"vscode:/vscode.git/clone" did not exist on "a718345a8d60c73a441f6254d6eae456c8a6d787"
test_functional_tensor.py 45.6 KB
Newer Older
1
import itertools
2
import os
3
import unittest
4
import colorsys
5
import math
6

vfdev's avatar
vfdev committed
7
import numpy as np
8
import pytest
vfdev's avatar
vfdev committed
9
10
11
12
13

import torch
import torchvision.transforms.functional_tensor as F_t
import torchvision.transforms.functional_pil as F_pil
import torchvision.transforms.functional as F
14
import torchvision.transforms as T
15
from torchvision.transforms import InterpolationMode
16

Nicolas Hug's avatar
Nicolas Hug committed
17
18
19
20
21
22
23
24
25
from common_utils import (
    cpu_and_gpu,
    needs_cuda,
    _create_data,
    _create_data_batch,
    _assert_equal_tensor_to_pil,
    _assert_approx_equal_tensor_to_pil,
    _test_fn_on_batch,
)
26
from _assert_utils import assert_equal
27

28
from typing import Dict, List, Sequence, Tuple
29

30

31
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
32
33


Nicolas Hug's avatar
Nicolas Hug committed
34
class Tester(unittest.TestCase):
vfdev's avatar
vfdev committed
35

36
37
38
    def setUp(self):
        self.device = "cpu"

39
    def test_hsv2rgb(self):
40
        scripted_fn = torch.jit.script(F_t._hsv2rgb)
41
        shape = (3, 100, 150)
42
43
44
45
        for _ in range(10):
            hsv_img = torch.rand(*shape, dtype=torch.float, device=self.device)
            rgb_img = F_t._hsv2rgb(hsv_img)
            ft_img = rgb_img.permute(1, 2, 0).flatten(0, 1)
46

47
48
49
50
            h, s, v, = hsv_img.unbind(0)
            h = h.flatten().cpu().numpy()
            s = s.flatten().cpu().numpy()
            v = v.flatten().cpu().numpy()
51
52
53
54

            rgb = []
            for h1, s1, v1 in zip(h, s, v):
                rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))
55
            colorsys_img = torch.tensor(rgb, dtype=torch.float32, device=self.device)
56
            torch.testing.assert_close(ft_img, colorsys_img, rtol=0.0, atol=1e-5)
57

58
            s_rgb_img = scripted_fn(hsv_img)
59
            torch.testing.assert_close(rgb_img, s_rgb_img)
60

Nicolas Hug's avatar
Nicolas Hug committed
61
62
        batch_tensors = _create_data_batch(120, 100, num_samples=4, device=self.device).float()
        _test_fn_on_batch(batch_tensors, F_t._hsv2rgb)
63

64
    def test_rgb2hsv(self):
65
        scripted_fn = torch.jit.script(F_t._rgb2hsv)
66
        shape = (3, 150, 100)
67
68
69
70
        for _ in range(10):
            rgb_img = torch.rand(*shape, dtype=torch.float, device=self.device)
            hsv_img = F_t._rgb2hsv(rgb_img)
            ft_hsv_img = hsv_img.permute(1, 2, 0).flatten(0, 1)
71

72
            r, g, b, = rgb_img.unbind(dim=-3)
73
74
75
            r = r.flatten().cpu().numpy()
            g = g.flatten().cpu().numpy()
            b = b.flatten().cpu().numpy()
76
77
78
79
80

            hsv = []
            for r1, g1, b1 in zip(r, g, b):
                hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))

81
            colorsys_img = torch.tensor(hsv, dtype=torch.float32, device=self.device)
82

83
84
85
86
87
88
            ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
            colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)

            max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
            max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
            max_diff = max(max_diff_h, max_diff_sv)
89
90
            self.assertLess(max_diff, 1e-5)

91
            s_hsv_img = scripted_fn(rgb_img)
92
            torch.testing.assert_close(hsv_img, s_hsv_img, rtol=1e-5, atol=1e-7)
93

Nicolas Hug's avatar
Nicolas Hug committed
94
95
        batch_tensors = _create_data_batch(120, 100, num_samples=4, device=self.device).float()
        _test_fn_on_batch(batch_tensors, F_t._rgb2hsv)
96

97
    def test_rgb_to_grayscale(self):
98
99
        script_rgb_to_grayscale = torch.jit.script(F.rgb_to_grayscale)

Nicolas Hug's avatar
Nicolas Hug committed
100
        img_tensor, pil_img = _create_data(32, 34, device=self.device)
101
102
103
104
105

        for num_output_channels in (3, 1):
            gray_pil_image = F.rgb_to_grayscale(pil_img, num_output_channels=num_output_channels)
            gray_tensor = F.rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)

Nicolas Hug's avatar
Nicolas Hug committed
106
            _assert_approx_equal_tensor_to_pil(gray_tensor.float(), gray_pil_image, tol=1.0 + 1e-10, agg_method="max")
107
108

            s_gray_tensor = script_rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)
109
            assert_equal(s_gray_tensor, gray_tensor)
110

