test_functional_tensor.py 50.6 KB
Newer Older
1
import colorsys
2
import itertools
3
import math
4
import os
5
import warnings
6
from functools import partial
7
from typing import Sequence
8

vfdev's avatar
vfdev committed
9
import numpy as np
10
import PIL.Image
11
import pytest
vfdev's avatar
vfdev committed
12
import torch
13
import torchvision.transforms as T
14
15
16
import torchvision.transforms.functional as F
import torchvision.transforms.functional_pil as F_pil
import torchvision.transforms.functional_tensor as F_t
Nicolas Hug's avatar
Nicolas Hug committed
17
from common_utils import (
18
19
    _assert_approx_equal_tensor_to_pil,
    _assert_equal_tensor_to_pil,
Nicolas Hug's avatar
Nicolas Hug committed
20
21
22
    _create_data,
    _create_data_batch,
    _test_fn_on_batch,
23
    assert_equal,
24
25
    cpu_and_gpu,
    needs_cuda,
Nicolas Hug's avatar
Nicolas Hug committed
26
)
27
from torchvision.transforms import InterpolationMode
28

29
30
31
32
33
34
NEAREST, NEAREST_EXACT, BILINEAR, BICUBIC = (
    InterpolationMode.NEAREST,
    InterpolationMode.NEAREST_EXACT,
    InterpolationMode.BILINEAR,
    InterpolationMode.BICUBIC,
)
35
36


37
@pytest.mark.parametrize("device", cpu_and_gpu())
38
@pytest.mark.parametrize("fn", [F.get_image_size, F.get_image_num_channels, F.get_dimensions])
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def test_image_sizes(device, fn):
    script_F = torch.jit.script(fn)

    img_tensor, pil_img = _create_data(16, 18, 3, device=device)
    value_img = fn(img_tensor)
    value_pil_img = fn(pil_img)
    assert value_img == value_pil_img

    value_img_script = script_F(img_tensor)
    assert value_img == value_img_script

    batch_tensors = _create_data_batch(16, 18, 3, num_samples=4, device=device)
    value_img_batch = fn(batch_tensors)
    assert value_img == value_img_batch


55
56
57
58
59
60
61
62
@needs_cuda
def test_scale_channel():
    """Make sure that _scale_channel gives the same results on CPU and GPU as
    histc or bincount are used depending on the device.
    """
    # TODO: when # https://github.com/pytorch/pytorch/issues/53194 is fixed,
    # only use bincount and remove that test.
    size = (1_000,)
63
    img_chan = torch.randint(0, 256, size=size).to("cpu")
64
    scaled_cpu = F_t._scale_channel(img_chan)
65
66
    scaled_cuda = F_t._scale_channel(img_chan.to("cuda"))
    assert_equal(scaled_cpu, scaled_cuda.to("cpu"))
67

68

69
70
71
72
73
74
class TestRotate:

    ALL_DTYPES = [None, torch.float32, torch.float64, torch.float16]
    scripted_rotate = torch.jit.script(F.rotate)
    IMG_W = 26

75
    @pytest.mark.parametrize("device", cpu_and_gpu())
76
    @pytest.mark.parametrize("height, width", [(7, 33), (26, IMG_W), (32, IMG_W)])
77
78
79
80
81
82
83
84
85
    @pytest.mark.parametrize(
        "center",
        [
            None,
            (int(IMG_W * 0.3), int(IMG_W * 0.4)),
            [int(IMG_W * 0.5), int(IMG_W * 0.6)],
        ],
    )
    @pytest.mark.parametrize("dt", ALL_DTYPES)
86
    @pytest.mark.parametrize("angle", range(-180, 180, 34))
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    @pytest.mark.parametrize("expand", [True, False])
    @pytest.mark.parametrize(
        "fill",
        [
            None,
            [0, 0, 0],
            (1, 2, 3),
            [255, 255, 255],
            [
                1,
            ],
            (2.0,),
        ],
    )
    @pytest.mark.parametrize("fn", [F.rotate, scripted_rotate])
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    def test_rotate(self, device, height, width, center, dt, angle, expand, fill, fn):
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and torch.device(device).type == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        f_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
        out_pil_img = F.rotate(pil_img, angle=angle, interpolation=NEAREST, expand=expand, center=center, fill=f_pil)
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

        out_tensor = fn(tensor, angle=angle, interpolation=NEAREST, expand=expand, center=center, fill=fill).cpu()

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

121
122
123
        assert (
            out_tensor.shape == out_pil_tensor.shape
        ), f"{(height, width, NEAREST, dt, angle, expand, center)}: {out_tensor.shape} vs {out_pil_tensor.shape}"
124
125
126
127
128
129
130

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 3% of different pixels
        assert ratio_diff_pixels < 0.03, (
            f"{(height, width, NEAREST, dt, angle, expand, center, fill)}: "
            f"{ratio_diff_pixels}\n{out_tensor[0, :7, :7]} vs \n"
131
132
            f"{out_pil_tensor[0, :7, :7]}"
        )
133

134
135
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dt", ALL_DTYPES)
136
137
138
139
140
141
142
143
144
145
    def test_rotate_batch(self, device, dt):
        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
        if dt is not None:
            batch_tensors = batch_tensors.to(dtype=dt)

        center = (20, 22)
146
        _test_fn_on_batch(batch_tensors, F.rotate, angle=32, interpolation=NEAREST, expand=True, center=center)
147

148
149
150
151
152
153
    def test_rotate_interpolation_type(self):
        tensor, _ = _create_data(26, 26)
        res1 = F.rotate(tensor, 45, interpolation=PIL.Image.BILINEAR)
        res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
        assert_equal(res1, res2)

154

155
156
157
158
159
class TestAffine:

    ALL_DTYPES = [None, torch.float32, torch.float64, torch.float16]
    scripted_affine = torch.jit.script(F.affine)

