test_functional_tensor.py 46.9 KB
Newer Older
1
import itertools
2
import os
3
import unittest
4
import colorsys
5
import math
6

vfdev's avatar
vfdev committed
7
import numpy as np
8
import pytest
vfdev's avatar
vfdev committed
9
10
11
12
13

import torch
import torchvision.transforms.functional_tensor as F_t
import torchvision.transforms.functional_pil as F_pil
import torchvision.transforms.functional as F
14
import torchvision.transforms as T
15
from torchvision.transforms import InterpolationMode
16

Nicolas Hug's avatar
Nicolas Hug committed
17
18
19
20
21
22
23
24
25
from common_utils import (
    cpu_and_gpu,
    needs_cuda,
    _create_data,
    _create_data_batch,
    _assert_equal_tensor_to_pil,
    _assert_approx_equal_tensor_to_pil,
    _test_fn_on_batch,
)
26
from _assert_utils import assert_equal
27

28
from typing import Dict, List, Sequence, Tuple
29

30

31
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
32
33


Nicolas Hug's avatar
Nicolas Hug committed
34
class Tester(unittest.TestCase):
vfdev's avatar
vfdev committed
35

36
37
38
    def setUp(self):
        self.device = "cpu"

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    def test_assert_image_tensor(self):
        shape = (100,)
        tensor = torch.rand(*shape, dtype=torch.float, device=self.device)

        list_of_methods = [(F_t._get_image_size, (tensor, )), (F_t.vflip, (tensor, )),
                           (F_t.hflip, (tensor, )), (F_t.crop, (tensor, 1, 2, 4, 5)),
                           (F_t.adjust_brightness, (tensor, 0.)), (F_t.adjust_contrast, (tensor, 1.)),
                           (F_t.adjust_hue, (tensor, -0.5)), (F_t.adjust_saturation, (tensor, 2.)),
                           (F_t.center_crop, (tensor, [10, 11])), (F_t.five_crop, (tensor, [10, 11])),
                           (F_t.ten_crop, (tensor, [10, 11])), (F_t.pad, (tensor, [2, ], 2, "constant")),
                           (F_t.resize, (tensor, [10, 11])), (F_t.perspective, (tensor, [0.2, ])),
                           (F_t.gaussian_blur, (tensor, (2, 2), (0.7, 0.5))),
                           (F_t.invert, (tensor, )), (F_t.posterize, (tensor, 0)),
                           (F_t.solarize, (tensor, 0.3)), (F_t.adjust_sharpness, (tensor, 0.3)),
                           (F_t.autocontrast, (tensor, )), (F_t.equalize, (tensor, ))]

        for func, args in list_of_methods:
            with self.assertRaises(Exception) as context:
                func(*args)

            self.assertTrue('Tensor is not a torch image.' in str(context.exception))

61
    def test_vflip(self):
62
63
        script_vflip = torch.jit.script(F.vflip)

Nicolas Hug's avatar
Nicolas Hug committed
64
        img_tensor, pil_img = _create_data(16, 18, device=self.device)
65
66
        vflipped_img = F.vflip(img_tensor)
        vflipped_pil_img = F.vflip(pil_img)
Nicolas Hug's avatar
Nicolas Hug committed
67
        _assert_equal_tensor_to_pil(vflipped_img, vflipped_pil_img)
68

69
70
        # scriptable function test
        vflipped_img_script = script_vflip(img_tensor)
71
        assert_equal(vflipped_img, vflipped_img_script)
72

Nicolas Hug's avatar
Nicolas Hug committed
73
74
        batch_tensors = _create_data_batch(16, 18, num_samples=4, device=self.device)
        _test_fn_on_batch(batch_tensors, F.vflip)
75

76
    def test_hflip(self):
77
78
        script_hflip = torch.jit.script(F.hflip)

Nicolas Hug's avatar
Nicolas Hug committed
79
        img_tensor, pil_img = _create_data(16, 18, device=self.device)
80
81
        hflipped_img = F.hflip(img_tensor)
        hflipped_pil_img = F.hflip(pil_img)
Nicolas Hug's avatar
Nicolas Hug committed
82
        _assert_equal_tensor_to_pil(hflipped_img, hflipped_pil_img)
83

84
85
        # scriptable function test
        hflipped_img_script = script_hflip(img_tensor)
86
        assert_equal(hflipped_img, hflipped_img_script)
87

Nicolas Hug's avatar
Nicolas Hug committed
88
89
        batch_tensors = _create_data_batch(16, 18, num_samples=4, device=self.device)
        _test_fn_on_batch(batch_tensors, F.hflip)
90

