test_functional_tensor.py 50.7 KB
Newer Older
1
import colorsys
2
import itertools
3
import math
4
import os
5
import re
6
from functools import partial
7
from typing import Sequence
8

vfdev's avatar
vfdev committed
9
import numpy as np
10
import pytest
vfdev's avatar
vfdev committed
11
import torch
12
import torchvision.transforms as T
13
14
15
import torchvision.transforms.functional as F
import torchvision.transforms.functional_pil as F_pil
import torchvision.transforms.functional_tensor as F_t
Nicolas Hug's avatar
Nicolas Hug committed
16
from common_utils import (
17
18
    _assert_approx_equal_tensor_to_pil,
    _assert_equal_tensor_to_pil,
Nicolas Hug's avatar
Nicolas Hug committed
19
20
21
    _create_data,
    _create_data_batch,
    _test_fn_on_batch,
22
    assert_equal,
23
24
    cpu_and_gpu,
    needs_cuda,
Nicolas Hug's avatar
Nicolas Hug committed
25
)
26
from torchvision.transforms import InterpolationMode
27

28
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
29
30


31
@pytest.mark.parametrize("device", cpu_and_gpu())
32
@pytest.mark.parametrize("fn", [F.get_image_size, F.get_image_num_channels, F.get_dimensions])
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
def test_image_sizes(device, fn):
    script_F = torch.jit.script(fn)

    img_tensor, pil_img = _create_data(16, 18, 3, device=device)
    value_img = fn(img_tensor)
    value_pil_img = fn(pil_img)
    assert value_img == value_pil_img

    value_img_script = script_F(img_tensor)
    assert value_img == value_img_script

    batch_tensors = _create_data_batch(16, 18, 3, num_samples=4, device=device)
    value_img_batch = fn(batch_tensors)
    assert value_img == value_img_batch


49
50
51
52
53
54
55
56
@needs_cuda
def test_scale_channel():
    """Make sure that _scale_channel gives the same results on CPU and GPU as
    histc or bincount are used depending on the device.
    """
    # TODO: when # https://github.com/pytorch/pytorch/issues/53194 is fixed,
    # only use bincount and remove that test.
    size = (1_000,)
57
    img_chan = torch.randint(0, 256, size=size).to("cpu")
58
    scaled_cpu = F_t._scale_channel(img_chan)
59
60
    scaled_cuda = F_t._scale_channel(img_chan.to("cuda"))
    assert_equal(scaled_cpu, scaled_cuda.to("cpu"))
61

62

63
64
65
66
67
68
class TestRotate:

    ALL_DTYPES = [None, torch.float32, torch.float64, torch.float16]
    scripted_rotate = torch.jit.script(F.rotate)
    IMG_W = 26

69
    @pytest.mark.parametrize("device", cpu_and_gpu())
70
    @pytest.mark.parametrize("height, width", [(7, 33), (26, IMG_W), (32, IMG_W)])
71
72
73
74
75
76
77
78
79
    @pytest.mark.parametrize(
        "center",
        [
            None,
            (int(IMG_W * 0.3), int(IMG_W * 0.4)),
            [int(IMG_W * 0.5), int(IMG_W * 0.6)],
        ],
    )
    @pytest.mark.parametrize("dt", ALL_DTYPES)
80
    @pytest.mark.parametrize("angle", range(-180, 180, 34))
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    @pytest.mark.parametrize("expand", [True, False])
    @pytest.mark.parametrize(
        "fill",
        [
            None,
            [0, 0, 0],
            (1, 2, 3),
            [255, 255, 255],
            [
                1,
            ],
            (2.0,),
        ],
    )
    @pytest.mark.parametrize("fn", [F.rotate, scripted_rotate])
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    def test_rotate(self, device, height, width, center, dt, angle, expand, fill, fn):
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and torch.device(device).type == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        f_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
        out_pil_img = F.rotate(pil_img, angle=angle, interpolation=NEAREST, expand=expand, center=center, fill=f_pil)
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

        out_tensor = fn(tensor, angle=angle, interpolation=NEAREST, expand=expand, center=center, fill=fill).cpu()

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

115
116
117
        assert (
            out_tensor.shape == out_pil_tensor.shape
        ), f"{(height, width, NEAREST, dt, angle, expand, center)}: {out_tensor.shape} vs {out_pil_tensor.shape}"
118
119
120
121
122
123
124

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 3% of different pixels
        assert ratio_diff_pixels < 0.03, (
            f"{(height, width, NEAREST, dt, angle, expand, center, fill)}: "
            f"{ratio_diff_pixels}\n{out_tensor[0, :7, :7]} vs \n"
125
126
            f"{out_pil_tensor[0, :7, :7]}"
        )
127

128
129
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dt", ALL_DTYPES)
130
131
132
133
134
135
136
137
138
139
    def test_rotate_batch(self, device, dt):
        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
        if dt is not None:
            batch_tensors = batch_tensors.to(dtype=dt)

        center = (20, 22)
140
        _test_fn_on_batch(batch_tensors, F.rotate, angle=32, interpolation=NEAREST, expand=True, center=center)
141
142
143
144

    def test_rotate_interpolation_type(self):
        tensor, _ = _create_data(26, 26)
        # assert changed type warning
145
146
147
148
149
150
151
        with pytest.warns(
            UserWarning,
            match=re.escape(
                "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
                "Please use InterpolationMode enum."
            ),
        ):
152
153
154
155
156
            res1 = F.rotate(tensor, 45, interpolation=2)
            res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
            assert_equal(res1, res2)


157
158
159
160
161
class TestAffine:

