 channel images
633
634
            transforms.ToPILImage(mode='RGBA')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
635
            transforms.ToPILImage(mode='LA')(img_data)
636
637
638
639
640
641
642
643
644
645
646
647

    def test_4_channel_tensor_to_pil_image(self):
        def verify_img_data(img_data, expected_output, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'RGBA'  # default should assume RGBA
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode

            split = img.split()
            for i in range(4):
648
                assert np.allclose(expected_output[i].numpy(), F.to_tensor(split[i]).numpy())
649

650
        img_data = torch.Tensor(4, 4, 4).uniform_()
651
        expected_output = img_data.mul(255).int().float().div(255)
surgan12's avatar
surgan12 committed
652
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
653
            verify_img_data(img_data, expected_output, mode)
654

655
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
656
            # should raise if we try a mode for 3 or 1 or 2 channel images
657
658
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
659
            transforms.ToPILImage(mode='LA')(img_data)
660
661
662
663
664
665
666
667
668
669
670
671

    def test_4_channel_ndarray_to_pil_image(self):
        def verify_img_data(img_data, mode):
            if mode is None:
                img = transforms.ToPILImage()(img_data)
                assert img.mode == 'RGBA'  # default should assume RGBA
            else:
                img = transforms.ToPILImage(mode=mode)(img_data)
                assert img.mode == mode
            split = img.split()
            for i in range(4):
                assert np.allclose(img_data[:, :, i], split[i])
672

673
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()
surgan12's avatar
surgan12 committed
674
        for mode in [None, 'RGBA', 'CMYK', 'RGBX']:
675
            verify_img_data(img_data, mode)
676

677
        with self.assertRaises(ValueError):
surgan12's avatar
surgan12 committed
678
            # should raise if we try a mode for 3 or 1 or 2 channel images
679
680
            transforms.ToPILImage(mode='RGB')(img_data)
            transforms.ToPILImage(mode='P')(img_data)
surgan12's avatar
surgan12 committed
681
            transforms.ToPILImage(mode='LA')(img_data)
682

Varun Agrawal's avatar
Varun Agrawal committed
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
    def test_2d_tensor_to_pil_image(self):
        to_tensor = transforms.ToTensor()

        img_data_float = torch.Tensor(4, 4).uniform_()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        img_data_short = torch.ShortTensor(4, 4).random_()
        img_data_int = torch.IntTensor(4, 4).random_()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_outputs = [img_data_float.mul(255).int().float().div(255).numpy(),
                            img_data_byte.float().div(255.0).numpy(),
                            img_data_short.numpy(),
                            img_data_int.numpy()]
        expected_modes = ['L', 'L', 'I;16', 'I']

        for img_data, expected_output, mode in zip(inputs, expected_outputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
                assert img.mode == mode
                assert np.allclose(expected_output, to_tensor(img).numpy())

    def test_2d_ndarray_to_pil_image(self):
        img_data_float = torch.Tensor(4, 4).uniform_().numpy()
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255).numpy()
        img_data_short = torch.ShortTensor(4, 4).random_().numpy()
        img_data_int = torch.IntTensor(4, 4).random_().numpy()

        inputs = [img_data_float, img_data_byte, img_data_short, img_data_int]
        expected_modes = ['F', 'L', 'I;16', 'I']
        for img_data, mode in zip(inputs, expected_modes):
            for transform in [transforms.ToPILImage(), transforms.ToPILImage(mode=mode)]:
                img = transform(img_data)
                assert img.mode == mode
                assert np.allclose(img_data, img)

    def test_tensor_bad_types_to_pil_image(self):
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))

722
    def test_ndarray_bad_types_to_pil_image(self):
723
        trans = transforms.ToPILImage()
724
        with self.assertRaises(TypeError):
725
726
727
728
729
            trans(np.ones([4, 4, 1], np.int64))
            trans(np.ones([4, 4, 1], np.uint16))
            trans(np.ones([4, 4, 1], np.uint32))
            trans(np.ones([4, 4, 1], np.float64))

