test_functional_tensor.py 46 KB
Newer Older
1
import itertools
2
import os
3
import unittest
4
import colorsys
5
import math
6

vfdev's avatar
vfdev committed
7
import numpy as np
8
import pytest
vfdev's avatar
vfdev committed
9
10
11
12
13

import torch
import torchvision.transforms.functional_tensor as F_t
import torchvision.transforms.functional_pil as F_pil
import torchvision.transforms.functional as F
14
import torchvision.transforms as T
15
from torchvision.transforms import InterpolationMode
16

Nicolas Hug's avatar
Nicolas Hug committed
17
18
19
20
21
22
23
24
25
from common_utils import (
    cpu_and_gpu,
    needs_cuda,
    _create_data,
    _create_data_batch,
    _assert_equal_tensor_to_pil,
    _assert_approx_equal_tensor_to_pil,
    _test_fn_on_batch,
)
26
from _assert_utils import assert_equal
27

28
from typing import Dict, List, Sequence, Tuple
29

30

31
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
32
33


Nicolas Hug's avatar
Nicolas Hug committed
34
class Tester(unittest.TestCase):
vfdev's avatar
vfdev committed
35

36
37
38
    def setUp(self):
        self.device = "cpu"

39
    def test_hsv2rgb(self):
40
        scripted_fn = torch.jit.script(F_t._hsv2rgb)
41
        shape = (3, 100, 150)
42
43
44
45
        for _ in range(10):
            hsv_img = torch.rand(*shape, dtype=torch.float, device=self.device)
            rgb_img = F_t._hsv2rgb(hsv_img)
            ft_img = rgb_img.permute(1, 2, 0).flatten(0, 1)
46

47
48
49
50
            h, s, v, = hsv_img.unbind(0)
            h = h.flatten().cpu().numpy()
            s = s.flatten().cpu().numpy()
            v = v.flatten().cpu().numpy()
51
52
53
54

            rgb = []
            for h1, s1, v1 in zip(h, s, v):
                rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))
55
            colorsys_img = torch.tensor(rgb, dtype=torch.float32, device=self.device)
56
            torch.testing.assert_close(ft_img, colorsys_img, rtol=0.0, atol=1e-5)
57

58
            s_rgb_img = scripted_fn(hsv_img)
59
            torch.testing.assert_close(rgb_img, s_rgb_img)
60

Nicolas Hug's avatar
Nicolas Hug committed
61
62
        batch_tensors = _create_data_batch(120, 100, num_samples=4, device=self.device).float()
        _test_fn_on_batch(batch_tensors, F_t._hsv2rgb)
63

64
    def test_rgb2hsv(self):
65
        scripted_fn = torch.jit.script(F_t._rgb2hsv)
66
        shape = (3, 150, 100)
67
68
69
70
        for _ in range(10):
            rgb_img = torch.rand(*shape, dtype=torch.float, device=self.device)
            hsv_img = F_t._rgb2hsv(rgb_img)
            ft_hsv_img = hsv_img.permute(1, 2, 0).flatten(0, 1)
71

72
            r, g, b, = rgb_img.unbind(dim=-3)
73
74
75
            r = r.flatten().cpu().numpy()
            g = g.flatten().cpu().numpy()
            b = b.flatten().cpu().numpy()
76
77
78
79
80

            hsv = []
            for r1, g1, b1 in zip(r, g, b):
                hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))

81
            colorsys_img = torch.tensor(hsv, dtype=torch.float32, device=self.device)
82

83
84
85
86
87
88
            ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
            colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)

            max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
            max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
            max_diff = max(max_diff_h, max_diff_sv)
89
90
            self.assertLess(max_diff, 1e-5)

91
            s_hsv_img = scripted_fn(rgb_img)
92
            torch.testing.assert_close(hsv_img, s_hsv_img, rtol=1e-5, atol=1e-7)
93

Nicolas Hug's avatar
Nicolas Hug committed
94
95
        batch_tensors = _create_data_batch(120, 100, num_samples=4, device=self.device).float()
        _test_fn_on_batch(batch_tensors, F_t._rgb2hsv)
96

97
    def test_rgb_to_grayscale(self):
98
99
        script_rgb_to_grayscale = torch.jit.script(F.rgb_to_grayscale)

Nicolas Hug's avatar
Nicolas Hug committed
100
        img_tensor, pil_img = _create_data(32, 34, device=self.device)
101
102
103
104
105

        for num_output_channels in (3, 1):
            gray_pil_image = F.rgb_to_grayscale(pil_img, num_output_channels=num_output_channels)
            gray_tensor = F.rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)

Nicolas Hug's avatar
Nicolas Hug committed
106
            _assert_approx_equal_tensor_to_pil(gray_tensor.float(), gray_pil_image, tol=1.0 + 1e-10, agg_method="max")
107
108

            s_gray_tensor = script_rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)
109
            assert_equal(s_gray_tensor, gray_tensor)
110

Nicolas Hug's avatar
Nicolas Hug committed
111
112
            batch_tensors = _create_data_batch(16, 18, num_samples=4, device=self.device)
            _test_fn_on_batch(batch_tensors, F.rgb_to_grayscale, num_output_channels=num_output_channels)
113

114
    def test_center_crop(self):
115
116
        script_center_crop = torch.jit.script(F.center_crop)