    ALL_DTYPES = [None, torch.float32, torch.float64, torch.float16]
    scripted_affine = torch.jit.script(F.affine)

162
163
164
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    def test_identity_map(self, device, height, width, dt):
        # Tests on square and rectangular images
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        # 1) identity map
        out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

179
        assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
180
181
182
        out_tensor = self.scripted_affine(
            tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
183
        assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(26, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize(
        "angle, config",
        [
            (90, {"k": 1, "dims": (-1, -2)}),
            (45, None),
            (30, None),
            (-30, None),
            (-45, None),
            (-90, {"k": -1, "dims": (-1, -2)}),
            (180, {"k": 2, "dims": (-1, -2)}),
        ],
    )
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    def test_square_rotations(self, device, height, width, dt, angle, config, fn):
        # 2) Test rotation
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(
            pil_img, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(device)

217
        out_tensor = fn(tensor, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
218
        if config is not None:
219
            assert_equal(torch.rot90(tensor, **config), out_tensor)
220
221
222
223
224
225
226

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 6% of different pixels
227
        assert ratio_diff_pixels < 0.06
228

229
230
231
232
233
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize("angle", [90, 45, 15, -30, -60, -120])
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
234
235
    @pytest.mark.parametrize("center", [None, [0, 0]])
    def test_rect_rotations(self, device, height, width, dt, angle, fn, center):
236
237
238
239
240
241
242
243
244
245
246
        # Tests on rectangular images
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(
247
            pil_img, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST, center=center
248
249
250
        )
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

251
252
253
        out_tensor = fn(
            tensor, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST, center=center
        ).cpu()
254
255
256
257
258
259
260

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 3% of different pixels
261
        assert ratio_diff_pixels < 0.03
262

263
264
265
266
267
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize("t", [[10, 12], (-12, -13)])
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    def test_translations(self, device, height, width, dt, t, fn):
        # 3) Test translation
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

        out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        _assert_equal_tensor_to_pil(out_tensor, out_pil_img)

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize(
        "a, t, s, sh, f",
        [
            (45.5, [5, 6], 1.0, [0.0, 0.0], None),
            (33, (5, -4), 1.0, [0.0, 0.0], [0, 0, 0]),
            (45, [-5, 4], 1.2, [0.0, 0.0], (1, 2, 3)),
            (33, (-4, -8), 2.0, [0.0, 0.0], [255, 255, 255]),
            (
                85,
                (10, -10),
                0.7,
                [0.0, 0.0],
                [
                    1,
                ],
            ),
            (
                0,
                [0, 0],
                1.0,
                [
                    35.0,
                ],
                (2.0,),
            ),
            (-25, [0, 0], 1.2, [0.0, 15.0], None),
            (-45, [-10, 0], 0.7, [2.0, 5.0], None),
            (-45, [-10, -10], 1.2, [4.0, 5.0], None),
            (-90, [0, 0], 1.0, [0.0, 0.0], None),
        ],
    )
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    def test_all_ops(self, device, height, width, dt, a, t, s, sh, f, fn):
        # 4) Test rotation + translation + scale + shear
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        f_pil = int(f[0]) if f is not None and len(f) == 1 else f
        out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, interpolation=NEAREST, fill=f_pil)
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

        out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, interpolation=NEAREST, fill=f).cpu()

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
        tol = 0.06 if device == "cuda" else 0.05
347
        assert ratio_diff_pixels < tol
348

349
350
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dt", ALL_DTYPES)
351
352
353
354
355
356
357
358
359
    def test_batches(self, device, dt):
        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
        if dt is not None:
            batch_tensors = batch_tensors.to(dtype=dt)

360
        _test_fn_on_batch(batch_tensors, F.affine, angle=-43, translate=[-3, 4], scale=1.2, shear=[4.0, 5.0])
361

362
    @pytest.mark.parametrize("device", cpu_and_gpu())
363
364
365
366
    def test_warnings(self, device):
        tensor, pil_img = _create_data(26, 26, device=device)

        # assert changed type warning
367
368
369
370
371
372
373
        with pytest.warns(
            UserWarning,
            match=re.escape(
                "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
                "Please use InterpolationMode enum."
            ),
        ):
374
375
376
377
378
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
            assert_equal(res1, res2)


379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
def _get_data_dims_and_points_for_perspective():
    # Ideally we would parametrize independently over data dims and points, but
    # we want to tests on some points that also depend on the data dims.
    # Pytest doesn't support covariant parametrization, so we do it somewhat manually here.

    data_dims = [(26, 34), (26, 26)]
    points = [
        [[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
    ]

    dims_and_points = list(itertools.product(data_dims, points))

    # up to here, we could just have used 2 @parametrized.
    # Down below is the covarariant part as the points depend on the data dims.

    n = 10
    for dim in data_dims:
398
        points += [(dim, T.RandomPerspective.get_params(dim[1], dim[0], i / n)) for i in range(n)]
399
400
401
    return dims_and_points


402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dims_and_points", _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize(
    "fill",
    (
        None,
        [0, 0, 0],
        [1, 2, 3],
        [255, 255, 255],
        [
            1,
        ],
        (2.0,),
    ),
)
@pytest.mark.parametrize("fn", [F.perspective, torch.jit.script(F.perspective)])
Nicolas Hug's avatar
Nicolas Hug committed
419
def test_perspective_pil_vs_tensor(device, dims_and_points, dt, fill, fn):
420
421
422
423
424
425
426