91
    def test_crop(self):
92
        script_crop = torch.jit.script(F.crop)
93

Nicolas Hug's avatar
Nicolas Hug committed
94
        img_tensor, pil_img = _create_data(16, 18, device=self.device)
95
96
97
98
99
100
101
102
103
104
105
106

        test_configs = [
            (1, 2, 4, 5),   # crop inside top-left corner
            (2, 12, 3, 4),  # crop inside top-right corner
            (8, 3, 5, 6),   # crop inside bottom-left corner
            (8, 11, 4, 3),  # crop inside bottom-right corner
        ]

        for top, left, height, width in test_configs:
            pil_img_cropped = F.crop(pil_img, top, left, height, width)

            img_tensor_cropped = F.crop(img_tensor, top, left, height, width)
Nicolas Hug's avatar
Nicolas Hug committed
107
            _assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)
108
109

            img_tensor_cropped = script_crop(img_tensor, top, left, height, width)
Nicolas Hug's avatar
Nicolas Hug committed
110
            _assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)
ekka's avatar
ekka committed
111

Nicolas Hug's avatar
Nicolas Hug committed
112
113
            batch_tensors = _create_data_batch(16, 18, num_samples=4, device=self.device)
            _test_fn_on_batch(batch_tensors, F.crop, top=top, left=left, height=height, width=width)
114

115
    def test_hsv2rgb(self):
116
        scripted_fn = torch.jit.script(F_t._hsv2rgb)
117
        shape = (3, 100, 150)
118
119
120
121
        for _ in range(10):
            hsv_img = torch.rand(*shape, dtype=torch.float, device=self.device)
            rgb_img = F_t._hsv2rgb(hsv_img)
            ft_img = rgb_img.permute(1, 2, 0).flatten(0, 1)
122

123
124
125
126
            h, s, v, = hsv_img.unbind(0)
            h = h.flatten().cpu().numpy()
            s = s.flatten().cpu().numpy()
            v = v.flatten().cpu().numpy()
127
128
129
130

            rgb = []
            for h1, s1, v1 in zip(h, s, v):
                rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))
131
            colorsys_img = torch.tensor(rgb, dtype=torch.float32, device=self.device)
132
            torch.testing.assert_close(ft_img, colorsys_img, rtol=0.0, atol=1e-5)
133

134
            s_rgb_img = scripted_fn(hsv_img)
135
            torch.testing.assert_close(rgb_img, s_rgb_img)
136

Nicolas Hug's avatar
Nicolas Hug committed
137
138
        batch_tensors = _create_data_batch(120, 100, num_samples=4, device=self.device).float()
        _test_fn_on_batch(batch_tensors, F_t._hsv2rgb)
139

140
    def test_rgb2hsv(self):
141
        scripted_fn = torch.jit.script(F_t._rgb2hsv)
142
        shape = (3, 150, 100)
143
144
145
146
        for _ in range(10):
            rgb_img = torch.rand(*shape, dtype=torch.float, device=self.device)
            hsv_img = F_t._rgb2hsv(rgb_img)
            ft_hsv_img = hsv_img.permute(1, 2, 0).flatten(0, 1)
147

148
            r, g, b, = rgb_img.unbind(dim=-3)
149
150
151
            r = r.flatten().cpu().numpy()
            g = g.flatten().cpu().numpy()
            b = b.flatten().cpu().numpy()
152
153
154
155
156

            hsv = []
            for r1, g1, b1 in zip(r, g, b):
                hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))

157
            colorsys_img = torch.tensor(hsv, dtype=torch.float32, device=self.device)
158

159
160
161
162
163
164
            ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
            colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)

            max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
            max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
            max_diff = max(max_diff_h, max_diff_sv)
165
166
            self.assertLess(max_diff, 1e-5)

167
            s_hsv_img = scripted_fn(rgb_img)
168
            torch.testing.assert_close(hsv_img, s_hsv_img, rtol=1e-5, atol=1e-7)
169

Nicolas Hug's avatar
Nicolas Hug committed
170
171
        batch_tensors = _create_data_batch(120, 100, num_samples=4, device=self.device).float()
        _test_fn_on_batch(batch_tensors, F_t._rgb2hsv)
172

173
    def test_rgb_to_grayscale(self):
174
175
        script_rgb_to_grayscale = torch.jit.script(F.rgb_to_grayscale)