Nicolas Hug's avatar
Nicolas Hug committed
117
        img_tensor, pil_img = _create_data(32, 34, device=self.device)
118
119
120
121

        cropped_pil_image = F.center_crop(pil_img, [10, 11])

        cropped_tensor = F.center_crop(img_tensor, [10, 11])
Nicolas Hug's avatar
Nicolas Hug committed
122
        _assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)
123
124

        cropped_tensor = script_center_crop(img_tensor, [10, 11])
Nicolas Hug's avatar
Nicolas Hug committed
125
        _assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)
126

Nicolas Hug's avatar
Nicolas Hug committed
127
128
        batch_tensors = _create_data_batch(16, 18, num_samples=4, device=self.device)
        _test_fn_on_batch(batch_tensors, F.center_crop, output_size=[10, 11])
129

130
    def test_five_crop(self):
131
132
        script_five_crop = torch.jit.script(F.five_crop)

Nicolas Hug's avatar
Nicolas Hug committed
133
        img_tensor, pil_img = _create_data(32, 34, device=self.device)
134
135
136
137
138

        cropped_pil_images = F.five_crop(pil_img, [10, 11])

        cropped_tensors = F.five_crop(img_tensor, [10, 11])
        for i in range(5):
Nicolas Hug's avatar
Nicolas Hug committed
139
            _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])
140
141
142

        cropped_tensors = script_five_crop(img_tensor, [10, 11])
        for i in range(5):
Nicolas Hug's avatar
Nicolas Hug committed
143
            _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])
144

Nicolas Hug's avatar
Nicolas Hug committed
145
        batch_tensors = _create_data_batch(16, 18, num_samples=4, device=self.device)
146
147
148
149
150
151
152
153
154
        tuple_transformed_batches = F.five_crop(batch_tensors, [10, 11])
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            tuple_transformed_imgs = F.five_crop(img_tensor, [10, 11])
            self.assertEqual(len(tuple_transformed_imgs), len(tuple_transformed_batches))

            for j in range(len(tuple_transformed_imgs)):
                true_transformed_img = tuple_transformed_imgs[j]
                transformed_img = tuple_transformed_batches[j][i, ...]
155
                assert_equal(true_transformed_img, transformed_img)
156
157
158
159

        # scriptable function test
        s_tuple_transformed_batches = script_five_crop(batch_tensors, [10, 11])
        for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
160
            assert_equal(transformed_batch, s_transformed_batch)
161

162
    def test_ten_crop(self):
163
164
        script_ten_crop = torch.jit.script(F.ten_crop)

Nicolas Hug's avatar
Nicolas Hug committed
165
        img_tensor, pil_img = _create_data(32, 34, device=self.device)
166
167
168
169
170

        cropped_pil_images = F.ten_crop(pil_img, [10, 11])

        cropped_tensors = F.ten_crop(img_tensor, [10, 11])
        for i in range(10):
Nicolas Hug's avatar
Nicolas Hug committed
171
            _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])
172
173
174

        cropped_tensors = script_ten_crop(img_tensor, [10, 11])
        for i in range(10):
Nicolas Hug's avatar
Nicolas Hug committed
175
            _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])
176

Nicolas Hug's avatar
Nicolas Hug committed
177
        batch_tensors = _create_data_batch(16, 18, num_samples=4, device=self.device)
178
179
180
181
182
183
184
185
186
        tuple_transformed_batches = F.ten_crop(batch_tensors, [10, 11])
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            tuple_transformed_imgs = F.ten_crop(img_tensor, [10, 11])
            self.assertEqual(len(tuple_transformed_imgs), len(tuple_transformed_batches))

            for j in range(len(tuple_transformed_imgs)):
                true_transformed_img = tuple_transformed_imgs[j]
                transformed_img = tuple_transformed_batches[j][i, ...]
187
                assert_equal(true_transformed_img, transformed_img)
188
189
190
191

        # scriptable function test
        s_tuple_transformed_batches = script_ten_crop(batch_tensors, [10, 11])
        for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
192
            assert_equal(transformed_batch, s_transformed_batch)
193

194
    def test_pad(self):
195
        script_fn = torch.jit.script(F.pad)
Nicolas Hug's avatar
Nicolas Hug committed
196
197
        tensor, pil_img = _create_data(7, 8, device=self.device)
        batch_tensors = _create_data_batch(16, 18, num_samples=4, device=self.device)
198

199
200
201
202
203
204
        for dt in [None, torch.float32, torch.float64, torch.float16]:

            if dt == torch.float16 and torch.device(self.device).type == "cpu":
                # skip float16 on CPU case
                continue

205
206
207
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
208
209
                batch_tensors = batch_tensors.to(dt)

210
211
212
213
214
215
216
            for pad in [2, [3, ], [0, 3], (3, 3), [4, 2, 4, 3]]:
                configs = [
                    {"padding_mode": "constant", "fill": 0},
                    {"padding_mode": "constant", "fill": 10},
                    {"padding_mode": "constant", "fill": 20},
                    {"padding_mode": "edge"},
                    {"padding_mode": "reflect"},
217
                    {"padding_mode": "symmetric"},
218
219
220
221
222
223
224
225
226
227
                ]
                for kwargs in configs:
                    pad_tensor = F_t.pad(tensor, pad, **kwargs)
                    pad_pil_img = F_pil.pad(pil_img, pad, **kwargs)

                    pad_tensor_8b = pad_tensor
                    # we need to cast to uint8 to compare with PIL image
                    if pad_tensor_8b.dtype != torch.uint8:
                        pad_tensor_8b = pad_tensor_8b.to(torch.uint8)