160
161
162
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    def test_identity_map(self, device, height, width, dt):
        # Tests on square and rectangular images
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        # 1) identity map
        out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

177
        assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
178
179
180
        out_tensor = self.scripted_affine(
            tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
181
        assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(26, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize(
        "angle, config",
        [
            (90, {"k": 1, "dims": (-1, -2)}),
            (45, None),
            (30, None),
            (-30, None),
            (-45, None),
            (-90, {"k": -1, "dims": (-1, -2)}),
            (180, {"k": 2, "dims": (-1, -2)}),
        ],
    )
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    def test_square_rotations(self, device, height, width, dt, angle, config, fn):
        # 2) Test rotation
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(
            pil_img, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(device)

215
        out_tensor = fn(tensor, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
216
        if config is not None:
217
            assert_equal(torch.rot90(tensor, **config), out_tensor)
218
219
220
221
222
223
224

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 6% of different pixels
225
        assert ratio_diff_pixels < 0.06
226

227
228
229
230
231
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize("angle", [90, 45, 15, -30, -60, -120])
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
232
233
    @pytest.mark.parametrize("center", [None, [0, 0]])
    def test_rect_rotations(self, device, height, width, dt, angle, fn, center):
234
235
236
237
238
239
240
241
242
243
244
        # Tests on rectangular images
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(
245
            pil_img, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST, center=center
246
247
248
        )
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

249
250
251
        out_tensor = fn(
            tensor, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST, center=center
        ).cpu()
252
253
254
255
256
257
258

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 3% of different pixels
259
        assert ratio_diff_pixels < 0.03
260

261
262
263
264
265
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize("t", [[10, 12], (-12, -13)])
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    def test_translations(self, device, height, width, dt, t, fn):
        # 3) Test translation
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

        out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        _assert_equal_tensor_to_pil(out_tensor, out_pil_img)

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize(
        "a, t, s, sh, f",
        [
            (45.5, [5, 6], 1.0, [0.0, 0.0], None),
            (33, (5, -4), 1.0, [0.0, 0.0], [0, 0, 0]),
            (45, [-5, 4], 1.2, [0.0, 0.0], (1, 2, 3)),
            (33, (-4, -8), 2.0, [0.0, 0.0], [255, 255, 255]),
            (
                85,
                (10, -10),
                0.7,
                [0.0, 0.0],
                [
                    1,
                ],
            ),
            (
                0,
                [0, 0],
                1.0,
                [
                    35.0,
                ],
                (2.0,),
            ),
            (-25, [0, 0], 1.2, [0.0, 15.0], None),
            (-45, [-10, 0], 0.7, [2.0, 5.0], None),
            (-45, [-10, -10], 1.2, [4.0, 5.0], None),
            (-90, [0, 0], 1.0, [0.0, 0.0], None),
        ],
    )
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    def test_all_ops(self, device, height, width, dt, a, t, s, sh, f, fn):
        # 4) Test rotation + translation + scale + shear
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        f_pil = int(f[0]) if f is not None and len(f) == 1 else f
        out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, interpolation=NEAREST, fill=f_pil)
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

        out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, interpolation=NEAREST, fill=f).cpu()

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
        tol = 0.06 if device == "cuda" else 0.05
345
        assert ratio_diff_pixels < tol
346

347
348
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dt", ALL_DTYPES)
349
350
351
352
353
354
355
356
357
    def test_batches(self, device, dt):
        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
        if dt is not None:
            batch_tensors = batch_tensors.to(dtype=dt)

358
        _test_fn_on_batch(batch_tensors, F.affine, angle=-43, translate=[-3, 4], scale=1.2, shear=[4.0, 5.0])
359

360
361
362
363
364
365
366
367
    @pytest.mark.parametrize("device", cpu_and_gpu())
    def test_interpolation_type(self, device):
        tensor, pil_img = _create_data(26, 26, device=device)

        res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=PIL.Image.BILINEAR)
        res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
        assert_equal(res1, res2)

368

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
def _get_data_dims_and_points_for_perspective():
    # Ideally we would parametrize independently over data dims and points, but
    # we want to tests on some points that also depend on the data dims.
    # Pytest doesn't support covariant parametrization, so we do it somewhat manually here.

    data_dims = [(26, 34), (26, 26)]
    points = [
        [[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
    ]

    dims_and_points = list(itertools.product(data_dims, points))

    # up to here, we could just have used 2 @parametrized.
    # Down below is the covarariant part as the points depend on the data dims.

    n = 10
    for dim in data_dims:
388
        points += [(dim, T.RandomPerspective.get_params(dim[1], dim[0], i / n)) for i in range(n)]
389
390
391
    return dims_and_points


392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dims_and_points", _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize(
    "fill",
    (
        None,
        [0, 0, 0],
        [1, 2, 3],
        [255, 255, 255],
        [
            1,
        ],
        (2.0,),
    ),
)
@pytest.mark.parametrize("fn", [F.perspective, torch.jit.script(F.perspective)])
Nicolas Hug's avatar
Nicolas Hug committed
409
def test_perspective_pil_vs_tensor(device, dims_and_points, dt, fill, fn):
410
411
412
413
414
415
416

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

Nicolas Hug's avatar
Nicolas Hug committed
417
    tensor, pil_img = _create_data(*data_dims, device=device)
418
419
420
421
422
    if dt is not None:
        tensor = tensor.to(dtype=dt)

    interpolation = NEAREST
    fill_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
423
424
425
    out_pil_img = F.perspective(
        pil_img, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill_pil
    )
426
427
428
429
430
431
432
433
434
435
436
437
    out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
    out_tensor = fn(tensor, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill).cpu()

    if out_tensor.dtype != torch.uint8:
        out_tensor = out_tensor.to(torch.uint8)