Varun Agrawal's avatar
Varun Agrawal committed
730
731
732
        with self.assertRaises(ValueError):
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))

733
734
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_vertical_flip(self):
735
736
        random_state = random.getstate()
        random.seed(42)
737
738
739
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        vimg = img.transpose(Image.FLIP_TOP_BOTTOM)

740
        num_samples = 250
741
        num_vertical = 0
742
        for _ in range(num_samples):
743
744
745
746
            out = transforms.RandomVerticalFlip()(img)
            if out == vimg:
                num_vertical += 1

747
748
749
        p_value = stats.binom_test(num_vertical, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001
750

751
752
753
754
755
756
757
758
759
760
761
        num_samples = 250
        num_vertical = 0
        for _ in range(num_samples):
            out = transforms.RandomVerticalFlip(p=0.7)(img)
            if out == vimg:
                num_vertical += 1

        p_value = stats.binom_test(num_vertical, num_samples, p=0.7)
        random.setstate(random_state)
        assert p_value > 0.0001

762
763
764
        # Checking if RandomVerticalFlip can be printed as string
        transforms.RandomVerticalFlip().__repr__()

765
766
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_horizontal_flip(self):
767
768
        random_state = random.getstate()
        random.seed(42)
769
770
771
        img = transforms.ToPILImage()(torch.rand(3, 10, 10))
        himg = img.transpose(Image.FLIP_LEFT_RIGHT)

772
        num_samples = 250
773
        num_horizontal = 0
774
        for _ in range(num_samples):
775
776
777
778
            out = transforms.RandomHorizontalFlip()(img)
            if out == himg:
                num_horizontal += 1

779
780
781
        p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001
782

783
784
785
786
787
788
789
790
791
792
793
        num_samples = 250
        num_horizontal = 0
        for _ in range(num_samples):
            out = transforms.RandomHorizontalFlip(p=0.7)(img)
            if out == himg:
                num_horizontal += 1

        p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
        random.setstate(random_state)
        assert p_value > 0.0001

794
795
796
        # Checking if RandomHorizontalFlip can be printed as string
        transforms.RandomHorizontalFlip().__repr__()

797
    @unittest.skipIf(stats is None, 'scipy.stats is not available')
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
    def test_normalize(self):
        def samples_from_standard_normal(tensor):
            p_value = stats.kstest(list(tensor.view(-1)), 'norm', args=(0, 1)).pvalue
            return p_value > 0.0001

        random_state = random.getstate()
        random.seed(42)
        for channels in [1, 3]:
            img = torch.rand(channels, 10, 10)
            mean = [img[c].mean() for c in range(channels)]
            std = [img[c].std() for c in range(channels)]
            normalized = transforms.Normalize(mean, std)(img)
            assert samples_from_standard_normal(normalized)
        random.setstate(random_state)

813
814
815
        # Checking if Normalize can be printed as string
        transforms.Normalize(mean, std).__repr__()

816
817
818
819
820
821
822
823
824
    def test_normalize_different_dtype(self):
        for dtype1 in [torch.float32, torch.float64]:
            img = torch.rand(3, 10, 10, dtype=dtype1)
            for dtype2 in [torch.int64, torch.float32, torch.float64]:
                mean = torch.tensor([1, 2, 3], dtype=dtype2)
                std = torch.tensor([1, 2, 1], dtype=dtype2)
                # checks that it doesn't crash
                transforms.functional.normalize(img, mean, std)