Nicolas Hug's avatar
Nicolas Hug committed
228
                    _assert_equal_tensor_to_pil(pad_tensor_8b, pad_pil_img, msg="{}, {}".format(pad, kwargs))
229
230
231
232
233
234

                    if isinstance(pad, int):
                        script_pad = [pad, ]
                    else:
                        script_pad = pad
                    pad_tensor_script = script_fn(tensor, script_pad, **kwargs)
235
                    assert_equal(pad_tensor, pad_tensor_script, msg="{}, {}".format(pad, kwargs))
236

Nicolas Hug's avatar
Nicolas Hug committed
237
                    _test_fn_on_batch(batch_tensors, F.pad, padding=script_pad, **kwargs)
238

239
    def test_resized_crop(self):
240
241
        # test values of F.resized_crop in several cases:
        # 1) resize to the same size, crop to the same size => should be identity
Nicolas Hug's avatar
Nicolas Hug committed
242
        tensor, _ = _create_data(26, 36, device=self.device)
243
244
245

        for mode in [NEAREST, BILINEAR, BICUBIC]:
            out_tensor = F.resized_crop(tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=mode)
246
            assert_equal(tensor, out_tensor, msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))
247
248

        # 2) resize by half and crop a TL corner
Nicolas Hug's avatar
Nicolas Hug committed
249
        tensor, _ = _create_data(26, 36, device=self.device)
250
        out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=NEAREST)
251
        expected_out_tensor = tensor[:, :20:2, :30:2]
252
253
254
255
256
        assert_equal(
            expected_out_tensor,
            out_tensor,
            check_stride=False,
            msg="{} vs {}".format(expected_out_tensor[0, :10, :10], out_tensor[0, :10, :10]),
257
258
        )

Nicolas Hug's avatar
Nicolas Hug committed
259
260
        batch_tensors = _create_data_batch(26, 36, num_samples=4, device=self.device)
        _test_fn_on_batch(
261
            batch_tensors, F.resized_crop, top=1, left=2, height=20, width=30, size=[10, 15], interpolation=NEAREST
262
263
        )

264
265
    def _test_affine_identity_map(self, tensor, scripted_affine):
        # 1) identity map
266
        out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
vfdev's avatar
vfdev committed
267

268
        assert_equal(tensor, out_tensor, msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))
269
270
271
        out_tensor = scripted_affine(
            tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
272
        assert_equal(tensor, out_tensor, msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))
273

274
275
276
277
278
279
280
281
282
283
284
285
286
    def _test_affine_square_rotations(self, tensor, pil_img, scripted_affine):
        # 2) Test rotation
        test_configs = [
            (90, torch.rot90(tensor, k=1, dims=(-1, -2))),
            (45, None),
            (30, None),
            (-30, None),
            (-45, None),
            (-90, torch.rot90(tensor, k=-1, dims=(-1, -2))),
            (180, torch.rot90(tensor, k=2, dims=(-1, -2))),
        ]
        for a, true_tensor in test_configs:
            out_pil_img = F.affine(
287
                pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
288
            )
289
290
291
292
            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(self.device)

            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(
293
                    tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
294
295
                )
                if true_tensor is not None:
296
297
298
299
300
                    assert_equal(
                        true_tensor,
                        out_tensor,
                        msg="{}\n{} vs \n{}".format(a, out_tensor[0, :5, :5], true_tensor[0, :5, :5]),
                        check_stride=False,
301
                    )
302

303
304
305
306
307
308
309
310
311
312
313
                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)

                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                # Tolerance : less than 6% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.06,
                    msg="{}\n{} vs \n{}".format(
                        ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
314
                    )
315
                )
316

317
318
319
320
321
    def _test_affine_rect_rotations(self, tensor, pil_img, scripted_affine):
        test_configs = [
            90, 45, 15, -30, -60, -120
        ]
        for a in test_configs:
322

323
            out_pil_img = F.affine(
324
                pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
325
326
327
328
329
            )
            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(
330
                    tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
331
332
333
334
335
336
337
338
339
340
341
342
343
                ).cpu()

                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)

                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                # Tolerance : less than 3% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.03,
                    msg="{}: {}\n{} vs \n{}".format(
                        a, ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
344
                    )
345
                )
346

347
348
349
350
351
352
    def _test_affine_translations(self, tensor, pil_img, scripted_affine):
        # 3) Test translation
        test_configs = [
            [10, 12], (-12, -13)
        ]
        for t in test_configs:
353

354
            out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
355

356
            for fn in [F.affine, scripted_affine]:
357
                out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
358

359
360
                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)
361