Nicolas Hug's avatar
Nicolas Hug committed
111
112
            batch_tensors = _create_data_batch(16, 18, num_samples=4, device=self.device)
            _test_fn_on_batch(batch_tensors, F.rgb_to_grayscale, num_output_channels=num_output_channels)
113

114
    def test_center_crop(self):
115
116
        script_center_crop = torch.jit.script(F.center_crop)

Nicolas Hug's avatar
Nicolas Hug committed
117
        img_tensor, pil_img = _create_data(32, 34, device=self.device)
118
119
120
121

        cropped_pil_image = F.center_crop(pil_img, [10, 11])

        cropped_tensor = F.center_crop(img_tensor, [10, 11])
Nicolas Hug's avatar
Nicolas Hug committed
122
        _assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)
123
124

        cropped_tensor = script_center_crop(img_tensor, [10, 11])
Nicolas Hug's avatar
Nicolas Hug committed
125
        _assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)
126

Nicolas Hug's avatar
Nicolas Hug committed
127
128
        batch_tensors = _create_data_batch(16, 18, num_samples=4, device=self.device)
        _test_fn_on_batch(batch_tensors, F.center_crop, output_size=[10, 11])
129

130
    def test_five_crop(self):
131
132
        script_five_crop = torch.jit.script(F.five_crop)

Nicolas Hug's avatar
Nicolas Hug committed
133
        img_tensor, pil_img = _create_data(32, 34, device=self.device)
134
135
136
137
138

        cropped_pil_images = F.five_crop(pil_img, [10, 11])

        cropped_tensors = F.five_crop(img_tensor, [10, 11])
        for i in range(5):
Nicolas Hug's avatar
Nicolas Hug committed
139
            _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])
140
141
142

        cropped_tensors = script_five_crop(img_tensor, [10, 11])
        for i in range(5):
Nicolas Hug's avatar
Nicolas Hug committed
143
            _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])
144

Nicolas Hug's avatar
Nicolas Hug committed
145
        batch_tensors = _create_data_batch(16, 18, num_samples=4, device=self.device)
146
147
148
149
150
151
152
153
154
        tuple_transformed_batches = F.five_crop(batch_tensors, [10, 11])
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            tuple_transformed_imgs = F.five_crop(img_tensor, [10, 11])
            self.assertEqual(len(tuple_transformed_imgs), len(tuple_transformed_batches))

            for j in range(len(tuple_transformed_imgs)):
                true_transformed_img = tuple_transformed_imgs[j]
                transformed_img = tuple_transformed_batches[j][i, ...]
155
                assert_equal(true_transformed_img, transformed_img)
156
157
158
159

        # scriptable function test
        s_tuple_transformed_batches = script_five_crop(batch_tensors, [10, 11])
        for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
160
            assert_equal(transformed_batch, s_transformed_batch)
161

162
    def test_ten_crop(self):
163
164
        script_ten_crop = torch.jit.script(F.ten_crop)

Nicolas Hug's avatar
Nicolas Hug committed
165
        img_tensor, pil_img = _create_data(32, 34, device=self.device)
166
167
168
169
170

        cropped_pil_images = F.ten_crop(pil_img, [10, 11])

        cropped_tensors = F.ten_crop(img_tensor, [10, 11])
        for i in range(10):
Nicolas Hug's avatar
Nicolas Hug committed
171
            _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])
172
173
174

        cropped_tensors = script_ten_crop(img_tensor, [10, 11])
        for i in range(10):
Nicolas Hug's avatar
Nicolas Hug committed
175
            _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])
176

Nicolas Hug's avatar
Nicolas Hug committed
177
        batch_tensors = _create_data_batch(16, 18, num_samples=4, device=self.device)
178
179
180
181
182
183
184
185
186
        tuple_transformed_batches = F.ten_crop(batch_tensors, [10, 11])
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            tuple_transformed_imgs = F.ten_crop(img_tensor, [10, 11])
            self.assertEqual(len(tuple_transformed_imgs), len(tuple_transformed_batches))

            for j in range(len(tuple_transformed_imgs)):
                true_transformed_img = tuple_transformed_imgs[j]
                transformed_img = tuple_transformed_batches[j][i, ...]
187
                assert_equal(true_transformed_img, transformed_img)
188
189
190
191

        # scriptable function test
        s_tuple_transformed_batches = script_ten_crop(batch_tensors, [10, 11])
        for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
192
            assert_equal(transformed_batch, s_transformed_batch)
193

194

195
196
197
198
199
@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):

    def setUp(self):
        self.device = "cuda"
200

201
202
203
204
205
206
207
208
209
210
    def test_scale_channel(self):
        """Make sure that _scale_channel gives the same results on CPU and GPU as
        histc or bincount are used depending on the device.
        """
        # TODO: when # https://github.com/pytorch/pytorch/issues/53194 is fixed,
        # only use bincount and remove that test.
        size = (1_000,)
        img_chan = torch.randint(0, 256, size=size).to('cpu')
        scaled_cpu = F_t._scale_channel(img_chan)
        scaled_cuda = F_t._scale_channel(img_chan.to('cuda'))
211
        assert_equal(scaled_cpu, scaled_cuda.to('cpu'))
212