Nicolas Hug's avatar
Nicolas Hug committed
176
        img_tensor, pil_img = _create_data(32, 34, device=self.device)
177
178
179
180
181

        for num_output_channels in (3, 1):
            gray_pil_image = F.rgb_to_grayscale(pil_img, num_output_channels=num_output_channels)
            gray_tensor = F.rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)

Nicolas Hug's avatar
Nicolas Hug committed
182
            _assert_approx_equal_tensor_to_pil(gray_tensor.float(), gray_pil_image, tol=1.0 + 1e-10, agg_method="max")
183
184

            s_gray_tensor = script_rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)
185
            assert_equal(s_gray_tensor, gray_tensor)
186

Nicolas Hug's avatar
Nicolas Hug committed
187
188
            batch_tensors = _create_data_batch(16, 18, num_samples=4, device=self.device)
            _test_fn_on_batch(batch_tensors, F.rgb_to_grayscale, num_output_channels=num_output_channels)
189

190
    def test_center_crop(self):
191
192
        script_center_crop = torch.jit.script(F.center_crop)

Nicolas Hug's avatar
Nicolas Hug committed
193
        img_tensor, pil_img = _create_data(32, 34, device=self.device)
194
195
196
197

        cropped_pil_image = F.center_crop(pil_img, [10, 11])

        cropped_tensor = F.center_crop(img_tensor, [10, 11])
Nicolas Hug's avatar
Nicolas Hug committed
198
        _assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)
199
200

        cropped_tensor = script_center_crop(img_tensor, [10, 11])
Nicolas Hug's avatar
Nicolas Hug committed
201
        _assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)
202

Nicolas Hug's avatar
Nicolas Hug committed
203
204
        batch_tensors = _create_data_batch(16, 18, num_samples=4, device=self.device)
        _test_fn_on_batch(batch_tensors, F.center_crop, output_size=[10, 11])
205

206
    def test_five_crop(self):
207
208
        script_five_crop = torch.jit.script(F.five_crop)

Nicolas Hug's avatar
Nicolas Hug committed
209
        img_tensor, pil_img = _create_data(32, 34, device=self.device)
210
211
212
213
214

        cropped_pil_images = F.five_crop(pil_img, [10, 11])

        cropped_tensors = F.five_crop(img_tensor, [10, 11])
        for i in range(5):
Nicolas Hug's avatar
Nicolas Hug committed
215
            _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])
216
217
218

        cropped_tensors = script_five_crop(img_tensor, [10, 11])
        for i in range(5):
Nicolas Hug's avatar
Nicolas Hug committed
219
            _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])
220

Nicolas Hug's avatar
Nicolas Hug committed
221
        batch_tensors = _create_data_batch(16, 18, num_samples=4, device=self.device)
222
223
224
225
226
227
228
229
230
        tuple_transformed_batches = F.five_crop(batch_tensors, [10, 11])
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            tuple_transformed_imgs = F.five_crop(img_tensor, [10, 11])
            self.assertEqual(len(tuple_transformed_imgs), len(tuple_transformed_batches))

            for j in range(len(tuple_transformed_imgs)):
                true_transformed_img = tuple_transformed_imgs[j]
                transformed_img = tuple_transformed_batches[j][i, ...]
231
                assert_equal(true_transformed_img, transformed_img)
232
233
234
235

        # scriptable function test
        s_tuple_transformed_batches = script_five_crop(batch_tensors, [10, 11])
        for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
236
            assert_equal(transformed_batch, s_transformed_batch)
237

238
    def test_ten_crop(self):
239
240
        script_ten_crop = torch.jit.script(F.ten_crop)

Nicolas Hug's avatar
Nicolas Hug committed
241
        img_tensor, pil_img = _create_data(32, 34, device=self.device)
242
243
244
245
246

        cropped_pil_images = F.ten_crop(pil_img, [10, 11])

        cropped_tensors = F.ten_crop(img_tensor, [10, 11])
        for i in range(10):
Nicolas Hug's avatar
Nicolas Hug committed
247
            _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])
248
249
250

        cropped_tensors = script_ten_crop(img_tensor, [10, 11])
        for i in range(10):
Nicolas Hug's avatar
Nicolas Hug committed
251
            _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])
252