    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
    # Tolerance : less than 5% of different pixels
    assert ratio_diff_pixels < 0.05


438
439
440
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dims_and_points", _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
Nicolas Hug's avatar
Nicolas Hug committed
441
def test_perspective_batch(device, dims_and_points, dt):
442
443
444
445
446
447
448

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

Nicolas Hug's avatar
Nicolas Hug committed
449
    batch_tensors = _create_data_batch(*data_dims, num_samples=4, device=device)
450
451
452
453
454
455
    if dt is not None:
        batch_tensors = batch_tensors.to(dtype=dt)

    # Ignore the equivalence between scripted and regular function on float16 cuda. The pixels at
    # the border may be entirely different due to small rounding errors.
    scripted_fn_atol = -1 if (dt == torch.float16 and device == "cuda") else 1e-8
Nicolas Hug's avatar
Nicolas Hug committed
456
    _test_fn_on_batch(
457
458
459
460
461
462
        batch_tensors,
        F.perspective,
        scripted_fn_atol=scripted_fn_atol,
        startpoints=spoints,
        endpoints=epoints,
        interpolation=NEAREST,
463
464
465
    )


466
467
468
469
470
471
472
473
474
475
def test_perspective_interpolation_type():
    spoints = [[0, 0], [33, 0], [33, 25], [0, 25]]
    epoints = [[3, 2], [32, 3], [30, 24], [2, 25]]
    tensor = torch.randint(0, 256, (3, 26, 26))

    res1 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=PIL.Image.BILINEAR)
    res2 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=BILINEAR)
    assert_equal(res1, res2)


476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize(
    "size",
    [
        32,
        26,
        [
            32,
        ],
        [32, 32],
        (32, 32),
        [26, 35],
    ],
)
@pytest.mark.parametrize("max_size", [None, 34, 40, 1000])
492
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC, NEAREST, NEAREST_EXACT])
Nicolas Hug's avatar
Nicolas Hug committed
493
def test_resize(device, dt, size, max_size, interpolation):
494
495
496
497
498
499
500
501
502
503

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if max_size is not None and isinstance(size, Sequence) and len(size) != 1:
        return  # unsupported

    torch.manual_seed(12)
    script_fn = torch.jit.script(F.resize)
Nicolas Hug's avatar
Nicolas Hug committed
504
505
    tensor, pil_img = _create_data(26, 36, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
506
507
508
509
510
511

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)
        batch_tensors = batch_tensors.to(dt)

512
513
    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, max_size=max_size, antialias=True)
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation, max_size=max_size, antialias=True)
514
515
516

    assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]

517
    if interpolation != NEAREST:
518
519
520
521
522
523
524
525
526
        # We can not check values if mode = NEAREST, as results are different
        # E.g. resized_tensor  = [[a, a, b, c, d, d, e, ...]]
        # E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
        resized_tensor_f = resized_tensor
        # we need to cast to uint8 to compare with PIL image
        if resized_tensor_f.dtype == torch.uint8:
            resized_tensor_f = resized_tensor_f.to(torch.float)

        # Pay attention to high tolerance for MAE
527
        _assert_approx_equal_tensor_to_pil(resized_tensor_f, resized_pil_img, tol=3.0)
528
529

    if isinstance(size, int):
530
        script_size = [size]
531
532
533
    else:
        script_size = size

534
    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, max_size=max_size, antialias=True)
535
536
    assert_equal(resized_tensor, resize_result)

537
538
539
    _test_fn_on_batch(
        batch_tensors, F.resize, size=script_size, interpolation=interpolation, max_size=max_size, antialias=True
    )
540
541


542
@pytest.mark.parametrize("device", cpu_and_gpu())
Nicolas Hug's avatar
Nicolas Hug committed
543
def test_resize_asserts(device):
544

Nicolas Hug's avatar
Nicolas Hug committed
545
    tensor, pil_img = _create_data(26, 36, device=device)
546

547
548
549
550
    res1 = F.resize(tensor, size=32, interpolation=PIL.Image.BILINEAR)
    res2 = F.resize(tensor, size=32, interpolation=BILINEAR)
    assert_equal(res1, res2)

551
552
553
554
555
556
557
558
    for img in (tensor, pil_img):
        exp_msg = "max_size should only be passed if size specifies the length of the smaller edge"
        with pytest.raises(ValueError, match=exp_msg):
            F.resize(img, size=(32, 34), max_size=35)
        with pytest.raises(ValueError, match="max_size = 32 must be strictly greater"):
            F.resize(img, size=32, max_size=32)


559
560
561
562
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("size", [[96, 72], [96, 420], [420, 72]])
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC])
Nicolas Hug's avatar
Nicolas Hug committed
563
def test_resize_antialias(device, dt, size, interpolation):
564
565
566
567
568

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

569
    torch.manual_seed(12)
570
    script_fn = torch.jit.script(F.resize)
Nicolas Hug's avatar
Nicolas Hug committed
571
    tensor, pil_img = _create_data(320, 290, device=device)
572
573
574
575
576
577

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)

    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, antialias=True)
578
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation, antialias=True)
579

Nicolas Hug's avatar
Nicolas Hug committed
580
    assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]
581
582
583
584
585
586

    resized_tensor_f = resized_tensor
    # we need to cast to uint8 to compare with PIL image
    if resized_tensor_f.dtype == torch.uint8:
        resized_tensor_f = resized_tensor_f.to(torch.float)

587
    _assert_approx_equal_tensor_to_pil(resized_tensor_f, resized_pil_img, tol=0.5, msg=f"{size}, {interpolation}, {dt}")
588
589
590
591
592
593
594
595
596

    accepted_tol = 1.0 + 1e-5
    if interpolation == BICUBIC:
        # this overall mean value to make the tests pass
        # High value is mostly required for test cases with
        # downsampling and upsampling where we can not exactly
        # match PIL implementation.
        accepted_tol = 15.0