213

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
class TestRotate:

    ALL_DTYPES = [None, torch.float32, torch.float64, torch.float16]
    scripted_rotate = torch.jit.script(F.rotate)
    IMG_W = 26

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('height, width', [(26, IMG_W), (32, IMG_W)])
    @pytest.mark.parametrize('center', [
        None,
        (int(IMG_W * 0.3), int(IMG_W * 0.4)),
        [int(IMG_W * 0.5), int(IMG_W * 0.6)],
    ])
    @pytest.mark.parametrize('dt', ALL_DTYPES)
    @pytest.mark.parametrize('angle', range(-180, 180, 17))
    @pytest.mark.parametrize('expand', [True, False])
    @pytest.mark.parametrize('fill', [None, [0, 0, 0], (1, 2, 3), [255, 255, 255], [1, ], (2.0, )])
    @pytest.mark.parametrize('fn', [F.rotate, scripted_rotate])
    def test_rotate(self, device, height, width, center, dt, angle, expand, fill, fn):
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and torch.device(device).type == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        f_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
        out_pil_img = F.rotate(pil_img, angle=angle, interpolation=NEAREST, expand=expand, center=center, fill=f_pil)
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

        out_tensor = fn(tensor, angle=angle, interpolation=NEAREST, expand=expand, center=center, fill=fill).cpu()

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        assert out_tensor.shape == out_pil_tensor.shape, (
            f"{(height, width, NEAREST, dt, angle, expand, center)}: "
            f"{out_tensor.shape} vs {out_pil_tensor.shape}")

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 3% of different pixels
        assert ratio_diff_pixels < 0.03, (
            f"{(height, width, NEAREST, dt, angle, expand, center, fill)}: "
            f"{ratio_diff_pixels}\n{out_tensor[0, :7, :7]} vs \n"
            f"{out_pil_tensor[0, :7, :7]}")

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('dt', ALL_DTYPES)
    def test_rotate_batch(self, device, dt):
        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
        if dt is not None:
            batch_tensors = batch_tensors.to(dtype=dt)

        center = (20, 22)
        _test_fn_on_batch(
            batch_tensors, F.rotate, angle=32, interpolation=NEAREST, expand=True, center=center
        )

    def test_rotate_deprecation_resample(self):
        tensor, _ = _create_data(26, 26)
        # assert deprecation warning and non-BC
        with pytest.warns(UserWarning, match=r"Argument resample is deprecated and will be removed"):
            res1 = F.rotate(tensor, 45, resample=2)
            res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
            assert_equal(res1, res2)

    def test_rotate_interpolation_type(self):
        tensor, _ = _create_data(26, 26)
        # assert changed type warning
        with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
            res1 = F.rotate(tensor, 45, interpolation=2)
            res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
            assert_equal(res1, res2)


296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
class TestAffine:

    ALL_DTYPES = [None, torch.float32, torch.float64, torch.float16]
    scripted_affine = torch.jit.script(F.affine)

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('height, width', [(26, 26), (32, 26)])
    @pytest.mark.parametrize('dt', ALL_DTYPES)
    def test_identity_map(self, device, height, width, dt):
        # Tests on square and rectangular images
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        # 1) identity map
        out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

        assert_equal(tensor, out_tensor, msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))
        out_tensor = self.scripted_affine(
            tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
        assert_equal(tensor, out_tensor, msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('height, width', [(26, 26)])
    @pytest.mark.parametrize('dt', ALL_DTYPES)
    @pytest.mark.parametrize('angle, config', [
        (90, {'k': 1, 'dims': (-1, -2)}),
        (45, None),
        (30, None),
        (-30, None),
        (-45, None),
        (-90, {'k': -1, 'dims': (-1, -2)}),
        (180, {'k': 2, 'dims': (-1, -2)}),
    ])
    @pytest.mark.parametrize('fn', [F.affine, scripted_affine])
    def test_square_rotations(self, device, height, width, dt, angle, config, fn):
        # 2) Test rotation
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(
            pil_img, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(device)

        out_tensor = fn(
            tensor, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
        if config is not None:
            assert_equal(
                torch.rot90(tensor, **config),
                out_tensor,
                check_stride=False,
            )

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 6% of different pixels
        assert ratio_diff_pixels < 0.06, "{}\n{} vs \n{}".format(
            ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
        )

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('height, width', [(32, 26)])
    @pytest.mark.parametrize('dt', ALL_DTYPES)
    @pytest.mark.parametrize('angle', [90, 45, 15, -30, -60, -120])
    @pytest.mark.parametrize('fn', [F.affine, scripted_affine])
    def test_rect_rotations(self, device, height, width, dt, angle, fn):
        # Tests on rectangular images
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(
            pil_img, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

        out_tensor = fn(
            tensor, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        ).cpu()