Nicolas Hug's avatar
Nicolas Hug committed
362
                _assert_equal_tensor_to_pil(out_tensor, out_pil_img)
363
364
365
366

    def _test_affine_all_ops(self, tensor, pil_img, scripted_affine):
        # 4) Test rotation + translation + scale + share
        test_configs = [
367
368
369
370
371
372
373
374
375
376
            (45.5, [5, 6], 1.0, [0.0, 0.0], None),
            (33, (5, -4), 1.0, [0.0, 0.0], [0, 0, 0]),
            (45, [-5, 4], 1.2, [0.0, 0.0], (1, 2, 3)),
            (33, (-4, -8), 2.0, [0.0, 0.0], [255, 255, 255]),
            (85, (10, -10), 0.7, [0.0, 0.0], [1, ]),
            (0, [0, 0], 1.0, [35.0, ], (2.0, )),
            (-25, [0, 0], 1.2, [0.0, 15.0], None),
            (-45, [-10, 0], 0.7, [2.0, 5.0], None),
            (-45, [-10, -10], 1.2, [4.0, 5.0], None),
            (-90, [0, 0], 1.0, [0.0, 0.0], None),
377
        ]
378
        for r in [NEAREST, ]:
379
380
381
            for a, t, s, sh, f in test_configs:
                f_pil = int(f[0]) if f is not None and len(f) == 1 else f
                out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, interpolation=r, fill=f_pil)
382
383
384
                out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

                for fn in [F.affine, scripted_affine]:
385
                    out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, interpolation=r, fill=f).cpu()
386
387
388
389
390
391
392
393
394
395
396
397

                    if out_tensor.dtype != torch.uint8:
                        out_tensor = out_tensor.to(torch.uint8)

                    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                    # Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
                    tol = 0.06 if self.device == "cuda" else 0.05
                    self.assertLess(
                        ratio_diff_pixels,
                        tol,
                        msg="{}: {}\n{} vs \n{}".format(
398
                            (r, a, t, s, sh, f), ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
vfdev's avatar
vfdev committed
399
                        )
400
401
402
403
404
405
                    )

    def test_affine(self):
        # Tests on square and rectangular images
        scripted_affine = torch.jit.script(F.affine)

Nicolas Hug's avatar
Nicolas Hug committed
406
        data = [_create_data(26, 26, device=self.device), _create_data(32, 26, device=self.device)]
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        for tensor, pil_img in data:

            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

                self._test_affine_identity_map(tensor, scripted_affine)
                if pil_img.size[0] == pil_img.size[1]:
                    self._test_affine_square_rotations(tensor, pil_img, scripted_affine)
                else:
                    self._test_affine_rect_rotations(tensor, pil_img, scripted_affine)
                self._test_affine_translations(tensor, pil_img, scripted_affine)
424
425
                self._test_affine_all_ops(tensor, pil_img, scripted_affine)

Nicolas Hug's avatar
Nicolas Hug committed
426
                batch_tensors = _create_data_batch(26, 36, num_samples=4, device=self.device)
427
428
429
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)

Nicolas Hug's avatar
Nicolas Hug committed
430
                _test_fn_on_batch(
431
432
433
                    batch_tensors, F.affine, angle=-43, translate=[-3, 4], scale=1.2, shear=[4.0, 5.0]
                )

434
435
436
437
438
        tensor, pil_img = data[0]
        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
439
            assert_equal(res1, res2)
440
441

        # assert changed type warning
442
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
443
444
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
445
            assert_equal(res1, res2)
446
447
448
449

        with self.assertWarnsRegex(UserWarning, r"Argument fillcolor is deprecated and will be removed"):
            res1 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fillcolor=10)
            res2 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fill=10)
450
451
            # we convert the PIL images to numpy as assert_equal doesn't work on PIL images.
            assert_equal(np.asarray(res1), np.asarray(res2))
452

453
454
455
    def _test_rotate_all_options(self, tensor, pil_img, scripted_rotate, centers):
        img_size = pil_img.size
        dt = tensor.dtype
456
        for r in [NEAREST, ]:
457
458
459
            for a in range(-180, 180, 17):
                for e in [True, False]:
                    for c in centers:
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
                        for f in [None, [0, 0, 0], (1, 2, 3), [255, 255, 255], [1, ], (2.0, )]:
                            f_pil = int(f[0]) if f is not None and len(f) == 1 else f
                            out_pil_img = F.rotate(pil_img, angle=a, interpolation=r, expand=e, center=c, fill=f_pil)
                            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
                            for fn in [F.rotate, scripted_rotate]:
                                out_tensor = fn(tensor, angle=a, interpolation=r, expand=e, center=c, fill=f).cpu()

                                if out_tensor.dtype != torch.uint8:
                                    out_tensor = out_tensor.to(torch.uint8)

                                self.assertEqual(
                                    out_tensor.shape,
                                    out_pil_tensor.shape,
                                    msg="{}: {} vs {}".format(
                                        (img_size, r, dt, a, e, c), out_tensor.shape, out_pil_tensor.shape
                                    ))

                                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                                # Tolerance : less than 3% of different pixels
                                self.assertLess(
481
                                    ratio_diff_pixels,
482
483
484
485
486
487
488
                                    0.03,
                                    msg="{}: {}\n{} vs \n{}".format(
                                        (img_size, r, dt, a, e, c, f),
                                        ratio_diff_pixels,
                                        out_tensor[0, :7, :7],
                                        out_pil_tensor[0, :7, :7]
                                    )
489
                                )
vfdev's avatar
vfdev committed
490

491
    def test_rotate(self):
vfdev's avatar
vfdev committed
492
493
494
        # Tests on square image
        scripted_rotate = torch.jit.script(F.rotate)