Nicolas Hug's avatar
Nicolas Hug committed
597
    _assert_approx_equal_tensor_to_pil(
598
        resized_tensor_f, resized_pil_img, tol=accepted_tol, agg_method="max", msg=f"{size}, {interpolation}, {dt}"
599
600
601
    )

    if isinstance(size, int):
602
603
604
        script_size = [
            size,
        ]
605
606
607
608
    else:
        script_size = size

    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, antialias=True)
Nicolas Hug's avatar
Nicolas Hug committed
609
    assert_equal(resized_tensor, resize_result)
610
611


612
@needs_cuda
613
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC])
Nicolas Hug's avatar
Nicolas Hug committed
614
def test_assert_resize_antialias(interpolation):
615
616

    # Checks implementation on very large scales
617
    # and catch TORCH_CHECK inside PyTorch implementation
618
    torch.manual_seed(12)
619
    tensor, _ = _create_data(1000, 1000, device="cuda")
620

621
622
623
    # Error message is not yet updated in pytorch nightly
    # with pytest.raises(RuntimeError, match=r"Provided interpolation parameters can not be handled"):
    with pytest.raises(RuntimeError, match=r"Too much shared memory required"):
624
625
626
        F.resize(tensor, size=(5, 5), interpolation=interpolation, antialias=True)


627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
def test_resize_antialias_default_warning():

    img = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8)

    match = "The default value of the antialias"
    with pytest.warns(UserWarning, match=match):
        F.resize(img, size=(20, 20))
    with pytest.warns(UserWarning, match=match):
        F.resized_crop(img, 0, 0, 10, 10, size=(20, 20))

    # For modes that aren't bicubic or bilinear, don't throw a warning
    with warnings.catch_warnings():
        warnings.simplefilter("error")
        F.resize(img, size=(20, 20), interpolation=NEAREST)
        F.resized_crop(img, 0, 0, 10, 10, size=(20, 20), interpolation=NEAREST)


644
645
646
647
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dt", [torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("size", [[10, 7], [10, 42], [42, 7]])
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC])
648
def test_interpolate_antialias_backward(device, dt, size, interpolation):
649
650
651
652
653
654

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    torch.manual_seed(12)
655
    x = (torch.rand(1, 32, 29, 3, dtype=torch.double, device=device).permute(0, 3, 1, 2).requires_grad_(True),)
656
657
    resize = partial(F.resize, size=size, interpolation=interpolation, antialias=True)
    assert torch.autograd.gradcheck(resize, x, eps=1e-8, atol=1e-6, rtol=1e-6, fast_mode=False)
658

659
    x = (torch.rand(1, 3, 32, 29, dtype=torch.double, device=device, requires_grad=True),)
660
    assert torch.autograd.gradcheck(resize, x, eps=1e-8, atol=1e-6, rtol=1e-6, fast_mode=False)
661
662


663
664
665
def check_functional_vs_PIL_vs_scripted(
    fn, fn_pil, fn_t, config, device, dtype, channels=3, tol=2.0 + 1e-10, agg_method="max"
):
666
667
668

    script_fn = torch.jit.script(fn)
    torch.manual_seed(15)
669
670
    tensor, pil_img = _create_data(26, 34, channels=channels, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, channels=channels, device=device)
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688

    if dtype is not None:
        tensor = F.convert_image_dtype(tensor, dtype)
        batch_tensors = F.convert_image_dtype(batch_tensors, dtype)

    out_fn_t = fn_t(tensor, **config)
    out_pil = fn_pil(pil_img, **config)
    out_scripted = script_fn(tensor, **config)
    assert out_fn_t.dtype == out_scripted.dtype
    assert out_fn_t.size()[1:] == out_pil.size[::-1]

    rbg_tensor = out_fn_t

    if out_fn_t.dtype != torch.uint8:
        rbg_tensor = F.convert_image_dtype(out_fn_t, torch.uint8)

    # Check that max difference does not exceed 2 in [0, 255] range
    # Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
Nicolas Hug's avatar
Nicolas Hug committed
689
    _assert_approx_equal_tensor_to_pil(rbg_tensor.float(), out_pil, tol=tol, agg_method=agg_method)
690
691
692
693
694
695
696

    atol = 1e-6
    if out_fn_t.dtype == torch.uint8 and "cuda" in torch.device(device).type:
        atol = 1.0
    assert out_fn_t.allclose(out_scripted, atol=atol)

    # FIXME: fn will be scripted again in _test_fn_on_batch. We could avoid that.
Nicolas Hug's avatar
Nicolas Hug committed
697
    _test_fn_on_batch(batch_tensors, fn, scripted_fn_atol=atol, **config)
698
699


700
701
702
703
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"brightness_factor": f} for f in (0.1, 0.5, 1.0, 1.34, 2.5)])
@pytest.mark.parametrize("channels", [1, 3])
704
def test_adjust_brightness(device, dtype, config, channels):
705
706
707
708
709
710
711
    check_functional_vs_PIL_vs_scripted(
        F.adjust_brightness,
        F_pil.adjust_brightness,
        F_t.adjust_brightness,
        config,
        device,
        dtype,
712
        channels,
713
714
715
    )


716
717
718
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
719
def test_invert(device, dtype, channels):
720
    check_functional_vs_PIL_vs_scripted(
721
        F.invert, F_pil.invert, F_t.invert, {}, device, dtype, channels, tol=1.0, agg_method="max"
722
723
724
    )


725
726
727
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("config", [{"bits": bits} for bits in range(0, 8)])
@pytest.mark.parametrize("channels", [1, 3])
728
def test_posterize(device, config, channels):
729
730
731
732
733
734
735
    check_functional_vs_PIL_vs_scripted(
        F.posterize,
        F_pil.posterize,
        F_t.posterize,
        config,
        device,
        dtype=None,
736
        channels=channels,
737
738
739
740
741
        tol=1.0,
        agg_method="max",
    )