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 3% of different pixels
        assert ratio_diff_pixels < 0.03, "{}: {}\n{} vs \n{}".format(
            angle, ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
        )

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('height, width', [(26, 26), (32, 26)])
    @pytest.mark.parametrize('dt', ALL_DTYPES)
    @pytest.mark.parametrize('t', [[10, 12], (-12, -13)])
    @pytest.mark.parametrize('fn', [F.affine, scripted_affine])
    def test_translations(self, device, height, width, dt, t, fn):
        # 3) Test translation
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

        out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        _assert_equal_tensor_to_pil(out_tensor, out_pil_img)

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('height, width', [(26, 26), (32, 26)])
    @pytest.mark.parametrize('dt', ALL_DTYPES)
    @pytest.mark.parametrize('a, t, s, sh, f', [
        (45.5, [5, 6], 1.0, [0.0, 0.0], None),
        (33, (5, -4), 1.0, [0.0, 0.0], [0, 0, 0]),
        (45, [-5, 4], 1.2, [0.0, 0.0], (1, 2, 3)),
        (33, (-4, -8), 2.0, [0.0, 0.0], [255, 255, 255]),
        (85, (10, -10), 0.7, [0.0, 0.0], [1, ]),
        (0, [0, 0], 1.0, [35.0, ], (2.0, )),
        (-25, [0, 0], 1.2, [0.0, 15.0], None),
        (-45, [-10, 0], 0.7, [2.0, 5.0], None),
        (-45, [-10, -10], 1.2, [4.0, 5.0], None),
        (-90, [0, 0], 1.0, [0.0, 0.0], None),
    ])
    @pytest.mark.parametrize('fn', [F.affine, scripted_affine])
    def test_all_ops(self, device, height, width, dt, a, t, s, sh, f, fn):
        # 4) Test rotation + translation + scale + shear
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        f_pil = int(f[0]) if f is not None and len(f) == 1 else f
        out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, interpolation=NEAREST, fill=f_pil)
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

        out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, interpolation=NEAREST, fill=f).cpu()

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
        tol = 0.06 if device == "cuda" else 0.05
        assert ratio_diff_pixels < tol, "{}: {}\n{} vs \n{}".format(
474
            (NEAREST, a, t, s, sh, f), ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
        )

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('dt', ALL_DTYPES)
    def test_batches(self, device, dt):
        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
        if dt is not None:
            batch_tensors = batch_tensors.to(dtype=dt)

        _test_fn_on_batch(
            batch_tensors, F.affine, angle=-43, translate=[-3, 4], scale=1.2, shear=[4.0, 5.0]
        )

    @pytest.mark.parametrize('device', cpu_and_gpu())
    def test_warnings(self, device):
        tensor, pil_img = _create_data(26, 26, device=device)

        # assert deprecation warning and non-BC
        with pytest.warns(UserWarning, match=r"Argument resample is deprecated and will be removed"):
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
            assert_equal(res1, res2)

        # assert changed type warning
        with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
            assert_equal(res1, res2)

        with pytest.warns(UserWarning, match=r"Argument fillcolor is deprecated and will be removed"):
            res1 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fillcolor=10)
            res2 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fill=10)
            # we convert the PIL images to numpy as assert_equal doesn't work on PIL images.
            assert_equal(np.asarray(res1), np.asarray(res2))


515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
def _get_data_dims_and_points_for_perspective():
    # Ideally we would parametrize independently over data dims and points, but
    # we want to tests on some points that also depend on the data dims.
    # Pytest doesn't support covariant parametrization, so we do it somewhat manually here.

    data_dims = [(26, 34), (26, 26)]
    points = [
        [[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
    ]

    dims_and_points = list(itertools.product(data_dims, points))

    # up to here, we could just have used 2 @parametrized.
    # Down below is the covarariant part as the points depend on the data dims.

    n = 10
    for dim in data_dims:
        points += [
            (dim, T.RandomPerspective.get_params(dim[1], dim[0], i / n))
            for i in range(n)
        ]
    return dims_and_points


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dims_and_points', _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('fill', (None, [0, 0, 0], [1, 2, 3], [255, 255, 255], [1, ], (2.0, )))
@pytest.mark.parametrize('fn', [F.perspective, torch.jit.script(F.perspective)])
Nicolas Hug's avatar
Nicolas Hug committed
546
def test_perspective_pil_vs_tensor(device, dims_and_points, dt, fill, fn):
547
548
549
550
551
552
553

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

Nicolas Hug's avatar
Nicolas Hug committed
554
    tensor, pil_img = _create_data(*data_dims, device=device)
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
    if dt is not None:
        tensor = tensor.to(dtype=dt)

    interpolation = NEAREST
    fill_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
    out_pil_img = F.perspective(pil_img, startpoints=spoints, endpoints=epoints, interpolation=interpolation,
                                fill=fill_pil)
    out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
    out_tensor = fn(tensor, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill).cpu()

    if out_tensor.dtype != torch.uint8:
        out_tensor = out_tensor.to(torch.uint8)