Nicolas Hug's avatar
Nicolas Hug committed
495
        data = [_create_data(26, 26, device=self.device), _create_data(32, 26, device=self.device)]
496
        for tensor, pil_img in data:
497
498
499
500
501
502
503
504

            img_size = pil_img.size
            centers = [
                None,
                (int(img_size[0] * 0.3), int(img_size[0] * 0.4)),
                [int(img_size[0] * 0.5), int(img_size[0] * 0.6)]
            ]

505
506
507
508
509
510
511
512
513
            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

514
515
                self._test_rotate_all_options(tensor, pil_img, scripted_rotate, centers)

Nicolas Hug's avatar
Nicolas Hug committed
516
                batch_tensors = _create_data_batch(26, 36, num_samples=4, device=self.device)
517
518
519
520
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)

                center = (20, 22)
Nicolas Hug's avatar
Nicolas Hug committed
521
                _test_fn_on_batch(
522
                    batch_tensors, F.rotate, angle=32, interpolation=NEAREST, expand=True, center=center
523
                )
524
525
526
527
528
        tensor, pil_img = data[0]
        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            res1 = F.rotate(tensor, 45, resample=2)
            res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
529
            assert_equal(res1, res2)
530
531

        # assert changed type warning
532
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
533
534
            res1 = F.rotate(tensor, 45, interpolation=2)
            res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
535
            assert_equal(res1, res2)
536

537

538
539
540
541
542
@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):

    def setUp(self):
        self.device = "cuda"
543

544
545
546
547
548
549
550
551
552
553
    def test_scale_channel(self):
        """Make sure that _scale_channel gives the same results on CPU and GPU as
        histc or bincount are used depending on the device.
        """
        # TODO: when # https://github.com/pytorch/pytorch/issues/53194 is fixed,
        # only use bincount and remove that test.
        size = (1_000,)
        img_chan = torch.randint(0, 256, size=size).to('cpu')
        scaled_cpu = F_t._scale_channel(img_chan)
        scaled_cuda = F_t._scale_channel(img_chan.to('cuda'))
554
        assert_equal(scaled_cpu, scaled_cuda.to('cpu'))
555

556

557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
def _get_data_dims_and_points_for_perspective():
    # Ideally we would parametrize independently over data dims and points, but
    # we want to tests on some points that also depend on the data dims.
    # Pytest doesn't support covariant parametrization, so we do it somewhat manually here.

    data_dims = [(26, 34), (26, 26)]
    points = [
        [[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
    ]

    dims_and_points = list(itertools.product(data_dims, points))

    # up to here, we could just have used 2 @parametrized.
    # Down below is the covarariant part as the points depend on the data dims.

    n = 10
    for dim in data_dims:
        points += [
            (dim, T.RandomPerspective.get_params(dim[1], dim[0], i / n))
            for i in range(n)
        ]
    return dims_and_points


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dims_and_points', _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('fill', (None, [0, 0, 0], [1, 2, 3], [255, 255, 255], [1, ], (2.0, )))
@pytest.mark.parametrize('fn', [F.perspective, torch.jit.script(F.perspective)])
Nicolas Hug's avatar
Nicolas Hug committed
588
def test_perspective_pil_vs_tensor(device, dims_and_points, dt, fill, fn):
589
590
591
592
593
594
595

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

Nicolas Hug's avatar
Nicolas Hug committed
596
    tensor, pil_img = _create_data(*data_dims, device=device)
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
    if dt is not None:
        tensor = tensor.to(dtype=dt)

    interpolation = NEAREST
    fill_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
    out_pil_img = F.perspective(pil_img, startpoints=spoints, endpoints=epoints, interpolation=interpolation,
                                fill=fill_pil)
    out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
    out_tensor = fn(tensor, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill).cpu()

    if out_tensor.dtype != torch.uint8:
        out_tensor = out_tensor.to(torch.uint8)

    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
    # Tolerance : less than 5% of different pixels
    assert ratio_diff_pixels < 0.05


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dims_and_points', _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
Nicolas Hug's avatar
Nicolas Hug committed
619
def test_perspective_batch(device, dims_and_points, dt):
620
621
622
623
624
625
626

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

Nicolas Hug's avatar
Nicolas Hug committed
627
    batch_tensors = _create_data_batch(*data_dims, num_samples=4, device=device)
628
629
630
631
632
633
    if dt is not None:
        batch_tensors = batch_tensors.to(dtype=dt)

    # Ignore the equivalence between scripted and regular function on float16 cuda. The pixels at
    # the border may be entirely different due to small rounding errors.
    scripted_fn_atol = -1 if (dt == torch.float16 and device == "cuda") else 1e-8
Nicolas Hug's avatar
Nicolas Hug committed
634
    _test_fn_on_batch(
635
636
637
638
639
        batch_tensors, F.perspective, scripted_fn_atol=scripted_fn_atol,
        startpoints=spoints, endpoints=epoints, interpolation=NEAREST
    )


Nicolas Hug's avatar
Nicolas Hug committed
640
def test_perspective_interpolation_warning():
641
642
643
644
    # assert changed type warning
    spoints = [[0, 0], [33, 0], [33, 25], [0, 25]]
    epoints = [[3, 2], [32, 3], [30, 24], [2, 25]]
    tensor = torch.randint(0, 256, (3, 26, 26))
Nicolas Hug's avatar
Nicolas Hug committed
645
    with pytest.warns(UserWarning, match="Argument interpolation should be of type InterpolationMode"):
646
647
        res1 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=2)
        res2 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=BILINEAR)
Nicolas Hug's avatar
Nicolas Hug committed
648
        assert_equal(res1, res2)
649
650