742
743
744
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("config", [{"threshold": threshold} for threshold in [0, 64, 128, 192, 255]])
@pytest.mark.parametrize("channels", [1, 3])
745
def test_solarize1(device, config, channels):
746
747
748
749
750
751
752
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        F_pil.solarize,
        F_t.solarize,
        config,
        device,
        dtype=None,
753
        channels=channels,
754
755
756
757
758
        tol=1.0,
        agg_method="max",
    )


759
760
761
762
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"threshold": threshold} for threshold in [0.0, 0.25, 0.5, 0.75, 1.0]])
@pytest.mark.parametrize("channels", [1, 3])
763
def test_solarize2(device, dtype, config, channels):
764
765
766
767
768
769
770
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        lambda img, threshold: F_pil.solarize(img, 255 * threshold),
        F_t.solarize,
        config,
        device,
        dtype,
771
        channels,
772
773
774
775
776
        tol=1.0,
        agg_method="max",
    )


Philip Meier's avatar
Philip Meier committed
777
778
779
780
781
782
783
784
785
786
787
788
789
790
@pytest.mark.parametrize(
    ("dtype", "threshold"),
    [
        *[
            (dtype, threshold)
            for dtype, threshold in itertools.product(
                [torch.float32, torch.float16],
                [0.0, 0.25, 0.5, 0.75, 1.0],
            )
        ],
        *[(torch.uint8, threshold) for threshold in [0, 64, 128, 192, 255]],
        *[(torch.int64, threshold) for threshold in [0, 2**32, 2**63 - 1]],
    ],
)
puhuk's avatar
puhuk committed
791
@pytest.mark.parametrize("device", cpu_and_gpu())
Philip Meier's avatar
Philip Meier committed
792
793
794
def test_solarize_threshold_within_bound(threshold, dtype, device):
    make_img = torch.rand if dtype.is_floating_point else partial(torch.randint, 0, torch.iinfo(dtype).max)
    img = make_img((3, 12, 23), dtype=dtype, device=device)
puhuk's avatar
puhuk committed
795
796
797
    F_t.solarize(img, threshold)


Philip Meier's avatar
Philip Meier committed
798
799
800
801
802
803
804
805
806
@pytest.mark.parametrize(
    ("dtype", "threshold"),
    [
        (torch.float32, 1.5),
        (torch.float16, 1.5),
        (torch.uint8, 260),
        (torch.int64, 2**64),
    ],
)
puhuk's avatar
puhuk committed
807
@pytest.mark.parametrize("device", cpu_and_gpu())
Philip Meier's avatar
Philip Meier committed
808
809
810
def test_solarize_threshold_above_bound(threshold, dtype, device):
    make_img = torch.rand if dtype.is_floating_point else partial(torch.randint, 0, torch.iinfo(dtype).max)
    img = make_img((3, 12, 23), dtype=dtype, device=device)
puhuk's avatar
puhuk committed
811
812
813
814
    with pytest.raises(TypeError, match="Threshold should be less than bound of img."):
        F_t.solarize(img, threshold)


815
816
817
818
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"sharpness_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
819
def test_adjust_sharpness(device, dtype, config, channels):
820
821
822
823
824
825
826
    check_functional_vs_PIL_vs_scripted(
        F.adjust_sharpness,
        F_pil.adjust_sharpness,
        F_t.adjust_sharpness,
        config,
        device,
        dtype,
827
        channels,
828
829
830
    )


831
832
833
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
834
def test_autocontrast(device, dtype, channels):
835
    check_functional_vs_PIL_vs_scripted(
836
        F.autocontrast, F_pil.autocontrast, F_t.autocontrast, {}, device, dtype, channels, tol=1.0, agg_method="max"
837
838
839
    )


840
841
842
843
844
845
846
847
848
849
850
851
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
def test_autocontrast_equal_minmax(device, dtype, channels):
    a = _create_data_batch(32, 32, num_samples=1, channels=channels, device=device)
    a = a / 2.0 + 0.3
    assert (F.autocontrast(a)[0] == F.autocontrast(a[0])).all()

    a[0, 0] = 0.7
    assert (F.autocontrast(a)[0] == F.autocontrast(a[0])).all()


852
853
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("channels", [1, 3])
854
def test_equalize(device, channels):
855
    torch.use_deterministic_algorithms(False)
856
857
858
859
860
861
862
    check_functional_vs_PIL_vs_scripted(
        F.equalize,
        F_pil.equalize,
        F_t.equalize,
        {},
        device,
        dtype=None,
863
        channels=channels,
864
865
866
867
868
        tol=1.0,
        agg_method="max",
    )


869
870
871
872
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"contrast_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
873
def test_adjust_contrast(device, dtype, config, channels):
874
    check_functional_vs_PIL_vs_scripted(
875
        F.adjust_contrast, F_pil.adjust_contrast, F_t.adjust_contrast, config, device, dtype, channels
876
877
878
    )


879
880
881
882
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"saturation_factor": f} for f in [0.5, 0.75, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
883
def test_adjust_saturation(device, dtype, config, channels):
884
    check_functional_vs_PIL_vs_scripted(
885
        F.adjust_saturation, F_pil.adjust_saturation, F_t.adjust_saturation, config, device, dtype, channels
886
887
888
    )


889
890
891
892
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"hue_factor": f} for f in [-0.45, -0.25, 0.0, 0.25, 0.45]])
@pytest.mark.parametrize("channels", [1, 3])
893
def test_adjust_hue(device, dtype, config, channels):
894
    check_functional_vs_PIL_vs_scripted(
895
        F.adjust_hue, F_pil.adjust_hue, F_t.adjust_hue, config, device, dtype, channels, tol=16.1, agg_method="max"
896
897
898
    )