Nicolas Hug's avatar
Nicolas Hug committed
253
        batch_tensors = _create_data_batch(16, 18, num_samples=4, device=self.device)
254
255
256
257
258
259
260
261
262
        tuple_transformed_batches = F.ten_crop(batch_tensors, [10, 11])
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            tuple_transformed_imgs = F.ten_crop(img_tensor, [10, 11])
            self.assertEqual(len(tuple_transformed_imgs), len(tuple_transformed_batches))

            for j in range(len(tuple_transformed_imgs)):
                true_transformed_img = tuple_transformed_imgs[j]
                transformed_img = tuple_transformed_batches[j][i, ...]
263
                assert_equal(true_transformed_img, transformed_img)
264
265
266
267

        # scriptable function test
        s_tuple_transformed_batches = script_ten_crop(batch_tensors, [10, 11])
        for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
268
            assert_equal(transformed_batch, s_transformed_batch)
269

270
    def test_pad(self):
271
        script_fn = torch.jit.script(F.pad)
Nicolas Hug's avatar
Nicolas Hug committed
272
273
        tensor, pil_img = _create_data(7, 8, device=self.device)
        batch_tensors = _create_data_batch(16, 18, num_samples=4, device=self.device)
274

275
276
277
278
279
280
        for dt in [None, torch.float32, torch.float64, torch.float16]:

            if dt == torch.float16 and torch.device(self.device).type == "cpu":
                # skip float16 on CPU case
                continue

281
282
283
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
284
285
                batch_tensors = batch_tensors.to(dt)

286
287
288
289
290
291
292
            for pad in [2, [3, ], [0, 3], (3, 3), [4, 2, 4, 3]]:
                configs = [
                    {"padding_mode": "constant", "fill": 0},
                    {"padding_mode": "constant", "fill": 10},
                    {"padding_mode": "constant", "fill": 20},
                    {"padding_mode": "edge"},
                    {"padding_mode": "reflect"},
293
                    {"padding_mode": "symmetric"},
294
295
296
297
298
299
300
301
302
303
                ]
                for kwargs in configs:
                    pad_tensor = F_t.pad(tensor, pad, **kwargs)
                    pad_pil_img = F_pil.pad(pil_img, pad, **kwargs)

                    pad_tensor_8b = pad_tensor
                    # we need to cast to uint8 to compare with PIL image
                    if pad_tensor_8b.dtype != torch.uint8:
                        pad_tensor_8b = pad_tensor_8b.to(torch.uint8)

Nicolas Hug's avatar
Nicolas Hug committed
304
                    _assert_equal_tensor_to_pil(pad_tensor_8b, pad_pil_img, msg="{}, {}".format(pad, kwargs))
305
306
307
308
309
310

                    if isinstance(pad, int):
                        script_pad = [pad, ]
                    else:
                        script_pad = pad
                    pad_tensor_script = script_fn(tensor, script_pad, **kwargs)
311
                    assert_equal(pad_tensor, pad_tensor_script, msg="{}, {}".format(pad, kwargs))
312

Nicolas Hug's avatar
Nicolas Hug committed
313
                    _test_fn_on_batch(batch_tensors, F.pad, padding=script_pad, **kwargs)
314

315
    def test_resized_crop(self):
316
317
        # test values of F.resized_crop in several cases:
        # 1) resize to the same size, crop to the same size => should be identity
Nicolas Hug's avatar
Nicolas Hug committed
318
        tensor, _ = _create_data(26, 36, device=self.device)
319
320
321

        for mode in [NEAREST, BILINEAR, BICUBIC]:
            out_tensor = F.resized_crop(tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=mode)
322
            assert_equal(tensor, out_tensor, msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))
323
324

        # 2) resize by half and crop a TL corner
Nicolas Hug's avatar
Nicolas Hug committed
325
        tensor, _ = _create_data(26, 36, device=self.device)
326
        out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=NEAREST)
327
        expected_out_tensor = tensor[:, :20:2, :30:2]
328
329
330
331
332
        assert_equal(
            expected_out_tensor,
            out_tensor,
            check_stride=False,
            msg="{} vs {}".format(expected_out_tensor[0, :10, :10], out_tensor[0, :10, :10]),
333
334
        )

Nicolas Hug's avatar
Nicolas Hug committed
335
336
        batch_tensors = _create_data_batch(26, 36, num_samples=4, device=self.device)
        _test_fn_on_batch(
337
            batch_tensors, F.resized_crop, top=1, left=2, height=20, width=30, size=[10, 15], interpolation=NEAREST
338
339
        )

340
341
    def _test_affine_identity_map(self, tensor, scripted_affine):
        # 1) identity map
342
        out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
vfdev's avatar
vfdev committed
343