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

Nicolas Hug's avatar
Nicolas Hug committed
427
    tensor, pil_img = _create_data(*data_dims, device=device)
428
429
430
431
432
    if dt is not None:
        tensor = tensor.to(dtype=dt)

    interpolation = NEAREST
    fill_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
433
434
435
    out_pil_img = F.perspective(
        pil_img, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill_pil
    )
436
437
438
439
440
441
442
443
444
445
446
447
    out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
    out_tensor = fn(tensor, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill).cpu()

    if out_tensor.dtype != torch.uint8:
        out_tensor = out_tensor.to(torch.uint8)

    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
    # Tolerance : less than 5% of different pixels
    assert ratio_diff_pixels < 0.05


448
449
450
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dims_and_points", _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
Nicolas Hug's avatar
Nicolas Hug committed
451
def test_perspective_batch(device, dims_and_points, dt):
452
453
454
455
456
457
458

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

Nicolas Hug's avatar
Nicolas Hug committed
459
    batch_tensors = _create_data_batch(*data_dims, num_samples=4, device=device)
460
461
462
463
464
465
    if dt is not None:
        batch_tensors = batch_tensors.to(dtype=dt)

    # Ignore the equivalence between scripted and regular function on float16 cuda. The pixels at
    # the border may be entirely different due to small rounding errors.
    scripted_fn_atol = -1 if (dt == torch.float16 and device == "cuda") else 1e-8
Nicolas Hug's avatar
Nicolas Hug committed
466
    _test_fn_on_batch(
467
468
469
470
471
472
        batch_tensors,
        F.perspective,
        scripted_fn_atol=scripted_fn_atol,
        startpoints=spoints,
        endpoints=epoints,
        interpolation=NEAREST,
473
474
475
    )


Nicolas Hug's avatar
Nicolas Hug committed
476
def test_perspective_interpolation_warning():
477
478
479
480
    # assert changed type warning
    spoints = [[0, 0], [33, 0], [33, 25], [0, 25]]
    epoints = [[3, 2], [32, 3], [30, 24], [2, 25]]
    tensor = torch.randint(0, 256, (3, 26, 26))
481
482
483
484
485
486
487
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
            "Please use InterpolationMode enum."
        ),
    ):
488
489
        res1 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=2)
        res2 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=BILINEAR)
Nicolas Hug's avatar
Nicolas Hug committed
490
        assert_equal(res1, res2)
491
492


493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize(
    "size",
    [
        32,
        26,
        [
            32,
        ],
        [32, 32],
        (32, 32),
        [26, 35],
    ],
)
@pytest.mark.parametrize("max_size", [None, 34, 40, 1000])
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC, NEAREST])
Nicolas Hug's avatar
Nicolas Hug committed
510
def test_resize(device, dt, size, max_size, interpolation):
511
512
513
514
515
516
517
518
519
520

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if max_size is not None and isinstance(size, Sequence) and len(size) != 1:
        return  # unsupported

    torch.manual_seed(12)
    script_fn = torch.jit.script(F.resize)
Nicolas Hug's avatar
Nicolas Hug committed
521
522
    tensor, pil_img = _create_data(26, 36, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
523
524
525
526
527
528
529
530
531
532
533

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)
        batch_tensors = batch_tensors.to(dt)

    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, max_size=max_size)
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation, max_size=max_size)

    assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]

534
535
536
    if interpolation not in [
        NEAREST,
    ]:
537
538
539
540
541
542
543
544
545
        # We can not check values if mode = NEAREST, as results are different
        # E.g. resized_tensor  = [[a, a, b, c, d, d, e, ...]]
        # E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
        resized_tensor_f = resized_tensor
        # we need to cast to uint8 to compare with PIL image
        if resized_tensor_f.dtype == torch.uint8:
            resized_tensor_f = resized_tensor_f.to(torch.float)

        # Pay attention to high tolerance for MAE
Nicolas Hug's avatar
Nicolas Hug committed
546
        _assert_approx_equal_tensor_to_pil(resized_tensor_f, resized_pil_img, tol=8.0)
547
548

    if isinstance(size, int):
549
550
551
        script_size = [
            size,
        ]
552
553
554
    else:
        script_size = size

555
    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, max_size=max_size)
556
557
    assert_equal(resized_tensor, resize_result)

558
    _test_fn_on_batch(batch_tensors, F.resize, size=script_size, interpolation=interpolation, max_size=max_size)
559
560


561
@pytest.mark.parametrize("device", cpu_and_gpu())
Nicolas Hug's avatar
Nicolas Hug committed
562
def test_resize_asserts(device):
563

Nicolas Hug's avatar
Nicolas Hug committed
564
    tensor, pil_img = _create_data(26, 36, device=device)
565
566

    # assert changed type warning
567
568
569
570
571
572
573
    with pytest.warns(
        UserWarning,
        match=re.escape(
            "Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
            "Please use InterpolationMode enum."
        ),
    ):
574
575
576
577
578
579
580
581
582
583
584
585
586
        res1 = F.resize(tensor, size=32, interpolation=2)

    res2 = F.resize(tensor, size=32, interpolation=BILINEAR)
    assert_equal(res1, res2)

    for img in (tensor, pil_img):
        exp_msg = "max_size should only be passed if size specifies the length of the smaller edge"
        with pytest.raises(ValueError, match=exp_msg):
            F.resize(img, size=(32, 34), max_size=35)
        with pytest.raises(ValueError, match="max_size = 32 must be strictly greater"):
            F.resize(img, size=32, max_size=32)


587
588
589
590
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("size", [[96, 72], [96, 420], [420, 72]])
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC])
Nicolas Hug's avatar
Nicolas Hug committed
591
def test_resize_antialias(device, dt, size, interpolation):
592
593
594
595
596