    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
    # Tolerance : less than 5% of different pixels
    assert ratio_diff_pixels < 0.05


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dims_and_points', _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
Nicolas Hug's avatar
Nicolas Hug committed
577
def test_perspective_batch(device, dims_and_points, dt):
578
579
580
581
582
583
584

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

Nicolas Hug's avatar
Nicolas Hug committed
585
    batch_tensors = _create_data_batch(*data_dims, num_samples=4, device=device)
586
587
588
589
590
591
    if dt is not None:
        batch_tensors = batch_tensors.to(dtype=dt)

    # Ignore the equivalence between scripted and regular function on float16 cuda. The pixels at
    # the border may be entirely different due to small rounding errors.
    scripted_fn_atol = -1 if (dt == torch.float16 and device == "cuda") else 1e-8
Nicolas Hug's avatar
Nicolas Hug committed
592
    _test_fn_on_batch(
593
594
595
596
597
        batch_tensors, F.perspective, scripted_fn_atol=scripted_fn_atol,
        startpoints=spoints, endpoints=epoints, interpolation=NEAREST
    )


Nicolas Hug's avatar
Nicolas Hug committed
598
def test_perspective_interpolation_warning():
599
600
601
602
    # assert changed type warning
    spoints = [[0, 0], [33, 0], [33, 25], [0, 25]]
    epoints = [[3, 2], [32, 3], [30, 24], [2, 25]]
    tensor = torch.randint(0, 256, (3, 26, 26))
Nicolas Hug's avatar
Nicolas Hug committed
603
    with pytest.warns(UserWarning, match="Argument interpolation should be of type InterpolationMode"):
604
605
        res1 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=2)
        res2 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=BILINEAR)
Nicolas Hug's avatar
Nicolas Hug committed
606
        assert_equal(res1, res2)
607
608


609
610
611
612
613
@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('size', [32, 26, [32, ], [32, 32], (32, 32), [26, 35]])
@pytest.mark.parametrize('max_size', [None, 34, 40, 1000])
@pytest.mark.parametrize('interpolation', [BILINEAR, BICUBIC, NEAREST])
Nicolas Hug's avatar
Nicolas Hug committed
614
def test_resize(device, dt, size, max_size, interpolation):
615
616
617
618
619
620
621
622
623
624

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if max_size is not None and isinstance(size, Sequence) and len(size) != 1:
        return  # unsupported

    torch.manual_seed(12)
    script_fn = torch.jit.script(F.resize)
Nicolas Hug's avatar
Nicolas Hug committed
625
626
    tensor, pil_img = _create_data(26, 36, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)
        batch_tensors = batch_tensors.to(dt)

    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, max_size=max_size)
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation, max_size=max_size)

    assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]

    if interpolation not in [NEAREST, ]:
        # We can not check values if mode = NEAREST, as results are different
        # E.g. resized_tensor  = [[a, a, b, c, d, d, e, ...]]
        # E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
        resized_tensor_f = resized_tensor
        # we need to cast to uint8 to compare with PIL image
        if resized_tensor_f.dtype == torch.uint8:
            resized_tensor_f = resized_tensor_f.to(torch.float)

        # Pay attention to high tolerance for MAE
Nicolas Hug's avatar
Nicolas Hug committed
648
        _assert_approx_equal_tensor_to_pil(resized_tensor_f, resized_pil_img, tol=8.0)
649
650
651
652
653
654
655
656
657
658
659

    if isinstance(size, int):
        script_size = [size, ]
    else:
        script_size = size

    resize_result = script_fn(
        tensor, size=script_size, interpolation=interpolation, max_size=max_size
    )
    assert_equal(resized_tensor, resize_result)

Nicolas Hug's avatar
Nicolas Hug committed
660
    _test_fn_on_batch(
661
662
663
664
665
        batch_tensors, F.resize, size=script_size, interpolation=interpolation, max_size=max_size
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
Nicolas Hug's avatar
Nicolas Hug committed
666
def test_resize_asserts(device):
667

Nicolas Hug's avatar
Nicolas Hug committed
668
    tensor, pil_img = _create_data(26, 36, device=device)
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

    # assert changed type warning
    with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
        res1 = F.resize(tensor, size=32, interpolation=2)

    res2 = F.resize(tensor, size=32, interpolation=BILINEAR)
    assert_equal(res1, res2)

    for img in (tensor, pil_img):
        exp_msg = "max_size should only be passed if size specifies the length of the smaller edge"
        with pytest.raises(ValueError, match=exp_msg):
            F.resize(img, size=(32, 34), max_size=35)
        with pytest.raises(ValueError, match="max_size = 32 must be strictly greater"):
            F.resize(img, size=32, max_size=32)


685
@pytest.mark.parametrize('device', cpu_and_gpu())
686
687
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('size', [[96, 72], [96, 420], [420, 72]])
688
@pytest.mark.parametrize('interpolation', [BILINEAR, BICUBIC])
Nicolas Hug's avatar
Nicolas Hug committed
689
def test_resize_antialias(device, dt, size, interpolation):
690
691
692
693
694