344
        assert_equal(tensor, out_tensor, msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))
345
346
347
        out_tensor = scripted_affine(
            tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
348
        assert_equal(tensor, out_tensor, msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))
349

350
351
352
353
354
355
356
357
358
359
360
361
362
    def _test_affine_square_rotations(self, tensor, pil_img, scripted_affine):
        # 2) Test rotation
        test_configs = [
            (90, torch.rot90(tensor, k=1, dims=(-1, -2))),
            (45, None),
            (30, None),
            (-30, None),
            (-45, None),
            (-90, torch.rot90(tensor, k=-1, dims=(-1, -2))),
            (180, torch.rot90(tensor, k=2, dims=(-1, -2))),
        ]
        for a, true_tensor in test_configs:
            out_pil_img = F.affine(
363
                pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
364
            )
365
366
367
368
            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(self.device)

            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(
369
                    tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
370
371
                )
                if true_tensor is not None:
372
373
374
375
376
                    assert_equal(
                        true_tensor,
                        out_tensor,
                        msg="{}\n{} vs \n{}".format(a, out_tensor[0, :5, :5], true_tensor[0, :5, :5]),
                        check_stride=False,
377
                    )
378

379
380
381
382
383
384
385
386
387
388
389
                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)

                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                # Tolerance : less than 6% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.06,
                    msg="{}\n{} vs \n{}".format(
                        ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
390
                    )
391
                )
392

393
394
395
396
397
    def _test_affine_rect_rotations(self, tensor, pil_img, scripted_affine):
        test_configs = [
            90, 45, 15, -30, -60, -120
        ]
        for a in test_configs:
398

399
            out_pil_img = F.affine(
400
                pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
401
402
403
404
405
            )
            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(
406
                    tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
407
408
409
410
411
412
413
414
415
416
417
418
419
                ).cpu()

                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)

                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                # Tolerance : less than 3% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.03,
                    msg="{}: {}\n{} vs \n{}".format(
                        a, ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
420
                    )
421
                )
422

423
424
425
426
427
428
    def _test_affine_translations(self, tensor, pil_img, scripted_affine):
        # 3) Test translation
        test_configs = [
            [10, 12], (-12, -13)
        ]
        for t in test_configs:
429

430
            out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
431

432
            for fn in [F.affine, scripted_affine]:
433
                out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
434

435
436
                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)
437

Nicolas Hug's avatar
Nicolas Hug committed
438
                _assert_equal_tensor_to_pil(out_tensor, out_pil_img)
439
440
441
442

    def _test_affine_all_ops(self, tensor, pil_img, scripted_affine):
        # 4) Test rotation + translation + scale + share
        test_configs = [
443
444
445
446
447
448
449
450
451
452
            (45.5, [5, 6], 1.0, [0.0, 0.0], None),
            (33, (5, -4), 1.0, [0.0, 0.0], [0, 0, 0]),
            (45, [-5, 4], 1.2, [0.0, 0.0], (1, 2, 3)),
            (33, (-4, -8), 2.0, [0.0, 0.0], [255, 255, 255]),
            (85, (10, -10), 0.7, [0.0, 0.0], [1, ]),
            (0, [0, 0], 1.0, [35.0, ], (2.0, )),
            (-25, [0, 0], 1.2, [0.0, 15.0], None),
            (-45, [-10, 0], 0.7, [2.0, 5.0], None),
            (-45, [-10, -10], 1.2, [4.0, 5.0], None),
            (-90, [0, 0], 1.0, [0.0, 0.0], None),
453
        ]
454
        for r in [NEAREST, ]:
455
456
457
            for a, t, s, sh, f in test_configs:
                f_pil = int(f[0]) if f is not None and len(f) == 1 else f
                out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, interpolation=r, fill=f_pil)
458
459
460
                out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

                for fn in [F.affine, scripted_affine]:
461
                    out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, interpolation=r, fill=f).cpu()
462
463
464
465
466
467
468
469
470
471
472
473

                    if out_tensor.dtype != torch.uint8:
                        out_tensor = out_tensor.to(torch.uint8)

                    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                    # Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
                    tol = 0.06 if self.device == "cuda" else 0.05
                    self.assertLess(
                        ratio_diff_pixels,
                        tol,
                        msg="{}: {}\n{} vs \n{}".format(
474
                            (r, a, t, s, sh, f), ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
vfdev's avatar
vfdev committed
475
                        )
476
477
478
479
480
481
                    )

    def test_affine(self):
        # Tests on square and rectangular images
        scripted_affine = torch.jit.script(F.affine)