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

597
    torch.manual_seed(12)
598
    script_fn = torch.jit.script(F.resize)
Nicolas Hug's avatar
Nicolas Hug committed
599
    tensor, pil_img = _create_data(320, 290, device=device)
600
601
602
603
604
605
606
607

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)

    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, antialias=True)
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation)

Nicolas Hug's avatar
Nicolas Hug committed
608
    assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]
609
610
611
612
613
614

    resized_tensor_f = resized_tensor
    # we need to cast to uint8 to compare with PIL image
    if resized_tensor_f.dtype == torch.uint8:
        resized_tensor_f = resized_tensor_f.to(torch.float)

615
    _assert_approx_equal_tensor_to_pil(resized_tensor_f, resized_pil_img, tol=0.5, msg=f"{size}, {interpolation}, {dt}")
616
617
618
619
620
621
622
623
624

    accepted_tol = 1.0 + 1e-5
    if interpolation == BICUBIC:
        # this overall mean value to make the tests pass
        # High value is mostly required for test cases with
        # downsampling and upsampling where we can not exactly
        # match PIL implementation.
        accepted_tol = 15.0

Nicolas Hug's avatar
Nicolas Hug committed
625
    _assert_approx_equal_tensor_to_pil(
626
        resized_tensor_f, resized_pil_img, tol=accepted_tol, agg_method="max", msg=f"{size}, {interpolation}, {dt}"
627
628
629
    )

    if isinstance(size, int):
630
631
632
        script_size = [
            size,
        ]
633
634
635
636
    else:
        script_size = size

    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, antialias=True)
Nicolas Hug's avatar
Nicolas Hug committed
637
    assert_equal(resized_tensor, resize_result)
638
639


640
@needs_cuda
641
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC])
Nicolas Hug's avatar
Nicolas Hug committed
642
def test_assert_resize_antialias(interpolation):
643
644

    # Checks implementation on very large scales
645
    # and catch TORCH_CHECK inside PyTorch implementation
646
    torch.manual_seed(12)
647
    tensor, _ = _create_data(1000, 1000, device="cuda")
648

649
650
651
    # Error message is not yet updated in pytorch nightly
    # with pytest.raises(RuntimeError, match=r"Provided interpolation parameters can not be handled"):
    with pytest.raises(RuntimeError, match=r"Too much shared memory required"):
652
653
654
        F.resize(tensor, size=(5, 5), interpolation=interpolation, antialias=True)


655
656
657
658
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dt", [torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("size", [[10, 7], [10, 42], [42, 7]])
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC])
659
def test_interpolate_antialias_backward(device, dt, size, interpolation):
660
661
662
663
664
665

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    torch.manual_seed(12)
666
    x = (torch.rand(1, 32, 29, 3, dtype=torch.double, device=device).permute(0, 3, 1, 2).requires_grad_(True),)
667
668
    resize = partial(F.resize, size=size, interpolation=interpolation, antialias=True)
    assert torch.autograd.gradcheck(resize, x, eps=1e-8, atol=1e-6, rtol=1e-6, fast_mode=False)
669

670
    x = (torch.rand(1, 3, 32, 29, dtype=torch.double, device=device, requires_grad=True),)
671
    assert torch.autograd.gradcheck(resize, x, eps=1e-8, atol=1e-6, rtol=1e-6, fast_mode=False)
672
673


674
675
676
def check_functional_vs_PIL_vs_scripted(
    fn, fn_pil, fn_t, config, device, dtype, channels=3, tol=2.0 + 1e-10, agg_method="max"
):
677
678
679

    script_fn = torch.jit.script(fn)
    torch.manual_seed(15)
680
681
    tensor, pil_img = _create_data(26, 34, channels=channels, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, channels=channels, device=device)
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

    if dtype is not None:
        tensor = F.convert_image_dtype(tensor, dtype)
        batch_tensors = F.convert_image_dtype(batch_tensors, dtype)

    out_fn_t = fn_t(tensor, **config)
    out_pil = fn_pil(pil_img, **config)
    out_scripted = script_fn(tensor, **config)
    assert out_fn_t.dtype == out_scripted.dtype
    assert out_fn_t.size()[1:] == out_pil.size[::-1]

    rbg_tensor = out_fn_t

    if out_fn_t.dtype != torch.uint8:
        rbg_tensor = F.convert_image_dtype(out_fn_t, torch.uint8)

    # Check that max difference does not exceed 2 in [0, 255] range
    # Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
Nicolas Hug's avatar
Nicolas Hug committed
700
    _assert_approx_equal_tensor_to_pil(rbg_tensor.float(), out_pil, tol=tol, agg_method=agg_method)
701
702
703
704
705
706
707

    atol = 1e-6
    if out_fn_t.dtype == torch.uint8 and "cuda" in torch.device(device).type:
        atol = 1.0
    assert out_fn_t.allclose(out_scripted, atol=atol)

    # FIXME: fn will be scripted again in _test_fn_on_batch. We could avoid that.
Nicolas Hug's avatar
Nicolas Hug committed
708
    _test_fn_on_batch(batch_tensors, fn, scripted_fn_atol=atol, **config)
709
710


711
712
713
714
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"brightness_factor": f} for f in (0.1, 0.5, 1.0, 1.34, 2.5)])
@pytest.mark.parametrize("channels", [1, 3])
715
def test_adjust_brightness(device, dtype, config, channels):
716
717
718
719
720
721
722
    check_functional_vs_PIL_vs_scripted(
        F.adjust_brightness,
        F_pil.adjust_brightness,
        F_t.adjust_brightness,
        config,
        device,
        dtype,
723
        channels,
724
725
726
    )