825
826
827
828
829
830
831
    def test_adjust_brightness(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
832
        y_pil = F.adjust_brightness(x_pil, 1)
833
834
835
836
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
837
        y_pil = F.adjust_brightness(x_pil, 0.5)
838
839
840
841
842
843
        y_np = np.array(y_pil)
        y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
844
        y_pil = F.adjust_brightness(x_pil, 2)
845
846
847
848
849
850
851
852
853
854
855
856
        y_np = np.array(y_pil)
        y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_contrast(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
857
        y_pil = F.adjust_contrast(x_pil, 1)
858
859
860
861
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
862
        y_pil = F.adjust_contrast(x_pil, 0.5)
863
864
865
866
867
868
        y_np = np.array(y_pil)
        y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
869
        y_pil = F.adjust_contrast(x_pil, 2)
870
871
872
873
874
875
876
877
878
879
880
881
        y_np = np.array(y_pil)
        y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_saturation(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
882
        y_pil = F.adjust_saturation(x_pil, 1)
883
884
885
886
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
887
        y_pil = F.adjust_saturation(x_pil, 0.5)
888
889
890
891
892
893
        y_np = np.array(y_pil)
        y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
894
        y_pil = F.adjust_saturation(x_pil, 2)
895
896
897
898
899
900
901
902
903
904
905
906
        y_np = np.array(y_pil)
        y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_hue(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        with self.assertRaises(ValueError):
907
908
            F.adjust_hue(x_pil, -0.7)
            F.adjust_hue(x_pil, 1)
909
910
911

        # test 0: almost same as x_data but not exact.
        # probably because hsv <-> rgb floating point ops
912
        y_pil = F.adjust_hue(x_pil, 0)
913
914
915
916
917
918
        y_np = np.array(y_pil)
        y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 1
919
        y_pil = F.adjust_hue(x_pil, 0.25)
920
921
922
923
924
925
        y_np = np.array(y_pil)
        y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
926
        y_pil = F.adjust_hue(x_pil, -0.25)
927
928
929
930
931
932
933
934
935
936
937
938
        y_np = np.array(y_pil)
        y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjust_gamma(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')

        # test 0
939
        y_pil = F.adjust_gamma(x_pil, 1)
940
941
942
943
        y_np = np.array(y_pil)
        assert np.allclose(y_np, x_np)

        # test 1
944
        y_pil = F.adjust_gamma(x_pil, 0.5)
945
946
947
948
949
950
        y_np = np.array(y_pil)
        y_ans = [0, 35, 57, 117, 185, 240, 97, 45, 244, 151, 255, 15]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

        # test 2
951
        y_pil = F.adjust_gamma(x_pil, 2)
952
953
954
955
956
957
958
959
960
961
962
963
        y_np = np.array(y_pil)
        y_ans = [0, 0, 0, 11, 71, 200, 5, 0, 214, 31, 255, 0]
        y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
        assert np.allclose(y_np, y_ans)

    def test_adjusts_L_mode(self):
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_rgb = Image.fromarray(x_np, mode='RGB')

        x_l = x_rgb.convert('L')
964
965
966
967
968
        assert F.adjust_brightness(x_l, 2).mode == 'L'
        assert F.adjust_saturation(x_l, 2).mode == 'L'
        assert F.adjust_contrast(x_l, 2).mode == 'L'
        assert F.adjust_hue(x_l, 0.4).mode == 'L'
        assert F.adjust_gamma(x_l, 0.5).mode == 'L'
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

    def test_color_jitter(self):
        color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')

        for i in range(10):
            y_pil = color_jitter(x_pil)
            assert y_pil.mode == x_pil.mode

            y_pil_2 = color_jitter(x_pil_2)
            assert y_pil_2.mode == x_pil_2.mode

986
987
988
        # Checking if ColorJitter can be printed as string
        color_jitter.__repr__()

989
    def test_linear_transformation(self):
ekka's avatar
ekka committed
990
991
992
993
994
995
996
997
998
999
1000
1001
        num_samples = 1000
        x = torch.randn(num_samples, 3, 10, 10)
        flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
        # compute principal components
        sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
        u, s, _ = np.linalg.svd(sigma.numpy())
        zca_epsilon = 1e-10  # avoid division by 0
        d = torch.Tensor(np.diag(1. / np.sqrt(s + zca_epsilon)))
        u = torch.Tensor(u)
        principal_components = torch.mm(torch.mm(u, d), u.t())
        mean_vector = (torch.sum(flat_x, dim=0) / flat_x.size(0))
        # initialize whitening matrix
1002
        whitening = transforms.LinearTransformation(principal_components, mean_vector)
ekka's avatar
ekka committed
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
        # estimate covariance and mean using weak law of large number
        num_features = flat_x.size(1)
        cov = 0.0
        mean = 0.0
        for i in x:
            xwhite = whitening(i)
            xwhite = xwhite.view(1, -1).numpy()
            cov += np.dot(xwhite, xwhite.T) / num_features
            mean += np.sum(xwhite) / num_features
        # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
        assert np.allclose(cov / num_samples, np.identity(1), rtol=2e-3), "cov not close to 1"
        assert np.allclose(mean / num_samples, 0, rtol=1e-3), "mean not close to 0"