Nicolas Hug's avatar
Nicolas Hug committed
482
        data = [_create_data(26, 26, device=self.device), _create_data(32, 26, device=self.device)]
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
        for tensor, pil_img in data:

            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

                self._test_affine_identity_map(tensor, scripted_affine)
                if pil_img.size[0] == pil_img.size[1]:
                    self._test_affine_square_rotations(tensor, pil_img, scripted_affine)
                else:
                    self._test_affine_rect_rotations(tensor, pil_img, scripted_affine)
                self._test_affine_translations(tensor, pil_img, scripted_affine)
500
501
                self._test_affine_all_ops(tensor, pil_img, scripted_affine)

Nicolas Hug's avatar
Nicolas Hug committed
502
                batch_tensors = _create_data_batch(26, 36, num_samples=4, device=self.device)
503
504
505
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)

Nicolas Hug's avatar
Nicolas Hug committed
506
                _test_fn_on_batch(
507
508
509
                    batch_tensors, F.affine, angle=-43, translate=[-3, 4], scale=1.2, shear=[4.0, 5.0]
                )

510
511
512
513
514
        tensor, pil_img = data[0]
        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
515
            assert_equal(res1, res2)
516
517

        # assert changed type warning
518
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
519
520
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
521
            assert_equal(res1, res2)
522
523
524
525

        with self.assertWarnsRegex(UserWarning, r"Argument fillcolor is deprecated and will be removed"):
            res1 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fillcolor=10)
            res2 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fill=10)
526
527
            # we convert the PIL images to numpy as assert_equal doesn't work on PIL images.
            assert_equal(np.asarray(res1), np.asarray(res2))
528

529
530
531
    def _test_rotate_all_options(self, tensor, pil_img, scripted_rotate, centers):
        img_size = pil_img.size
        dt = tensor.dtype
532
        for r in [NEAREST, ]:
533
534
535
            for a in range(-180, 180, 17):
                for e in [True, False]:
                    for c in centers:
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
                        for f in [None, [0, 0, 0], (1, 2, 3), [255, 255, 255], [1, ], (2.0, )]:
                            f_pil = int(f[0]) if f is not None and len(f) == 1 else f
                            out_pil_img = F.rotate(pil_img, angle=a, interpolation=r, expand=e, center=c, fill=f_pil)
                            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
                            for fn in [F.rotate, scripted_rotate]:
                                out_tensor = fn(tensor, angle=a, interpolation=r, expand=e, center=c, fill=f).cpu()

                                if out_tensor.dtype != torch.uint8:
                                    out_tensor = out_tensor.to(torch.uint8)

                                self.assertEqual(
                                    out_tensor.shape,
                                    out_pil_tensor.shape,
                                    msg="{}: {} vs {}".format(
                                        (img_size, r, dt, a, e, c), out_tensor.shape, out_pil_tensor.shape
                                    ))

                                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                                # Tolerance : less than 3% of different pixels
                                self.assertLess(
557
                                    ratio_diff_pixels,
558
559
560
561
562
563
564
                                    0.03,
                                    msg="{}: {}\n{} vs \n{}".format(
                                        (img_size, r, dt, a, e, c, f),
                                        ratio_diff_pixels,
                                        out_tensor[0, :7, :7],
                                        out_pil_tensor[0, :7, :7]
                                    )
565
                                )
vfdev's avatar
vfdev committed
566

567
    def test_rotate(self):
vfdev's avatar
vfdev committed
568
569
570
        # Tests on square image
        scripted_rotate = torch.jit.script(F.rotate)

Nicolas Hug's avatar
Nicolas Hug committed
571
        data = [_create_data(26, 26, device=self.device), _create_data(32, 26, device=self.device)]
572
        for tensor, pil_img in data:
573
574
575
576
577
578
579
580

            img_size = pil_img.size
            centers = [
                None,
                (int(img_size[0] * 0.3), int(img_size[0] * 0.4)),
                [int(img_size[0] * 0.5), int(img_size[0] * 0.6)]
            ]

581
582
583
584
585
586
587
588
589
            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

590
591
                self._test_rotate_all_options(tensor, pil_img, scripted_rotate, centers)

Nicolas Hug's avatar
Nicolas Hug committed
592
                batch_tensors = _create_data_batch(26, 36, num_samples=4, device=self.device)
593
594
595
596
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)

                center = (20, 22)
Nicolas Hug's avatar
Nicolas Hug committed
597
                _test_fn_on_batch(
598
                    batch_tensors, F.rotate, angle=32, interpolation=NEAREST, expand=True, center=center
599
                )
600
601
602
603
604
        tensor, pil_img = data[0]
        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            res1 = F.rotate(tensor, 45, resample=2)
            res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
605
            assert_equal(res1, res2)
606
607