651
652
653
654
655
@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('size', [32, 26, [32, ], [32, 32], (32, 32), [26, 35]])
@pytest.mark.parametrize('max_size', [None, 34, 40, 1000])
@pytest.mark.parametrize('interpolation', [BILINEAR, BICUBIC, NEAREST])
Nicolas Hug's avatar
Nicolas Hug committed
656
def test_resize(device, dt, size, max_size, interpolation):
657
658
659
660
661
662
663
664
665
666

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if max_size is not None and isinstance(size, Sequence) and len(size) != 1:
        return  # unsupported

    torch.manual_seed(12)
    script_fn = torch.jit.script(F.resize)
Nicolas Hug's avatar
Nicolas Hug committed
667
668
    tensor, pil_img = _create_data(26, 36, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)
        batch_tensors = batch_tensors.to(dt)

    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, max_size=max_size)
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation, max_size=max_size)

    assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]

    if interpolation not in [NEAREST, ]:
        # We can not check values if mode = NEAREST, as results are different
        # E.g. resized_tensor  = [[a, a, b, c, d, d, e, ...]]
        # E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
        resized_tensor_f = resized_tensor
        # we need to cast to uint8 to compare with PIL image
        if resized_tensor_f.dtype == torch.uint8:
            resized_tensor_f = resized_tensor_f.to(torch.float)

        # Pay attention to high tolerance for MAE
Nicolas Hug's avatar
Nicolas Hug committed
690
        _assert_approx_equal_tensor_to_pil(resized_tensor_f, resized_pil_img, tol=8.0)
691
692
693
694
695
696
697
698
699
700
701

    if isinstance(size, int):
        script_size = [size, ]
    else:
        script_size = size

    resize_result = script_fn(
        tensor, size=script_size, interpolation=interpolation, max_size=max_size
    )
    assert_equal(resized_tensor, resize_result)

Nicolas Hug's avatar
Nicolas Hug committed
702
    _test_fn_on_batch(
703
704
705
706
707
        batch_tensors, F.resize, size=script_size, interpolation=interpolation, max_size=max_size
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
Nicolas Hug's avatar
Nicolas Hug committed
708
def test_resize_asserts(device):
709

Nicolas Hug's avatar
Nicolas Hug committed
710
    tensor, pil_img = _create_data(26, 36, device=device)
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726

    # assert changed type warning
    with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
        res1 = F.resize(tensor, size=32, interpolation=2)

    res2 = F.resize(tensor, size=32, interpolation=BILINEAR)
    assert_equal(res1, res2)

    for img in (tensor, pil_img):
        exp_msg = "max_size should only be passed if size specifies the length of the smaller edge"
        with pytest.raises(ValueError, match=exp_msg):
            F.resize(img, size=(32, 34), max_size=35)
        with pytest.raises(ValueError, match="max_size = 32 must be strictly greater"):
            F.resize(img, size=32, max_size=32)


727
@pytest.mark.parametrize('device', cpu_and_gpu())
728
729
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('size', [[96, 72], [96, 420], [420, 72]])
730
@pytest.mark.parametrize('interpolation', [BILINEAR, BICUBIC])
Nicolas Hug's avatar
Nicolas Hug committed
731
def test_resize_antialias(device, dt, size, interpolation):
732
733
734
735
736

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

737
    torch.manual_seed(12)
738
    script_fn = torch.jit.script(F.resize)
Nicolas Hug's avatar
Nicolas Hug committed
739
    tensor, pil_img = _create_data(320, 290, device=device)
740
741
742
743
744
745
746
747

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)

    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, antialias=True)
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation)

Nicolas Hug's avatar
Nicolas Hug committed
748
    assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]
749
750
751
752
753
754

    resized_tensor_f = resized_tensor
    # we need to cast to uint8 to compare with PIL image
    if resized_tensor_f.dtype == torch.uint8:
        resized_tensor_f = resized_tensor_f.to(torch.float)

Nicolas Hug's avatar
Nicolas Hug committed
755
    _assert_approx_equal_tensor_to_pil(
756
757
        resized_tensor_f, resized_pil_img, tol=0.5, msg=f"{size}, {interpolation}, {dt}"
    )
758
759
760
761
762
763
764
765
766

    accepted_tol = 1.0 + 1e-5
    if interpolation == BICUBIC:
        # this overall mean value to make the tests pass
        # High value is mostly required for test cases with
        # downsampling and upsampling where we can not exactly
        # match PIL implementation.
        accepted_tol = 15.0

Nicolas Hug's avatar
Nicolas Hug committed
767
    _assert_approx_equal_tensor_to_pil(
768
        resized_tensor_f, resized_pil_img, tol=accepted_tol, agg_method="max",
769
770
771
772
773
774
775
776
777
        msg=f"{size}, {interpolation}, {dt}"
    )

    if isinstance(size, int):
        script_size = [size, ]
    else:
        script_size = size

    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, antialias=True)
Nicolas Hug's avatar
Nicolas Hug committed
778
    assert_equal(resized_tensor, resize_result)
779
780