1016
        # Checking if LinearTransformation can be printed as string
ekka's avatar
ekka committed
1017
1018
        whitening.__repr__()

1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
    def test_rotate(self):
        x = np.zeros((100, 100, 3), dtype=np.uint8)
        x[40, 40] = [255, 255, 255]

        with self.assertRaises(TypeError):
            F.rotate(x, 10)

        img = F.to_pil_image(x)

        result = F.rotate(img, 45)
        assert result.size == (100, 100)
        r, c, ch = np.where(result)
        assert all(x in r for x in [49, 50])
        assert all(x in c for x in [36])
        assert all(x in ch for x in [0, 1, 2])

        result = F.rotate(img, 45, expand=True)
        assert result.size == (142, 142)
        r, c, ch = np.where(result)
        assert all(x in r for x in [70, 71])
        assert all(x in c for x in [57])
        assert all(x in ch for x in [0, 1, 2])

        result = F.rotate(img, 45, center=(40, 40))
        assert result.size == (100, 100)
        r, c, ch = np.where(result)
        assert all(x in r for x in [40])
        assert all(x in c for x in [40])
        assert all(x in ch for x in [0, 1, 2])

        result_a = F.rotate(img, 90)
        result_b = F.rotate(img, -270)

        assert np.all(np.array(result_a) == np.array(result_b))

1054
    def test_affine(self):
Francisco Massa's avatar
Francisco Massa committed
1055
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
1056
        pts = []
Francisco Massa's avatar
Francisco Massa committed
1057
1058
        cnt = [20, 20]
        for pt in [(16, 16), (20, 16), (20, 20)]:
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]
                    pts.append((pt[0] + i, pt[1] + j))
        pts = list(set(pts))

        with self.assertRaises(TypeError):
            F.affine(input_img, 10)

        pil_img = F.to_pil_image(input_img)

        def _to_3x3_inv(inv_result_matrix):
            result_matrix = np.zeros((3, 3))
            result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
            result_matrix[2, 2] = 1
            return np.linalg.inv(result_matrix)

        def _test_transformation(a, t, s, sh):
            a_rad = math.radians(a)
            s_rad = math.radians(sh)
            # 1) Check transformation matrix:
            c_matrix = np.array([[1.0, 0.0, cnt[0]], [0.0, 1.0, cnt[1]], [0.0, 0.0, 1.0]])
            c_inv_matrix = np.linalg.inv(c_matrix)
            t_matrix = np.array([[1.0, 0.0, t[0]],
                                 [0.0, 1.0, t[1]],
                                 [0.0, 0.0, 1.0]])
            r_matrix = np.array([[s * math.cos(a_rad), -s * math.sin(a_rad + s_rad), 0.0],
                                 [s * math.sin(a_rad), s * math.cos(a_rad + s_rad), 0.0],
                                 [0.0, 0.0, 1.0]])
            true_matrix = np.dot(t_matrix, np.dot(c_matrix, np.dot(r_matrix, c_inv_matrix)))
            result_matrix = _to_3x3_inv(F._get_inverse_affine_matrix(center=cnt, angle=a,
                                                                     translate=t, scale=s, shear=sh))
            assert np.sum(np.abs(true_matrix - result_matrix)) < 1e-10
            # 2) Perform inverse mapping:
Francisco Massa's avatar
Francisco Massa committed
1093
            true_result = np.zeros((40, 40, 3), dtype=np.uint8)
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
            inv_true_matrix = np.linalg.inv(true_matrix)
            for y in range(true_result.shape[0]):
                for x in range(true_result.shape[1]):
                    res = np.dot(inv_true_matrix, [x, y, 1])
                    _x = int(res[0] + 0.5)
                    _y = int(res[1] + 0.5)
                    if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                        true_result[y, x, :] = input_img[_y, _x, :]