899
900
901
902
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"gamma": g1, "gain": g2} for g1, g2 in zip([0.8, 1.0, 1.2], [0.7, 1.0, 1.3])])
@pytest.mark.parametrize("channels", [1, 3])
903
def test_adjust_gamma(device, dtype, config, channels):
904
905
906
907
908
909
910
    check_functional_vs_PIL_vs_scripted(
        F.adjust_gamma,
        F_pil.adjust_gamma,
        F_t.adjust_gamma,
        config,
        device,
        dtype,
911
        channels,
912
913
914
    )


915
916
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
917
@pytest.mark.parametrize("pad", [2, [3], [0, 3], (3, 3), [4, 2, 4, 3]])
918
919
920
921
922
@pytest.mark.parametrize(
    "config",
    [
        {"padding_mode": "constant", "fill": 0},
        {"padding_mode": "constant", "fill": 10},
923
        {"padding_mode": "constant", "fill": 20.2},
924
925
926
927
928
        {"padding_mode": "edge"},
        {"padding_mode": "reflect"},
        {"padding_mode": "symmetric"},
    ],
)
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
def test_pad(device, dt, pad, config):
    script_fn = torch.jit.script(F.pad)
    tensor, pil_img = _create_data(7, 8, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)
        batch_tensors = batch_tensors.to(dt)

    pad_tensor = F_t.pad(tensor, pad, **config)
    pad_pil_img = F_pil.pad(pil_img, pad, **config)

    pad_tensor_8b = pad_tensor
    # we need to cast to uint8 to compare with PIL image
    if pad_tensor_8b.dtype != torch.uint8:
        pad_tensor_8b = pad_tensor_8b.to(torch.uint8)

951
    _assert_equal_tensor_to_pil(pad_tensor_8b, pad_pil_img, msg=f"{pad}, {config}")
952
953

    if isinstance(pad, int):
954
955
956
        script_pad = [
            pad,
        ]
957
958
959
    else:
        script_pad = pad
    pad_tensor_script = script_fn(tensor, script_pad, **config)
960
    assert_equal(pad_tensor, pad_tensor_script, msg=f"{pad}, {config}")
961
962
963
964

    _test_fn_on_batch(batch_tensors, F.pad, padding=script_pad, **config)


965
@pytest.mark.parametrize("device", cpu_and_gpu())
966
@pytest.mark.parametrize("mode", [NEAREST, NEAREST_EXACT, BILINEAR, BICUBIC])
967
968
969
970
971
def test_resized_crop(device, mode):
    # test values of F.resized_crop in several cases:
    # 1) resize to the same size, crop to the same size => should be identity
    tensor, _ = _create_data(26, 36, device=device)

972
973
974
    out_tensor = F.resized_crop(
        tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=mode, antialias=True
    )
975
    assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
976
977
978
979
980
981
982
983

    # 2) resize by half and crop a TL corner
    tensor, _ = _create_data(26, 36, device=device)
    out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=NEAREST)
    expected_out_tensor = tensor[:, :20:2, :30:2]
    assert_equal(
        expected_out_tensor,
        out_tensor,
984
        msg=f"{expected_out_tensor[0, :10, :10]} vs {out_tensor[0, :10, :10]}",
985
986
987
988
    )

    batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
    _test_fn_on_batch(
989
990
991
992
993
994
995
996
        batch_tensors,
        F.resized_crop,
        top=1,
        left=2,
        height=20,
        width=30,
        size=[10, 15],
        interpolation=NEAREST,
997
998
999
    )


1000
1001
1002
1003
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "func, args",
    [
1004
        (F_t.get_dimensions, ()),
1005
        (F_t.get_image_size, ()),
1006
        (F_t.get_image_num_channels, ()),
1007
1008
1009
1010
1011
1012
1013
        (F_t.vflip, ()),
        (F_t.hflip, ()),
        (F_t.crop, (1, 2, 4, 5)),
        (F_t.adjust_brightness, (0.0,)),
        (F_t.adjust_contrast, (1.0,)),
        (F_t.adjust_hue, (-0.5,)),
        (F_t.adjust_saturation, (2.0,)),
1014
        (F_t.pad, ([2], 2, "constant")),
1015
        (F_t.resize, ([10, 11],)),
1016
        (F_t.perspective, ([0.2])),
1017
1018
1019
1020
1021
1022
1023
1024
1025
        (F_t.gaussian_blur, ((2, 2), (0.7, 0.5))),
        (F_t.invert, ()),
        (F_t.posterize, (0,)),
        (F_t.solarize, (0.3,)),
        (F_t.adjust_sharpness, (0.3,)),
        (F_t.autocontrast, ()),
        (F_t.equalize, ()),
    ],
)
1026
1027
1028
1029
1030
1031
1032
def test_assert_image_tensor(device, func, args):
    shape = (100,)
    tensor = torch.rand(*shape, dtype=torch.float, device=device)
    with pytest.raises(Exception, match=r"Tensor is not a torch image."):
        func(tensor, *args)


1033
@pytest.mark.parametrize("device", cpu_and_gpu())
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
def test_vflip(device):
    script_vflip = torch.jit.script(F.vflip)

    img_tensor, pil_img = _create_data(16, 18, device=device)
    vflipped_img = F.vflip(img_tensor)
    vflipped_pil_img = F.vflip(pil_img)
    _assert_equal_tensor_to_pil(vflipped_img, vflipped_pil_img)

    # scriptable function test
    vflipped_img_script = script_vflip(img_tensor)
    assert_equal(vflipped_img, vflipped_img_script)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.vflip)


1050
@pytest.mark.parametrize("device", cpu_and_gpu())
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
def test_hflip(device):
    script_hflip = torch.jit.script(F.hflip)

    img_tensor, pil_img = _create_data(16, 18, device=device)
    hflipped_img = F.hflip(img_tensor)
    hflipped_pil_img = F.hflip(pil_img)
    _assert_equal_tensor_to_pil(hflipped_img, hflipped_pil_img)