727
728
729
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
730
def test_invert(device, dtype, channels):
731
    check_functional_vs_PIL_vs_scripted(
732
        F.invert, F_pil.invert, F_t.invert, {}, device, dtype, channels, tol=1.0, agg_method="max"
733
734
735
    )


736
737
738
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("config", [{"bits": bits} for bits in range(0, 8)])
@pytest.mark.parametrize("channels", [1, 3])
739
def test_posterize(device, config, channels):
740
741
742
743
744
745
746
    check_functional_vs_PIL_vs_scripted(
        F.posterize,
        F_pil.posterize,
        F_t.posterize,
        config,
        device,
        dtype=None,
747
        channels=channels,
748
749
750
751
752
        tol=1.0,
        agg_method="max",
    )


753
754
755
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("config", [{"threshold": threshold} for threshold in [0, 64, 128, 192, 255]])
@pytest.mark.parametrize("channels", [1, 3])
756
def test_solarize1(device, config, channels):
757
758
759
760
761
762
763
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        F_pil.solarize,
        F_t.solarize,
        config,
        device,
        dtype=None,
764
        channels=channels,
765
766
767
768
769
        tol=1.0,
        agg_method="max",
    )


770
771
772
773
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"threshold": threshold} for threshold in [0.0, 0.25, 0.5, 0.75, 1.0]])
@pytest.mark.parametrize("channels", [1, 3])
774
def test_solarize2(device, dtype, config, channels):
775
776
777
778
779
780
781
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        lambda img, threshold: F_pil.solarize(img, 255 * threshold),
        F_t.solarize,
        config,
        device,
        dtype,
782
        channels,
783
784
785
786
787
        tol=1.0,
        agg_method="max",
    )


puhuk's avatar
puhuk committed
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("threshold", [0.0, 0.25, 0.5, 0.75, 1.0])
def test_solarize_threshold1_bound(threshold, device):
    img = torch.rand((3, 12, 23)).to(device)
    F_t.solarize(img, threshold)


@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("threshold", [1.5])
def test_solarize_threshold1_upper_bound(threshold, device):
    img = torch.rand((3, 12, 23)).to(device)
    with pytest.raises(TypeError, match="Threshold should be less than bound of img."):
        F_t.solarize(img, threshold)


@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("threshold", [0, 64, 128, 192, 255])
def test_solarize_threshold2_bound(threshold, device):
    img = torch.randint(0, 256, (3, 12, 23)).to(device)
    F_t.solarize(img, threshold)


@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("threshold", [260])
def test_solarize_threshold2_upper_bound(threshold, device):
    img = torch.randint(0, 256, (3, 12, 23)).to(device)
    with pytest.raises(TypeError, match="Threshold should be less than bound of img."):
        F_t.solarize(img, threshold)


818
819
820
821
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"sharpness_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
822
def test_adjust_sharpness(device, dtype, config, channels):
823
824
825
826
827
828
829
    check_functional_vs_PIL_vs_scripted(
        F.adjust_sharpness,
        F_pil.adjust_sharpness,
        F_t.adjust_sharpness,
        config,
        device,
        dtype,
830
        channels,
831
832
833
    )


834
835
836
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
837
def test_autocontrast(device, dtype, channels):
838
    check_functional_vs_PIL_vs_scripted(
839
        F.autocontrast, F_pil.autocontrast, F_t.autocontrast, {}, device, dtype, channels, tol=1.0, agg_method="max"
840
841
842
    )


843
844
845
846
847
848
849
850
851
852
853
854
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
def test_autocontrast_equal_minmax(device, dtype, channels):
    a = _create_data_batch(32, 32, num_samples=1, channels=channels, device=device)
    a = a / 2.0 + 0.3
    assert (F.autocontrast(a)[0] == F.autocontrast(a[0])).all()

    a[0, 0] = 0.7
    assert (F.autocontrast(a)[0] == F.autocontrast(a[0])).all()


855
856
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("channels", [1, 3])
857
def test_equalize(device, channels):
858
    torch.use_deterministic_algorithms(False)
859
860
861
862
863
864
865
    check_functional_vs_PIL_vs_scripted(
        F.equalize,
        F_pil.equalize,
        F_t.equalize,
        {},
        device,
        dtype=None,
866
        channels=channels,
867
868
869
870
871
        tol=1.0,
        agg_method="max",
    )


872
873
874
875
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"contrast_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
876
def test_adjust_contrast(device, dtype, config, channels):
877
    check_functional_vs_PIL_vs_scripted(
878
        F.adjust_contrast, F_pil.adjust_contrast, F_t.adjust_contrast, config, device, dtype, channels
879
880
881
    )


882
883
884
885
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"saturation_factor": f} for f in [0.5, 0.75, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
886
def test_adjust_saturation(device, dtype, config, channels):
887
    check_functional_vs_PIL_vs_scripted(
888
        F.adjust_saturation, F_pil.adjust_saturation, F_t.adjust_saturation, config, device, dtype, channels
889
890
891
    )


892
893
894
895
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"hue_factor": f} for f in [-0.45, -0.25, 0.0, 0.25, 0.45]])
@pytest.mark.parametrize("channels", [1, 3])
896
def test_adjust_hue(device, dtype, config, channels):
897
    check_functional_vs_PIL_vs_scripted(
898
        F.adjust_hue, F_pil.adjust_hue, F_t.adjust_hue, config, device, dtype, channels, tol=16.1, agg_method="max"
899
900
901
    )


902
903
904
905
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"gamma": g1, "gain": g2} for g1, g2 in zip([0.8, 1.0, 1.2], [0.7, 1.0, 1.3])])
@pytest.mark.parametrize("channels", [1, 3])
906
def test_adjust_gamma(device, dtype, config, channels):
907
908
909
910
911
912
913
    check_functional_vs_PIL_vs_scripted(
        F.adjust_gamma,
        F_pil.adjust_gamma,
        F_t.adjust_gamma,
        config,
        device,
        dtype,
914
        channels,
915
916
917
    )