781
782
@needs_cuda
@pytest.mark.parametrize('interpolation', [BILINEAR, BICUBIC])
Nicolas Hug's avatar
Nicolas Hug committed
783
def test_assert_resize_antialias(interpolation):
784
785
786
787

    # Checks implementation on very large scales
    # and catch TORCH_CHECK inside interpolate_aa_kernels.cu
    torch.manual_seed(12)
Nicolas Hug's avatar
Nicolas Hug committed
788
    tensor, pil_img = _create_data(1000, 1000, device="cuda")
789
790
791
792
793

    with pytest.raises(RuntimeError, match=r"Max supported scale factor is"):
        F.resize(tensor, size=(5, 5), interpolation=interpolation, antialias=True)


794
795
796
797
def check_functional_vs_PIL_vs_scripted(fn, fn_pil, fn_t, config, device, dtype, tol=2.0 + 1e-10, agg_method="max"):

    script_fn = torch.jit.script(fn)
    torch.manual_seed(15)
Nicolas Hug's avatar
Nicolas Hug committed
798
799
    tensor, pil_img = _create_data(26, 34, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817

    if dtype is not None:
        tensor = F.convert_image_dtype(tensor, dtype)
        batch_tensors = F.convert_image_dtype(batch_tensors, dtype)

    out_fn_t = fn_t(tensor, **config)
    out_pil = fn_pil(pil_img, **config)
    out_scripted = script_fn(tensor, **config)
    assert out_fn_t.dtype == out_scripted.dtype
    assert out_fn_t.size()[1:] == out_pil.size[::-1]

    rbg_tensor = out_fn_t

    if out_fn_t.dtype != torch.uint8:
        rbg_tensor = F.convert_image_dtype(out_fn_t, torch.uint8)

    # Check that max difference does not exceed 2 in [0, 255] range
    # Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
Nicolas Hug's avatar
Nicolas Hug committed
818
    _assert_approx_equal_tensor_to_pil(rbg_tensor.float(), out_pil, tol=tol, agg_method=agg_method)
819
820
821
822
823
824
825

    atol = 1e-6
    if out_fn_t.dtype == torch.uint8 and "cuda" in torch.device(device).type:
        atol = 1.0
    assert out_fn_t.allclose(out_scripted, atol=atol)

    # FIXME: fn will be scripted again in _test_fn_on_batch. We could avoid that.
Nicolas Hug's avatar
Nicolas Hug committed
826
    _test_fn_on_batch(batch_tensors, fn, scripted_fn_atol=atol, **config)
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"brightness_factor": f} for f in (0.1, 0.5, 1.0, 1.34, 2.5)])
def test_adjust_brightness(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_brightness,
        F_pil.adjust_brightness,
        F_t.adjust_brightness,
        config,
        device,
        dtype,
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
def test_invert(device, dtype):
    check_functional_vs_PIL_vs_scripted(
        F.invert,
        F_pil.invert,
        F_t.invert,
        {},
        device,
        dtype,
        tol=1.0,
        agg_method="max"
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('config', [{"bits": bits} for bits in range(0, 8)])
def test_posterize(device, config):
    check_functional_vs_PIL_vs_scripted(
        F.posterize,
        F_pil.posterize,
        F_t.posterize,
        config,
        device,
        dtype=None,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('config', [{"threshold": threshold} for threshold in [0, 64, 128, 192, 255]])
def test_solarize1(device, config):
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        F_pil.solarize,
        F_t.solarize,
        config,
        device,
        dtype=None,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"threshold": threshold} for threshold in [0.0, 0.25, 0.5, 0.75, 1.0]])
def test_solarize2(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        lambda img, threshold: F_pil.solarize(img, 255 * threshold),
        F_t.solarize,
        config,
        device,
        dtype,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"sharpness_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
def test_adjust_sharpness(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_sharpness,
        F_pil.adjust_sharpness,
        F_t.adjust_sharpness,
        config,
        device,
        dtype,
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
def test_autocontrast(device, dtype):
    check_functional_vs_PIL_vs_scripted(
        F.autocontrast,
        F_pil.autocontrast,
        F_t.autocontrast,
        {},
        device,
        dtype,
        tol=1.0,
        agg_method="max"
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_equalize(device):
    torch.set_deterministic(False)
    check_functional_vs_PIL_vs_scripted(
        F.equalize,
        F_pil.equalize,
        F_t.equalize,
        {},
        device,
        dtype=None,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"contrast_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
def test_adjust_contrast(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_contrast,
        F_pil.adjust_contrast,
        F_t.adjust_contrast,
        config,
        device,
        dtype
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"saturation_factor": f} for f in [0.5, 0.75, 1.0, 1.5, 2.0]])
def test_adjust_saturation(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_saturation,
        F_pil.adjust_saturation,
        F_t.adjust_saturation,
        config,
        device,
        dtype
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"hue_factor": f} for f in [-0.45, -0.25, 0.0, 0.25, 0.45]])
def test_adjust_hue(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_hue,
        F_pil.adjust_hue,
        F_t.adjust_hue,
        config,
        device,
        dtype,
        tol=16.1,
        agg_method="max"
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"gamma": g1, "gain": g2} for g1, g2 in zip([0.8, 1.0, 1.2], [0.7, 1.0, 1.3])])
def test_adjust_gamma(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_gamma,
        F_pil.adjust_gamma,
        F_t.adjust_gamma,
        config,
        device,
        dtype,
    )