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

695
    torch.manual_seed(12)
696
    script_fn = torch.jit.script(F.resize)
Nicolas Hug's avatar
Nicolas Hug committed
697
    tensor, pil_img = _create_data(320, 290, device=device)
698
699
700
701
702
703
704
705

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)

    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, antialias=True)
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation)

Nicolas Hug's avatar
Nicolas Hug committed
706
    assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]
707
708
709
710
711
712

    resized_tensor_f = resized_tensor
    # we need to cast to uint8 to compare with PIL image
    if resized_tensor_f.dtype == torch.uint8:
        resized_tensor_f = resized_tensor_f.to(torch.float)

Nicolas Hug's avatar
Nicolas Hug committed
713
    _assert_approx_equal_tensor_to_pil(
714
715
        resized_tensor_f, resized_pil_img, tol=0.5, msg=f"{size}, {interpolation}, {dt}"
    )
716
717
718
719
720
721
722
723
724

    accepted_tol = 1.0 + 1e-5
    if interpolation == BICUBIC:
        # this overall mean value to make the tests pass
        # High value is mostly required for test cases with
        # downsampling and upsampling where we can not exactly
        # match PIL implementation.
        accepted_tol = 15.0

Nicolas Hug's avatar
Nicolas Hug committed
725
    _assert_approx_equal_tensor_to_pil(
726
        resized_tensor_f, resized_pil_img, tol=accepted_tol, agg_method="max",
727
728
729
730
731
732
733
734
735
        msg=f"{size}, {interpolation}, {dt}"
    )

    if isinstance(size, int):
        script_size = [size, ]
    else:
        script_size = size

    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, antialias=True)
Nicolas Hug's avatar
Nicolas Hug committed
736
    assert_equal(resized_tensor, resize_result)
737
738


739
740
@needs_cuda
@pytest.mark.parametrize('interpolation', [BILINEAR, BICUBIC])
Nicolas Hug's avatar
Nicolas Hug committed
741
def test_assert_resize_antialias(interpolation):
742
743
744
745

    # Checks implementation on very large scales
    # and catch TORCH_CHECK inside interpolate_aa_kernels.cu
    torch.manual_seed(12)
Nicolas Hug's avatar
Nicolas Hug committed
746
    tensor, pil_img = _create_data(1000, 1000, device="cuda")
747
748
749
750
751

    with pytest.raises(RuntimeError, match=r"Max supported scale factor is"):
        F.resize(tensor, size=(5, 5), interpolation=interpolation, antialias=True)


752
753
754
755
def check_functional_vs_PIL_vs_scripted(fn, fn_pil, fn_t, config, device, dtype, tol=2.0 + 1e-10, agg_method="max"):

    script_fn = torch.jit.script(fn)
    torch.manual_seed(15)
Nicolas Hug's avatar
Nicolas Hug committed
756
757
    tensor, pil_img = _create_data(26, 34, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775

    if dtype is not None:
        tensor = F.convert_image_dtype(tensor, dtype)
        batch_tensors = F.convert_image_dtype(batch_tensors, dtype)

    out_fn_t = fn_t(tensor, **config)
    out_pil = fn_pil(pil_img, **config)
    out_scripted = script_fn(tensor, **config)
    assert out_fn_t.dtype == out_scripted.dtype
    assert out_fn_t.size()[1:] == out_pil.size[::-1]

    rbg_tensor = out_fn_t

    if out_fn_t.dtype != torch.uint8:
        rbg_tensor = F.convert_image_dtype(out_fn_t, torch.uint8)

    # Check that max difference does not exceed 2 in [0, 255] range
    # Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
Nicolas Hug's avatar
Nicolas Hug committed
776
    _assert_approx_equal_tensor_to_pil(rbg_tensor.float(), out_pil, tol=tol, agg_method=agg_method)
777
778
779
780
781
782
783

    atol = 1e-6
    if out_fn_t.dtype == torch.uint8 and "cuda" in torch.device(device).type:
        atol = 1.0
    assert out_fn_t.allclose(out_scripted, atol=atol)