        # assert changed type warning
608
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
609
610
            res1 = F.rotate(tensor, 45, interpolation=2)
            res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
611
            assert_equal(res1, res2)
612

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
    def test_gaussian_blur(self):
        small_image_tensor = torch.from_numpy(
            np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
        ).permute(2, 0, 1).to(self.device)

        large_image_tensor = torch.from_numpy(
            np.arange(26 * 28, dtype="uint8").reshape((1, 26, 28))
        ).to(self.device)

        scripted_transform = torch.jit.script(F.gaussian_blur)

        # true_cv2_results = {
        #     # np_img = np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
        #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.8)
        #     "3_3_0.8": ...
        #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.5)
        #     "3_3_0.5": ...
        #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.8)
        #     "3_5_0.8": ...
        #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.5)
        #     "3_5_0.5": ...
        #     # np_img2 = np.arange(26 * 28, dtype="uint8").reshape((26, 28))
        #     # cv2.GaussianBlur(np_img2, ksize=(23, 23), sigmaX=1.7)
        #     "23_23_1.7": ...
        # }
        p = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'assets', 'gaussian_blur_opencv_results.pt')
        true_cv2_results = torch.load(p)

        for tensor in [small_image_tensor, large_image_tensor]:

            for dt in [None, torch.float32, torch.float64, torch.float16]:
                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

                for ksize in [(3, 3), [3, 5], (23, 23)]:
                    for sigma in [[0.5, 0.5], (0.5, 0.5), (0.8, 0.8), (1.7, 1.7)]:

                        _ksize = (ksize, ksize) if isinstance(ksize, int) else ksize
                        _sigma = sigma[0] if sigma is not None else None
                        shape = tensor.shape
                        gt_key = "{}_{}_{}__{}_{}_{}".format(
                            shape[-2], shape[-1], shape[-3],
                            _ksize[0], _ksize[1], _sigma
                        )
                        if gt_key not in true_cv2_results:
                            continue

                        true_out = torch.tensor(
                            true_cv2_results[gt_key]
                        ).reshape(shape[-2], shape[-1], shape[-3]).permute(2, 0, 1).to(tensor)

                        for fn in [F.gaussian_blur, scripted_transform]:
                            out = fn(tensor, kernel_size=ksize, sigma=sigma)
670
671
                            torch.testing.assert_close(
                                out, true_out, rtol=0.0, atol=1.0, check_stride=False,
672
673
674
                                msg="{}, {}".format(ksize, sigma)
                            )

675

676
677
678
679
680
@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):

    def setUp(self):
        self.device = "cuda"
681

682
683
684
685
686
687
688
689
690
691
    def test_scale_channel(self):
        """Make sure that _scale_channel gives the same results on CPU and GPU as
        histc or bincount are used depending on the device.
        """
        # TODO: when # https://github.com/pytorch/pytorch/issues/53194 is fixed,
        # only use bincount and remove that test.
        size = (1_000,)
        img_chan = torch.randint(0, 256, size=size).to('cpu')
        scaled_cpu = F_t._scale_channel(img_chan)
        scaled_cuda = F_t._scale_channel(img_chan.to('cuda'))
692
        assert_equal(scaled_cpu, scaled_cuda.to('cpu'))
693

694

695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
def _get_data_dims_and_points_for_perspective():
    # Ideally we would parametrize independently over data dims and points, but
    # we want to tests on some points that also depend on the data dims.
    # Pytest doesn't support covariant parametrization, so we do it somewhat manually here.

    data_dims = [(26, 34), (26, 26)]
    points = [
        [[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
    ]

    dims_and_points = list(itertools.product(data_dims, points))

    # up to here, we could just have used 2 @parametrized.
    # Down below is the covarariant part as the points depend on the data dims.

    n = 10
    for dim in data_dims:
        points += [
            (dim, T.RandomPerspective.get_params(dim[1], dim[0], i / n))
            for i in range(n)
        ]
    return dims_and_points


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dims_and_points', _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('fill', (None, [0, 0, 0], [1, 2, 3], [255, 255, 255], [1, ], (2.0, )))
@pytest.mark.parametrize('fn', [F.perspective, torch.jit.script(F.perspective)])
Nicolas Hug's avatar
Nicolas Hug committed
726
def test_perspective_pil_vs_tensor(device, dims_and_points, dt, fill, fn):
727
728
729
730
731
732
733