918
919
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
920
@pytest.mark.parametrize("pad", [2, [3], [0, 3], (3, 3), [4, 2, 4, 3]])
921
922
923
924
925
@pytest.mark.parametrize(
    "config",
    [
        {"padding_mode": "constant", "fill": 0},
        {"padding_mode": "constant", "fill": 10},
926
        {"padding_mode": "constant", "fill": 20.2},
927
928
929
930
931
        {"padding_mode": "edge"},
        {"padding_mode": "reflect"},
        {"padding_mode": "symmetric"},
    ],
)
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
def test_pad(device, dt, pad, config):
    script_fn = torch.jit.script(F.pad)
    tensor, pil_img = _create_data(7, 8, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)
        batch_tensors = batch_tensors.to(dt)

    pad_tensor = F_t.pad(tensor, pad, **config)
    pad_pil_img = F_pil.pad(pil_img, pad, **config)

    pad_tensor_8b = pad_tensor
    # we need to cast to uint8 to compare with PIL image
    if pad_tensor_8b.dtype != torch.uint8:
        pad_tensor_8b = pad_tensor_8b.to(torch.uint8)

954
    _assert_equal_tensor_to_pil(pad_tensor_8b, pad_pil_img, msg=f"{pad}, {config}")
955
956

    if isinstance(pad, int):
957
958
959
        script_pad = [
            pad,
        ]
960
961
962
    else:
        script_pad = pad
    pad_tensor_script = script_fn(tensor, script_pad, **config)
963
    assert_equal(pad_tensor, pad_tensor_script, msg=f"{pad}, {config}")
964
965
966
967

    _test_fn_on_batch(batch_tensors, F.pad, padding=script_pad, **config)


968
969
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("mode", [NEAREST, BILINEAR, BICUBIC])
970
971
972
973
974
975
def test_resized_crop(device, mode):
    # test values of F.resized_crop in several cases:
    # 1) resize to the same size, crop to the same size => should be identity
    tensor, _ = _create_data(26, 36, device=device)

    out_tensor = F.resized_crop(tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=mode)
976
    assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
977
978
979
980
981
982
983
984

    # 2) resize by half and crop a TL corner
    tensor, _ = _create_data(26, 36, device=device)
    out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=NEAREST)
    expected_out_tensor = tensor[:, :20:2, :30:2]
    assert_equal(
        expected_out_tensor,
        out_tensor,
985
        msg=f"{expected_out_tensor[0, :10, :10]} vs {out_tensor[0, :10, :10]}",
986
987
988
989
990
991
992
993
    )

    batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
    _test_fn_on_batch(
        batch_tensors, F.resized_crop, top=1, left=2, height=20, width=30, size=[10, 15], interpolation=NEAREST
    )


994
995
996
997
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "func, args",
    [
998
        (F_t.get_dimensions, ()),
999
        (F_t.get_image_size, ()),
1000
        (F_t.get_image_num_channels, ()),
1001
1002
1003
1004
1005
1006
1007
        (F_t.vflip, ()),
        (F_t.hflip, ()),
        (F_t.crop, (1, 2, 4, 5)),
        (F_t.adjust_brightness, (0.0,)),
        (F_t.adjust_contrast, (1.0,)),
        (F_t.adjust_hue, (-0.5,)),
        (F_t.adjust_saturation, (2.0,)),
1008
        (F_t.pad, ([2], 2, "constant")),
1009
        (F_t.resize, ([10, 11],)),
1010
        (F_t.perspective, ([0.2])),
1011
1012
1013
1014
1015
1016
1017
1018
1019
        (F_t.gaussian_blur, ((2, 2), (0.7, 0.5))),
        (F_t.invert, ()),
        (F_t.posterize, (0,)),
        (F_t.solarize, (0.3,)),
        (F_t.adjust_sharpness, (0.3,)),
        (F_t.autocontrast, ()),
        (F_t.equalize, ()),
    ],
)
1020
1021
1022
1023
1024
1025
1026
def test_assert_image_tensor(device, func, args):
    shape = (100,)
    tensor = torch.rand(*shape, dtype=torch.float, device=device)
    with pytest.raises(Exception, match=r"Tensor is not a torch image."):
        func(tensor, *args)


1027
@pytest.mark.parametrize("device", cpu_and_gpu())
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
def test_vflip(device):
    script_vflip = torch.jit.script(F.vflip)

    img_tensor, pil_img = _create_data(16, 18, device=device)
    vflipped_img = F.vflip(img_tensor)
    vflipped_pil_img = F.vflip(pil_img)
    _assert_equal_tensor_to_pil(vflipped_img, vflipped_pil_img)

    # scriptable function test
    vflipped_img_script = script_vflip(img_tensor)
    assert_equal(vflipped_img, vflipped_img_script)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.vflip)


1044
@pytest.mark.parametrize("device", cpu_and_gpu())
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
def test_hflip(device):
    script_hflip = torch.jit.script(F.hflip)

    img_tensor, pil_img = _create_data(16, 18, device=device)
    hflipped_img = F.hflip(img_tensor)
    hflipped_pil_img = F.hflip(pil_img)
    _assert_equal_tensor_to_pil(hflipped_img, hflipped_pil_img)

    # scriptable function test
    hflipped_img_script = script_hflip(img_tensor)
    assert_equal(hflipped_img, hflipped_img_script)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.hflip)