    # FIXME: fn will be scripted again in _test_fn_on_batch. We could avoid that.
Nicolas Hug's avatar
Nicolas Hug committed
784
    _test_fn_on_batch(batch_tensors, fn, scripted_fn_atol=atol, **config)
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"brightness_factor": f} for f in (0.1, 0.5, 1.0, 1.34, 2.5)])
def test_adjust_brightness(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_brightness,
        F_pil.adjust_brightness,
        F_t.adjust_brightness,
        config,
        device,
        dtype,
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
def test_invert(device, dtype):
    check_functional_vs_PIL_vs_scripted(
        F.invert,
        F_pil.invert,
        F_t.invert,
        {},
        device,
        dtype,
        tol=1.0,
        agg_method="max"
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('config', [{"bits": bits} for bits in range(0, 8)])
def test_posterize(device, config):
    check_functional_vs_PIL_vs_scripted(
        F.posterize,
        F_pil.posterize,
        F_t.posterize,
        config,
        device,
        dtype=None,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('config', [{"threshold": threshold} for threshold in [0, 64, 128, 192, 255]])
def test_solarize1(device, config):
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        F_pil.solarize,
        F_t.solarize,
        config,
        device,
        dtype=None,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"threshold": threshold} for threshold in [0.0, 0.25, 0.5, 0.75, 1.0]])
def test_solarize2(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        lambda img, threshold: F_pil.solarize(img, 255 * threshold),
        F_t.solarize,
        config,
        device,
        dtype,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"sharpness_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
def test_adjust_sharpness(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_sharpness,
        F_pil.adjust_sharpness,
        F_t.adjust_sharpness,
        config,
        device,
        dtype,
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
def test_autocontrast(device, dtype):
    check_functional_vs_PIL_vs_scripted(
        F.autocontrast,
        F_pil.autocontrast,
        F_t.autocontrast,
        {},
        device,
        dtype,
        tol=1.0,
        agg_method="max"
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_equalize(device):
    torch.set_deterministic(False)
    check_functional_vs_PIL_vs_scripted(
        F.equalize,
        F_pil.equalize,
        F_t.equalize,
        {},
        device,
        dtype=None,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"contrast_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
def test_adjust_contrast(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_contrast,
        F_pil.adjust_contrast,
        F_t.adjust_contrast,
        config,
        device,
        dtype
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"saturation_factor": f} for f in [0.5, 0.75, 1.0, 1.5, 2.0]])
def test_adjust_saturation(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_saturation,
        F_pil.adjust_saturation,
        F_t.adjust_saturation,
        config,
        device,
        dtype
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"hue_factor": f} for f in [-0.45, -0.25, 0.0, 0.25, 0.45]])
def test_adjust_hue(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_hue,
        F_pil.adjust_hue,
        F_t.adjust_hue,
        config,
        device,
        dtype,
        tol=16.1,
        agg_method="max"
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"gamma": g1, "gain": g2} for g1, g2 in zip([0.8, 1.0, 1.2], [0.7, 1.0, 1.3])])
def test_adjust_gamma(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_gamma,
        F_pil.adjust_gamma,
        F_t.adjust_gamma,
        config,
        device,
        dtype,
    )


964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('pad', [2, [3, ], [0, 3], (3, 3), [4, 2, 4, 3]])
@pytest.mark.parametrize('config', [
    {"padding_mode": "constant", "fill": 0},
    {"padding_mode": "constant", "fill": 10},
    {"padding_mode": "constant", "fill": 20},
    {"padding_mode": "edge"},
    {"padding_mode": "reflect"},
    {"padding_mode": "symmetric"},
])
def test_pad(device, dt, pad, config):
    script_fn = torch.jit.script(F.pad)
    tensor, pil_img = _create_data(7, 8, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)
        batch_tensors = batch_tensors.to(dt)

    pad_tensor = F_t.pad(tensor, pad, **config)
    pad_pil_img = F_pil.pad(pil_img, pad, **config)

    pad_tensor_8b = pad_tensor
    # we need to cast to uint8 to compare with PIL image
    if pad_tensor_8b.dtype != torch.uint8:
        pad_tensor_8b = pad_tensor_8b.to(torch.uint8)

    _assert_equal_tensor_to_pil(pad_tensor_8b, pad_pil_img, msg="{}, {}".format(pad, config))

    if isinstance(pad, int):
        script_pad = [pad, ]
    else:
        script_pad = pad
    pad_tensor_script = script_fn(tensor, script_pad, **config)
    assert_equal(pad_tensor, pad_tensor_script, msg="{}, {}".format(pad, config))

    _test_fn_on_batch(batch_tensors, F.pad, padding=script_pad, **config)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('mode', [NEAREST, BILINEAR, BICUBIC])
def test_resized_crop(device, mode):
    # test values of F.resized_crop in several cases:
    # 1) resize to the same size, crop to the same size => should be identity
    tensor, _ = _create_data(26, 36, device=device)

    out_tensor = F.resized_crop(tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=mode)
    assert_equal(tensor, out_tensor, msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))

    # 2) resize by half and crop a TL corner
    tensor, _ = _create_data(26, 36, device=device)
    out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=NEAREST)
    expected_out_tensor = tensor[:, :20:2, :30:2]
    assert_equal(
        expected_out_tensor,
        out_tensor,
        check_stride=False,
        msg="{} vs {}".format(expected_out_tensor[0, :10, :10], out_tensor[0, :10, :10]),
    )

    batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
    _test_fn_on_batch(
        batch_tensors, F.resized_crop, top=1, left=2, height=20, width=30, size=[10, 15], interpolation=NEAREST
    )