    # scriptable function test
    hflipped_img_script = script_hflip(img_tensor)
    assert_equal(hflipped_img, hflipped_img_script)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.hflip)


1067
1068
1069
1070
1071
1072
1073
1074
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "top, left, height, width",
    [
        (1, 2, 4, 5),  # crop inside top-left corner
        (2, 12, 3, 4),  # crop inside top-right corner
        (8, 3, 5, 6),  # crop inside bottom-left corner
        (8, 11, 4, 3),  # crop inside bottom-right corner
1075
1076
        (50, 50, 10, 10),  # crop outside the image
        (-50, -50, 10, 10),  # crop outside the image
1077
1078
    ],
)
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
def test_crop(device, top, left, height, width):
    script_crop = torch.jit.script(F.crop)

    img_tensor, pil_img = _create_data(16, 18, device=device)

    pil_img_cropped = F.crop(pil_img, top, left, height, width)

    img_tensor_cropped = F.crop(img_tensor, top, left, height, width)
    _assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)

    img_tensor_cropped = script_crop(img_tensor, top, left, height, width)
    _assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.crop, top=top, left=left, height=height, width=width)


1096
1097
1098
1099
1100
1101
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("image_size", ("small", "large"))
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("ksize", [(3, 3), [3, 5], (23, 23)])
@pytest.mark.parametrize("sigma", [[0.5, 0.5], (0.5, 0.5), (0.8, 0.8), (1.7, 1.7)])
@pytest.mark.parametrize("fn", [F.gaussian_blur, torch.jit.script(F.gaussian_blur)])
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
def test_gaussian_blur(device, image_size, dt, ksize, sigma, fn):

    # true_cv2_results = {
    #     # np_img = np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
    #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.8)
    #     "3_3_0.8": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.5)
    #     "3_3_0.5": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.8)
    #     "3_5_0.8": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.5)
    #     "3_5_0.5": ...
    #     # np_img2 = np.arange(26 * 28, dtype="uint8").reshape((26, 28))
    #     # cv2.GaussianBlur(np_img2, ksize=(23, 23), sigmaX=1.7)
    #     "23_23_1.7": ...
    # }
1118
    p = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "gaussian_blur_opencv_results.pt")
1119
1120
    true_cv2_results = torch.load(p)

1121
1122
1123
1124
    if image_size == "small":
        tensor = (
            torch.from_numpy(np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))).permute(2, 0, 1).to(device)
        )
1125
    else:
1126
        tensor = torch.from_numpy(np.arange(26 * 28, dtype="uint8").reshape((1, 26, 28))).to(device)
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if dt is not None:
        tensor = tensor.to(dtype=dt)

    _ksize = (ksize, ksize) if isinstance(ksize, int) else ksize
    _sigma = sigma[0] if sigma is not None else None
    shape = tensor.shape
1138
    gt_key = f"{shape[-2]}_{shape[-1]}_{shape[-3]}__{_ksize[0]}_{_ksize[1]}_{_sigma}"
1139
1140
1141
    if gt_key not in true_cv2_results:
        return

1142
1143
1144
    true_out = (
        torch.tensor(true_cv2_results[gt_key]).reshape(shape[-2], shape[-1], shape[-3]).permute(2, 0, 1).to(tensor)
    )
1145
1146

    out = fn(tensor, kernel_size=ksize, sigma=sigma)
1147
    torch.testing.assert_close(out, true_out, rtol=0.0, atol=1.0, msg=f"{ksize}, {sigma}")
1148
1149


1150
@pytest.mark.parametrize("device", cpu_and_gpu())
1151
1152
1153
1154
1155
1156
1157
1158
def test_hsv2rgb(device):
    scripted_fn = torch.jit.script(F_t._hsv2rgb)
    shape = (3, 100, 150)
    for _ in range(10):
        hsv_img = torch.rand(*shape, dtype=torch.float, device=device)
        rgb_img = F_t._hsv2rgb(hsv_img)
        ft_img = rgb_img.permute(1, 2, 0).flatten(0, 1)

1159
1160
1161
1162
1163
        (
            h,
            s,
            v,
        ) = hsv_img.unbind(0)
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
        h = h.flatten().cpu().numpy()
        s = s.flatten().cpu().numpy()
        v = v.flatten().cpu().numpy()

        rgb = []
        for h1, s1, v1 in zip(h, s, v):
            rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))
        colorsys_img = torch.tensor(rgb, dtype=torch.float32, device=device)
        torch.testing.assert_close(ft_img, colorsys_img, rtol=0.0, atol=1e-5)

        s_rgb_img = scripted_fn(hsv_img)
        torch.testing.assert_close(rgb_img, s_rgb_img)

    batch_tensors = _create_data_batch(120, 100, num_samples=4, device=device).float()
    _test_fn_on_batch(batch_tensors, F_t._hsv2rgb)


1181
@pytest.mark.parametrize("device", cpu_and_gpu())
1182
1183
1184
1185
1186
1187
1188
1189
def test_rgb2hsv(device):
    scripted_fn = torch.jit.script(F_t._rgb2hsv)
    shape = (3, 150, 100)
    for _ in range(10):
        rgb_img = torch.rand(*shape, dtype=torch.float, device=device)
        hsv_img = F_t._rgb2hsv(rgb_img)
        ft_hsv_img = hsv_img.permute(1, 2, 0).flatten(0, 1)

1190
1191
1192
1193
1194
        (
            r,
            g,
            b,
        ) = rgb_img.unbind(dim=-3)
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
        r = r.flatten().cpu().numpy()
        g = g.flatten().cpu().numpy()
        b = b.flatten().cpu().numpy()

        hsv = []
        for r1, g1, b1 in zip(r, g, b):
            hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))

        colorsys_img = torch.tensor(hsv, dtype=torch.float32, device=device)

        ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
        colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)

        max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
        max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
        max_diff = max(max_diff_h, max_diff_sv)
        assert max_diff < 1e-5

        s_hsv_img = scripted_fn(rgb_img)
        torch.testing.assert_close(hsv_img, s_hsv_img, rtol=1e-5, atol=1e-7)

    batch_tensors = _create_data_batch(120, 100, num_samples=4, device=device).float()
    _test_fn_on_batch(batch_tensors, F_t._rgb2hsv)


1220
1221
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("num_output_channels", (3, 1))
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
def test_rgb_to_grayscale(device, num_output_channels):
    script_rgb_to_grayscale = torch.jit.script(F.rgb_to_grayscale)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    gray_pil_image = F.rgb_to_grayscale(pil_img, num_output_channels=num_output_channels)
    gray_tensor = F.rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)

    _assert_approx_equal_tensor_to_pil(gray_tensor.float(), gray_pil_image, tol=1.0 + 1e-10, agg_method="max")

    s_gray_tensor = script_rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)
    assert_equal(s_gray_tensor, gray_tensor)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.rgb_to_grayscale, num_output_channels=num_output_channels)


1239
@pytest.mark.parametrize("device", cpu_and_gpu())
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
def test_center_crop(device):
    script_center_crop = torch.jit.script(F.center_crop)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    cropped_pil_image = F.center_crop(pil_img, [10, 11])

    cropped_tensor = F.center_crop(img_tensor, [10, 11])
    _assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)

    cropped_tensor = script_center_crop(img_tensor, [10, 11])
    _assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.center_crop, output_size=[10, 11])


1257
@pytest.mark.parametrize("device", cpu_and_gpu())
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
def test_five_crop(device):
    script_five_crop = torch.jit.script(F.five_crop)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    cropped_pil_images = F.five_crop(pil_img, [10, 11])

    cropped_tensors = F.five_crop(img_tensor, [10, 11])
    for i in range(5):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    cropped_tensors = script_five_crop(img_tensor, [10, 11])
    for i in range(5):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    tuple_transformed_batches = F.five_crop(batch_tensors, [10, 11])
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        tuple_transformed_imgs = F.five_crop(img_tensor, [10, 11])
        assert len(tuple_transformed_imgs) == len(tuple_transformed_batches)

        for j in range(len(tuple_transformed_imgs)):
            true_transformed_img = tuple_transformed_imgs[j]
            transformed_img = tuple_transformed_batches[j][i, ...]
            assert_equal(true_transformed_img, transformed_img)

    # scriptable function test
    s_tuple_transformed_batches = script_five_crop(batch_tensors, [10, 11])
    for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
        assert_equal(transformed_batch, s_transformed_batch)


1291
@pytest.mark.parametrize("device", cpu_and_gpu())
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
def test_ten_crop(device):
    script_ten_crop = torch.jit.script(F.ten_crop)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    cropped_pil_images = F.ten_crop(pil_img, [10, 11])

    cropped_tensors = F.ten_crop(img_tensor, [10, 11])
    for i in range(10):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    cropped_tensors = script_ten_crop(img_tensor, [10, 11])
    for i in range(10):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    tuple_transformed_batches = F.ten_crop(batch_tensors, [10, 11])
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        tuple_transformed_imgs = F.ten_crop(img_tensor, [10, 11])
        assert len(tuple_transformed_imgs) == len(tuple_transformed_batches)

        for j in range(len(tuple_transformed_imgs)):
            true_transformed_img = tuple_transformed_imgs[j]
            transformed_img = tuple_transformed_batches[j][i, ...]
            assert_equal(true_transformed_img, transformed_img)

    # scriptable function test
    s_tuple_transformed_batches = script_ten_crop(batch_tensors, [10, 11])
    for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
        assert_equal(transformed_batch, s_transformed_batch)


1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
def test_elastic_transform_asserts():
    with pytest.raises(TypeError, match="Argument displacement should be a Tensor"):
        _ = F.elastic_transform("abc", displacement=None)

    with pytest.raises(TypeError, match="img should be PIL Image or Tensor"):
        _ = F.elastic_transform("abc", displacement=torch.rand(1))

    img_tensor = torch.rand(1, 3, 32, 24)
    with pytest.raises(ValueError, match="Argument displacement shape should"):
        _ = F.elastic_transform(img_tensor, displacement=torch.rand(1, 2))


1337
1338
1339
1340
1341
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR, BICUBIC])
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize(
    "fill",
1342
    [None, [255, 255, 255], (2.0,)],
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
)
def test_elastic_transform_consistency(device, interpolation, dt, fill):
    script_elastic_transform = torch.jit.script(F.elastic_transform)
    img_tensor, _ = _create_data(32, 34, device=device)
    # As there is no PIL implementation for elastic_transform,
    # thus we do not run tests tensor vs pillow

    if dt is not None:
        img_tensor = img_tensor.to(dt)

    displacement = T.ElasticTransform.get_params([1.5, 1.5], [2.0, 2.0], [32, 34])
    kwargs = dict(
        displacement=displacement,
        interpolation=interpolation,
        fill=fill,
    )

    out_tensor1 = F.elastic_transform(img_tensor, **kwargs)
    out_tensor2 = script_elastic_transform(img_tensor, **kwargs)
    assert_equal(out_tensor1, out_tensor2)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    displacement = T.ElasticTransform.get_params([1.5, 1.5], [2.0, 2.0], [16, 18])
    kwargs["displacement"] = displacement
    if dt is not None:
        batch_tensors = batch_tensors.to(dt)
    _test_fn_on_batch(batch_tensors, F.elastic_transform, **kwargs)


1372
if __name__ == "__main__":
1373
    pytest.main([__file__])