1061
1062
1063
1064
1065
1066
1067
1068
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "top, left, height, width",
    [
        (1, 2, 4, 5),  # crop inside top-left corner
        (2, 12, 3, 4),  # crop inside top-right corner
        (8, 3, 5, 6),  # crop inside bottom-left corner
        (8, 11, 4, 3),  # crop inside bottom-right corner
1069
1070
        (50, 50, 10, 10),  # crop outside the image
        (-50, -50, 10, 10),  # crop outside the image
1071
1072
    ],
)
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
def test_crop(device, top, left, height, width):
    script_crop = torch.jit.script(F.crop)

    img_tensor, pil_img = _create_data(16, 18, device=device)

    pil_img_cropped = F.crop(pil_img, top, left, height, width)

    img_tensor_cropped = F.crop(img_tensor, top, left, height, width)
    _assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)

    img_tensor_cropped = script_crop(img_tensor, top, left, height, width)
    _assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.crop, top=top, left=left, height=height, width=width)


1090
1091
1092
1093
1094
1095
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("image_size", ("small", "large"))
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("ksize", [(3, 3), [3, 5], (23, 23)])
@pytest.mark.parametrize("sigma", [[0.5, 0.5], (0.5, 0.5), (0.8, 0.8), (1.7, 1.7)])
@pytest.mark.parametrize("fn", [F.gaussian_blur, torch.jit.script(F.gaussian_blur)])
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
def test_gaussian_blur(device, image_size, dt, ksize, sigma, fn):

    # true_cv2_results = {
    #     # np_img = np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
    #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.8)
    #     "3_3_0.8": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.5)
    #     "3_3_0.5": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.8)
    #     "3_5_0.8": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.5)
    #     "3_5_0.5": ...
    #     # np_img2 = np.arange(26 * 28, dtype="uint8").reshape((26, 28))
    #     # cv2.GaussianBlur(np_img2, ksize=(23, 23), sigmaX=1.7)
    #     "23_23_1.7": ...
    # }
1112
    p = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "gaussian_blur_opencv_results.pt")
1113
1114
    true_cv2_results = torch.load(p)

1115
1116
1117
1118
    if image_size == "small":
        tensor = (
            torch.from_numpy(np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))).permute(2, 0, 1).to(device)
        )
1119
    else:
1120
        tensor = torch.from_numpy(np.arange(26 * 28, dtype="uint8").reshape((1, 26, 28))).to(device)
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if dt is not None:
        tensor = tensor.to(dtype=dt)

    _ksize = (ksize, ksize) if isinstance(ksize, int) else ksize
    _sigma = sigma[0] if sigma is not None else None
    shape = tensor.shape
1132
    gt_key = f"{shape[-2]}_{shape[-1]}_{shape[-3]}__{_ksize[0]}_{_ksize[1]}_{_sigma}"
1133
1134
1135
    if gt_key not in true_cv2_results:
        return

1136
1137
1138
    true_out = (
        torch.tensor(true_cv2_results[gt_key]).reshape(shape[-2], shape[-1], shape[-3]).permute(2, 0, 1).to(tensor)
    )
1139
1140

    out = fn(tensor, kernel_size=ksize, sigma=sigma)
1141
    torch.testing.assert_close(out, true_out, rtol=0.0, atol=1.0, msg=f"{ksize}, {sigma}")
1142
1143


1144
@pytest.mark.parametrize("device", cpu_and_gpu())
1145
1146
1147
1148
1149
1150
1151
1152
def test_hsv2rgb(device):
    scripted_fn = torch.jit.script(F_t._hsv2rgb)
    shape = (3, 100, 150)
    for _ in range(10):
        hsv_img = torch.rand(*shape, dtype=torch.float, device=device)
        rgb_img = F_t._hsv2rgb(hsv_img)
        ft_img = rgb_img.permute(1, 2, 0).flatten(0, 1)

1153
1154
1155
1156
1157
        (
            h,
            s,
            v,
        ) = hsv_img.unbind(0)
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
        h = h.flatten().cpu().numpy()
        s = s.flatten().cpu().numpy()
        v = v.flatten().cpu().numpy()

        rgb = []
        for h1, s1, v1 in zip(h, s, v):
            rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))
        colorsys_img = torch.tensor(rgb, dtype=torch.float32, device=device)
        torch.testing.assert_close(ft_img, colorsys_img, rtol=0.0, atol=1e-5)

        s_rgb_img = scripted_fn(hsv_img)
        torch.testing.assert_close(rgb_img, s_rgb_img)

    batch_tensors = _create_data_batch(120, 100, num_samples=4, device=device).float()
    _test_fn_on_batch(batch_tensors, F_t._hsv2rgb)


1175
@pytest.mark.parametrize("device", cpu_and_gpu())
1176
1177
1178
1179
1180
1181
1182
1183
def test_rgb2hsv(device):
    scripted_fn = torch.jit.script(F_t._rgb2hsv)
    shape = (3, 150, 100)
    for _ in range(10):
        rgb_img = torch.rand(*shape, dtype=torch.float, device=device)
        hsv_img = F_t._rgb2hsv(rgb_img)
        ft_hsv_img = hsv_img.permute(1, 2, 0).flatten(0, 1)

1184
1185
1186
1187
1188
        (
            r,
            g,
            b,
        ) = rgb_img.unbind(dim=-3)
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
        r = r.flatten().cpu().numpy()
        g = g.flatten().cpu().numpy()
        b = b.flatten().cpu().numpy()

        hsv = []
        for r1, g1, b1 in zip(r, g, b):
            hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))

        colorsys_img = torch.tensor(hsv, dtype=torch.float32, device=device)

        ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
        colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)

        max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
        max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
        max_diff = max(max_diff_h, max_diff_sv)
        assert max_diff < 1e-5

        s_hsv_img = scripted_fn(rgb_img)
        torch.testing.assert_close(hsv_img, s_hsv_img, rtol=1e-5, atol=1e-7)

    batch_tensors = _create_data_batch(120, 100, num_samples=4, device=device).float()
    _test_fn_on_batch(batch_tensors, F_t._rgb2hsv)


1214
1215
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("num_output_channels", (3, 1))
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
def test_rgb_to_grayscale(device, num_output_channels):
    script_rgb_to_grayscale = torch.jit.script(F.rgb_to_grayscale)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    gray_pil_image = F.rgb_to_grayscale(pil_img, num_output_channels=num_output_channels)
    gray_tensor = F.rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)

    _assert_approx_equal_tensor_to_pil(gray_tensor.float(), gray_pil_image, tol=1.0 + 1e-10, agg_method="max")

    s_gray_tensor = script_rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)
    assert_equal(s_gray_tensor, gray_tensor)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.rgb_to_grayscale, num_output_channels=num_output_channels)


1233
@pytest.mark.parametrize("device", cpu_and_gpu())
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
def test_center_crop(device):
    script_center_crop = torch.jit.script(F.center_crop)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    cropped_pil_image = F.center_crop(pil_img, [10, 11])

    cropped_tensor = F.center_crop(img_tensor, [10, 11])
    _assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)

    cropped_tensor = script_center_crop(img_tensor, [10, 11])
    _assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.center_crop, output_size=[10, 11])


1251
@pytest.mark.parametrize("device", cpu_and_gpu())
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
def test_five_crop(device):
    script_five_crop = torch.jit.script(F.five_crop)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    cropped_pil_images = F.five_crop(pil_img, [10, 11])

    cropped_tensors = F.five_crop(img_tensor, [10, 11])
    for i in range(5):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    cropped_tensors = script_five_crop(img_tensor, [10, 11])
    for i in range(5):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    tuple_transformed_batches = F.five_crop(batch_tensors, [10, 11])
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        tuple_transformed_imgs = F.five_crop(img_tensor, [10, 11])
        assert len(tuple_transformed_imgs) == len(tuple_transformed_batches)

        for j in range(len(tuple_transformed_imgs)):
            true_transformed_img = tuple_transformed_imgs[j]
            transformed_img = tuple_transformed_batches[j][i, ...]
            assert_equal(true_transformed_img, transformed_img)

    # scriptable function test
    s_tuple_transformed_batches = script_five_crop(batch_tensors, [10, 11])
    for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
        assert_equal(transformed_batch, s_transformed_batch)


1285
@pytest.mark.parametrize("device", cpu_and_gpu())
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
def test_ten_crop(device):
    script_ten_crop = torch.jit.script(F.ten_crop)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    cropped_pil_images = F.ten_crop(pil_img, [10, 11])

    cropped_tensors = F.ten_crop(img_tensor, [10, 11])
    for i in range(10):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    cropped_tensors = script_ten_crop(img_tensor, [10, 11])
    for i in range(10):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    tuple_transformed_batches = F.ten_crop(batch_tensors, [10, 11])
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        tuple_transformed_imgs = F.ten_crop(img_tensor, [10, 11])
        assert len(tuple_transformed_imgs) == len(tuple_transformed_batches)

        for j in range(len(tuple_transformed_imgs)):
            true_transformed_img = tuple_transformed_imgs[j]
            transformed_img = tuple_transformed_batches[j][i, ...]
            assert_equal(true_transformed_img, transformed_img)

    # scriptable function test
    s_tuple_transformed_batches = script_ten_crop(batch_tensors, [10, 11])
    for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
        assert_equal(transformed_batch, s_transformed_batch)


1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
def test_elastic_transform_asserts():
    with pytest.raises(TypeError, match="Argument displacement should be a Tensor"):
        _ = F.elastic_transform("abc", displacement=None)

    with pytest.raises(TypeError, match="img should be PIL Image or Tensor"):
        _ = F.elastic_transform("abc", displacement=torch.rand(1))

    img_tensor = torch.rand(1, 3, 32, 24)
    with pytest.raises(ValueError, match="Argument displacement shape should"):
        _ = F.elastic_transform(img_tensor, displacement=torch.rand(1, 2))


1331
1332
1333
1334
1335
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR, BICUBIC])
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize(
    "fill",
1336
    [None, [255, 255, 255], (2.0,)],
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
)
def test_elastic_transform_consistency(device, interpolation, dt, fill):
    script_elastic_transform = torch.jit.script(F.elastic_transform)
    img_tensor, _ = _create_data(32, 34, device=device)
    # As there is no PIL implementation for elastic_transform,
    # thus we do not run tests tensor vs pillow

    if dt is not None:
        img_tensor = img_tensor.to(dt)

    displacement = T.ElasticTransform.get_params([1.5, 1.5], [2.0, 2.0], [32, 34])
    kwargs = dict(
        displacement=displacement,
        interpolation=interpolation,
        fill=fill,
    )

    out_tensor1 = F.elastic_transform(img_tensor, **kwargs)
    out_tensor2 = script_elastic_transform(img_tensor, **kwargs)
    assert_equal(out_tensor1, out_tensor2)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    displacement = T.ElasticTransform.get_params([1.5, 1.5], [2.0, 2.0], [16, 18])
    kwargs["displacement"] = displacement
    if dt is not None:
        batch_tensors = batch_tensors.to(dt)
    _test_fn_on_batch(batch_tensors, F.elastic_transform, **kwargs)


1366
if __name__ == "__main__":
1367
    pytest.main([__file__])