            result = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh)
            assert result.size == pil_img.size
            # Compute number of different pixels:
            np_result = np.array(result)
            n_diff_pixels = np.sum(np_result != true_result) / 3
            # Accept 3 wrong pixels
            assert n_diff_pixels < 3, \
                "a={}, t={}, s={}, sh={}\n".format(a, t, s, sh) +\
                "n diff pixels={}\n".format(np.sum(np.array(result)[:, :, 0] != true_result[:, :, 0]))

        # Test rotation
        a = 45
        _test_transformation(a=a, t=(0, 0), s=1.0, sh=0.0)

        # Test translation
        t = [10, 15]
        _test_transformation(a=0.0, t=t, s=1.0, sh=0.0)

        # Test scale
        s = 1.2
        _test_transformation(a=0.0, t=(0.0, 0.0), s=s, sh=0.0)

        # Test shear
        sh = 45.0
        _test_transformation(a=0.0, t=(0.0, 0.0), s=1.0, sh=sh)

        # Test rotation, scale, translation, shear
        for a in range(-90, 90, 25):
            for t1 in range(-10, 10, 5):
                for s in [0.75, 0.98, 1.0, 1.1, 1.2]:
                    for sh in range(-15, 15, 5):
                        _test_transformation(a=a, t=(t1, t1), s=s, sh=sh)

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
    def test_random_rotation(self):

        with self.assertRaises(ValueError):
            transforms.RandomRotation(-0.7)
            transforms.RandomRotation([-0.7])
            transforms.RandomRotation([-0.7, 0, 0.7])

        t = transforms.RandomRotation(10)
        angle = t.get_params(t.degrees)
        assert angle > -10 and angle < 10

        t = transforms.RandomRotation((-10, 10))
        angle = t.get_params(t.degrees)
        assert angle > -10 and angle < 10

1151
1152
1153
        # Checking if RandomRotation can be printed as string
        t.__repr__()

1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
    def test_random_affine(self):

        with self.assertRaises(ValueError):
            transforms.RandomAffine(-0.7)
            transforms.RandomAffine([-0.7])
            transforms.RandomAffine([-0.7, 0, 0.7])

            transforms.RandomAffine([-90, 90], translate=2.0)
            transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
            transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])

        x = np.zeros((100, 100, 3), dtype=np.uint8)
        img = F.to_pil_image(x)

        t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10])
        for _ in range(100):
            angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear,
                                                             img_size=img.size)
            assert -10 < angle < 10
            assert -img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5, \
                "{} vs {}".format(translations[0], img.size[0] * 0.5)
            assert -img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5, \
                "{} vs {}".format(translations[1], img.size[1] * 0.5)
            assert 0.7 < scale < 1.3
            assert -10 < shear < 10

        # Checking if RandomAffine can be printed as string
        t.__repr__()

        t = transforms.RandomAffine(10, resample=Image.BILINEAR)
        assert "Image.BILINEAR" in t.__repr__()

1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
    def test_to_grayscale(self):
        """Unit tests for grayscale transform"""

        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Test Set: Grayscale an image with desired number of output channels
        # Case 1: RGB -> 1 channel grayscale
        trans1 = transforms.Grayscale(num_output_channels=1)
        gray_pil_1 = trans1(x_pil)
        gray_np_1 = np.array(gray_pil_1)
        assert gray_pil_1.mode == 'L', 'mode should be L'
        assert gray_np_1.shape == tuple(x_shape[0:2]), 'should be 1 channel'
        np.testing.assert_equal(gray_np, gray_np_1)

        # Case 2: RGB -> 3 channel grayscale
        trans2 = transforms.Grayscale(num_output_channels=3)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
        assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
        assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
        np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])