1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('func, args', [
    (F_t._get_image_size, ()), (F_t.vflip, ()),
    (F_t.hflip, ()), (F_t.crop, (1, 2, 4, 5)),
    (F_t.adjust_brightness, (0., )), (F_t.adjust_contrast, (1., )),
    (F_t.adjust_hue, (-0.5, )), (F_t.adjust_saturation, (2., )),
    (F_t.center_crop, ([10, 11], )), (F_t.five_crop, ([10, 11], )),
    (F_t.ten_crop, ([10, 11], )), (F_t.pad, ([2, ], 2, "constant")),
    (F_t.resize, ([10, 11], )), (F_t.perspective, ([0.2, ])),
    (F_t.gaussian_blur, ((2, 2), (0.7, 0.5))),
    (F_t.invert, ()), (F_t.posterize, (0, )),
    (F_t.solarize, (0.3, )), (F_t.adjust_sharpness, (0.3, )),
    (F_t.autocontrast, ()), (F_t.equalize, ())
])
def test_assert_image_tensor(device, func, args):
    shape = (100,)
    tensor = torch.rand(*shape, dtype=torch.float, device=device)
    with pytest.raises(Exception, match=r"Tensor is not a torch image."):
        func(tensor, *args)


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_vflip(device):
    script_vflip = torch.jit.script(F.vflip)

    img_tensor, pil_img = _create_data(16, 18, device=device)
    vflipped_img = F.vflip(img_tensor)
    vflipped_pil_img = F.vflip(pil_img)
    _assert_equal_tensor_to_pil(vflipped_img, vflipped_pil_img)

    # scriptable function test
    vflipped_img_script = script_vflip(img_tensor)
    assert_equal(vflipped_img, vflipped_img_script)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.vflip)


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_hflip(device):
    script_hflip = torch.jit.script(F.hflip)

    img_tensor, pil_img = _create_data(16, 18, device=device)
    hflipped_img = F.hflip(img_tensor)
    hflipped_pil_img = F.hflip(pil_img)
    _assert_equal_tensor_to_pil(hflipped_img, hflipped_pil_img)

    # scriptable function test
    hflipped_img_script = script_hflip(img_tensor)
    assert_equal(hflipped_img, hflipped_img_script)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.hflip)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('top, left, height, width', [
    (1, 2, 4, 5),   # crop inside top-left corner
    (2, 12, 3, 4),  # crop inside top-right corner
    (8, 3, 5, 6),   # crop inside bottom-left corner
    (8, 11, 4, 3),  # crop inside bottom-right corner
])
def test_crop(device, top, left, height, width):
    script_crop = torch.jit.script(F.crop)

    img_tensor, pil_img = _create_data(16, 18, device=device)

    pil_img_cropped = F.crop(pil_img, top, left, height, width)

    img_tensor_cropped = F.crop(img_tensor, top, left, height, width)
    _assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)

    img_tensor_cropped = script_crop(img_tensor, top, left, height, width)
    _assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.crop, top=top, left=left, height=height, width=width)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('image_size', ('small', 'large'))
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('ksize', [(3, 3), [3, 5], (23, 23)])
@pytest.mark.parametrize('sigma', [[0.5, 0.5], (0.5, 0.5), (0.8, 0.8), (1.7, 1.7)])
@pytest.mark.parametrize('fn', [F.gaussian_blur, torch.jit.script(F.gaussian_blur)])
def test_gaussian_blur(device, image_size, dt, ksize, sigma, fn):

    # true_cv2_results = {
    #     # np_img = np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
    #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.8)
    #     "3_3_0.8": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.5)
    #     "3_3_0.5": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.8)
    #     "3_5_0.8": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.5)
    #     "3_5_0.5": ...
    #     # np_img2 = np.arange(26 * 28, dtype="uint8").reshape((26, 28))
    #     # cv2.GaussianBlur(np_img2, ksize=(23, 23), sigmaX=1.7)
    #     "23_23_1.7": ...
    # }
    p = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'assets', 'gaussian_blur_opencv_results.pt')
    true_cv2_results = torch.load(p)

    if image_size == 'small':
        tensor = torch.from_numpy(
            np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
        ).permute(2, 0, 1).to(device)
    else:
        tensor = torch.from_numpy(
            np.arange(26 * 28, dtype="uint8").reshape((1, 26, 28))
        ).to(device)

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if dt is not None:
        tensor = tensor.to(dtype=dt)

    _ksize = (ksize, ksize) if isinstance(ksize, int) else ksize
    _sigma = sigma[0] if sigma is not None else None
    shape = tensor.shape
    gt_key = "{}_{}_{}__{}_{}_{}".format(
        shape[-2], shape[-1], shape[-3],
        _ksize[0], _ksize[1], _sigma
    )
    if gt_key not in true_cv2_results:
        return

    true_out = torch.tensor(
        true_cv2_results[gt_key]
    ).reshape(shape[-2], shape[-1], shape[-3]).permute(2, 0, 1).to(tensor)

    out = fn(tensor, kernel_size=ksize, sigma=sigma)
    torch.testing.assert_close(
        out, true_out, rtol=0.0, atol=1.0, check_stride=False,
        msg="{}, {}".format(ksize, sigma)
    )


1147
1148
if __name__ == '__main__':
    unittest.main()