1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('func, args', [
    (F_t._get_image_size, ()), (F_t.vflip, ()),
    (F_t.hflip, ()), (F_t.crop, (1, 2, 4, 5)),
    (F_t.adjust_brightness, (0., )), (F_t.adjust_contrast, (1., )),
    (F_t.adjust_hue, (-0.5, )), (F_t.adjust_saturation, (2., )),
    (F_t.center_crop, ([10, 11], )), (F_t.five_crop, ([10, 11], )),
    (F_t.ten_crop, ([10, 11], )), (F_t.pad, ([2, ], 2, "constant")),
    (F_t.resize, ([10, 11], )), (F_t.perspective, ([0.2, ])),
    (F_t.gaussian_blur, ((2, 2), (0.7, 0.5))),
    (F_t.invert, ()), (F_t.posterize, (0, )),
    (F_t.solarize, (0.3, )), (F_t.adjust_sharpness, (0.3, )),
    (F_t.autocontrast, ()), (F_t.equalize, ())
])
def test_assert_image_tensor(device, func, args):
    shape = (100,)
    tensor = torch.rand(*shape, dtype=torch.float, device=device)
    with pytest.raises(Exception, match=r"Tensor is not a torch image."):
        func(tensor, *args)


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_vflip(device):
    script_vflip = torch.jit.script(F.vflip)

    img_tensor, pil_img = _create_data(16, 18, device=device)
    vflipped_img = F.vflip(img_tensor)
    vflipped_pil_img = F.vflip(pil_img)
    _assert_equal_tensor_to_pil(vflipped_img, vflipped_pil_img)

    # scriptable function test
    vflipped_img_script = script_vflip(img_tensor)
    assert_equal(vflipped_img, vflipped_img_script)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.vflip)


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_hflip(device):
    script_hflip = torch.jit.script(F.hflip)

    img_tensor, pil_img = _create_data(16, 18, device=device)
    hflipped_img = F.hflip(img_tensor)
    hflipped_pil_img = F.hflip(pil_img)
    _assert_equal_tensor_to_pil(hflipped_img, hflipped_pil_img)

    # scriptable function test
    hflipped_img_script = script_hflip(img_tensor)
    assert_equal(hflipped_img, hflipped_img_script)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.hflip)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('top, left, height, width', [
    (1, 2, 4, 5),   # crop inside top-left corner
    (2, 12, 3, 4),  # crop inside top-right corner
    (8, 3, 5, 6),   # crop inside bottom-left corner
    (8, 11, 4, 3),  # crop inside bottom-right corner
])
def test_crop(device, top, left, height, width):
    script_crop = torch.jit.script(F.crop)

    img_tensor, pil_img = _create_data(16, 18, device=device)

    pil_img_cropped = F.crop(pil_img, top, left, height, width)

    img_tensor_cropped = F.crop(img_tensor, top, left, height, width)
    _assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)

    img_tensor_cropped = script_crop(img_tensor, top, left, height, width)
    _assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.crop, top=top, left=left, height=height, width=width)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('image_size', ('small', 'large'))
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('ksize', [(3, 3), [3, 5], (23, 23)])
@pytest.mark.parametrize('sigma', [[0.5, 0.5], (0.5, 0.5), (0.8, 0.8), (1.7, 1.7)])
@pytest.mark.parametrize('fn', [F.gaussian_blur, torch.jit.script(F.gaussian_blur)])
def test_gaussian_blur(device, image_size, dt, ksize, sigma, fn):

    # true_cv2_results = {
    #     # np_img = np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
    #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.8)
    #     "3_3_0.8": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.5)
    #     "3_3_0.5": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.8)
    #     "3_5_0.8": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.5)
    #     "3_5_0.5": ...
    #     # np_img2 = np.arange(26 * 28, dtype="uint8").reshape((26, 28))
    #     # cv2.GaussianBlur(np_img2, ksize=(23, 23), sigmaX=1.7)
    #     "23_23_1.7": ...
    # }
    p = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'assets', 'gaussian_blur_opencv_results.pt')
    true_cv2_results = torch.load(p)

    if image_size == 'small':
        tensor = torch.from_numpy(
            np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
        ).permute(2, 0, 1).to(device)
    else:
        tensor = torch.from_numpy(
            np.arange(26 * 28, dtype="uint8").reshape((1, 26, 28))
        ).to(device)

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if dt is not None:
        tensor = tensor.to(dtype=dt)

    _ksize = (ksize, ksize) if isinstance(ksize, int) else ksize
    _sigma = sigma[0] if sigma is not None else None
    shape = tensor.shape
    gt_key = "{}_{}_{}__{}_{}_{}".format(
        shape[-2], shape[-1], shape[-3],
        _ksize[0], _ksize[1], _sigma
    )
    if gt_key not in true_cv2_results:
        return

    true_out = torch.tensor(
        true_cv2_results[gt_key]
    ).reshape(shape[-2], shape[-1], shape[-3]).permute(2, 0, 1).to(tensor)

    out = fn(tensor, kernel_size=ksize, sigma=sigma)
    torch.testing.assert_close(
        out, true_out, rtol=0.0, atol=1.0, check_stride=False,
        msg="{}, {}".format(ksize, sigma)
    )


1177
1178
if __name__ == '__main__':
    unittest.main()