        # Case 3: 1 channel grayscale -> 1 channel grayscale
        trans3 = transforms.Grayscale(num_output_channels=1)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
        assert gray_pil_3.mode == 'L', 'mode should be L'
        assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
        np.testing.assert_equal(gray_np, gray_np_3)

        # Case 4: 1 channel grayscale -> 3 channel grayscale
        trans4 = transforms.Grayscale(num_output_channels=3)
        gray_pil_4 = trans4(x_pil_2)
        gray_np_4 = np.array(gray_pil_4)
        assert gray_pil_4.mode == 'RGB', 'mode should be RGB'
        assert gray_np_4.shape == tuple(x_shape), 'should be 3 channel'
        np.testing.assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
        np.testing.assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_4[:, :, 0])

1242
1243
1244
        # Checking if Grayscale can be printed as string
        trans4.__repr__()

1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
    @unittest.skipIf(stats is None, 'scipy.stats not available')
    def test_random_grayscale(self):
        """Unit tests for random grayscale transform"""

        # Test Set 1: RGB -> 3 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_2 = transforms.RandomGrayscale(p=0.5)(x_pil)
            gray_np_2 = np.array(gray_pil_2)
            if np.array_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1]) and \
1264
1265
                    np.array_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2]) and \
                    np.array_equal(gray_np, gray_np_2[:, :, 0]):
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=0.5)
        random.setstate(random_state)
        assert p_value > 0.0001

        # Test Set 2: grayscale -> 1 channel grayscale
        random_state = random.getstate()
        random.seed(42)
        x_shape = [2, 2, 3]
        x_np = np.random.randint(0, 256, x_shape, np.uint8)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        num_samples = 250
        num_gray = 0
        for _ in range(num_samples):
            gray_pil_3 = transforms.RandomGrayscale(p=0.5)(x_pil_2)
            gray_np_3 = np.array(gray_pil_3)
            if np.array_equal(gray_np, gray_np_3):
                num_gray = num_gray + 1

        p_value = stats.binom_test(num_gray, num_samples, p=1.0)  # Note: grayscale is always unchanged
        random.setstate(random_state)
        assert p_value > 0.0001

        # Test set 3: Explicit tests
        x_shape = [2, 2, 3]
        x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
        x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
        x_pil = Image.fromarray(x_np, mode='RGB')
        x_pil_2 = x_pil.convert('L')
        gray_np = np.array(x_pil_2)

        # Case 3a: RGB -> 3 channel grayscale (grayscaled)
        trans2 = transforms.RandomGrayscale(p=1.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
        assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
        assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
        np.testing.assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
        np.testing.assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
        np.testing.assert_equal(gray_np, gray_np_2[:, :, 0])

        # Case 3b: RGB -> 3 channel grayscale (unchanged)
        trans2 = transforms.RandomGrayscale(p=0.0)
        gray_pil_2 = trans2(x_pil)
        gray_np_2 = np.array(gray_pil_2)
        assert gray_pil_2.mode == 'RGB', 'mode should be RGB'
        assert gray_np_2.shape == tuple(x_shape), 'should be 3 channel'
        np.testing.assert_equal(x_np, gray_np_2)

        # Case 3c: 1 channel grayscale -> 1 channel grayscale (grayscaled)
        trans3 = transforms.RandomGrayscale(p=1.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
        assert gray_pil_3.mode == 'L', 'mode should be L'
        assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
        np.testing.assert_equal(gray_np, gray_np_3)

        # Case 3d: 1 channel grayscale -> 1 channel grayscale (unchanged)
        trans3 = transforms.RandomGrayscale(p=0.0)
        gray_pil_3 = trans3(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
        assert gray_pil_3.mode == 'L', 'mode should be L'
        assert gray_np_3.shape == tuple(x_shape[0:2]), 'should be 1 channel'
        np.testing.assert_equal(gray_np, gray_np_3)

1335
1336
1337
        # Checking if RandomGrayscale can be printed as string
        trans3.__repr__()

1338

1339
1340
if __name__ == '__main__':
    unittest.main()