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

Nicolas Hug's avatar
Nicolas Hug committed
734
    tensor, pil_img = _create_data(*data_dims, device=device)
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
    if dt is not None:
        tensor = tensor.to(dtype=dt)

    interpolation = NEAREST
    fill_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
    out_pil_img = F.perspective(pil_img, startpoints=spoints, endpoints=epoints, interpolation=interpolation,
                                fill=fill_pil)
    out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
    out_tensor = fn(tensor, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill).cpu()

    if out_tensor.dtype != torch.uint8:
        out_tensor = out_tensor.to(torch.uint8)

    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
    # Tolerance : less than 5% of different pixels
    assert ratio_diff_pixels < 0.05


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dims_and_points', _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
Nicolas Hug's avatar
Nicolas Hug committed
757
def test_perspective_batch(device, dims_and_points, dt):
758
759
760
761
762
763
764

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

Nicolas Hug's avatar
Nicolas Hug committed
765
    batch_tensors = _create_data_batch(*data_dims, num_samples=4, device=device)
766
767
768
769
770
771
    if dt is not None:
        batch_tensors = batch_tensors.to(dtype=dt)

    # Ignore the equivalence between scripted and regular function on float16 cuda. The pixels at
    # the border may be entirely different due to small rounding errors.
    scripted_fn_atol = -1 if (dt == torch.float16 and device == "cuda") else 1e-8
Nicolas Hug's avatar
Nicolas Hug committed
772
    _test_fn_on_batch(
773
774
775
776
777
        batch_tensors, F.perspective, scripted_fn_atol=scripted_fn_atol,
        startpoints=spoints, endpoints=epoints, interpolation=NEAREST
    )


Nicolas Hug's avatar
Nicolas Hug committed
778
def test_perspective_interpolation_warning():
779
780
781
782
    # assert changed type warning
    spoints = [[0, 0], [33, 0], [33, 25], [0, 25]]
    epoints = [[3, 2], [32, 3], [30, 24], [2, 25]]
    tensor = torch.randint(0, 256, (3, 26, 26))
Nicolas Hug's avatar
Nicolas Hug committed
783
    with pytest.warns(UserWarning, match="Argument interpolation should be of type InterpolationMode"):
784
785
        res1 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=2)
        res2 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=BILINEAR)
Nicolas Hug's avatar
Nicolas Hug committed
786
        assert_equal(res1, res2)
787
788


789
790
791
792
793
@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('size', [32, 26, [32, ], [32, 32], (32, 32), [26, 35]])
@pytest.mark.parametrize('max_size', [None, 34, 40, 1000])
@pytest.mark.parametrize('interpolation', [BILINEAR, BICUBIC, NEAREST])
Nicolas Hug's avatar
Nicolas Hug committed
794
def test_resize(device, dt, size, max_size, interpolation):
795
796
797
798
799
800
801
802
803
804

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if max_size is not None and isinstance(size, Sequence) and len(size) != 1:
        return  # unsupported

    torch.manual_seed(12)
    script_fn = torch.jit.script(F.resize)
Nicolas Hug's avatar
Nicolas Hug committed
805
806
    tensor, pil_img = _create_data(26, 36, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)
        batch_tensors = batch_tensors.to(dt)

    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, max_size=max_size)
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation, max_size=max_size)

    assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]

    if interpolation not in [NEAREST, ]:
        # We can not check values if mode = NEAREST, as results are different
        # E.g. resized_tensor  = [[a, a, b, c, d, d, e, ...]]
        # E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
        resized_tensor_f = resized_tensor
        # we need to cast to uint8 to compare with PIL image
        if resized_tensor_f.dtype == torch.uint8:
            resized_tensor_f = resized_tensor_f.to(torch.float)

        # Pay attention to high tolerance for MAE
Nicolas Hug's avatar
Nicolas Hug committed
828
        _assert_approx_equal_tensor_to_pil(resized_tensor_f, resized_pil_img, tol=8.0)
829
830
831
832
833
834
835
836
837
838
839

    if isinstance(size, int):
        script_size = [size, ]
    else:
        script_size = size

    resize_result = script_fn(
        tensor, size=script_size, interpolation=interpolation, max_size=max_size
    )
    assert_equal(resized_tensor, resize_result)

Nicolas Hug's avatar
Nicolas Hug committed
840
    _test_fn_on_batch(
841
842
843
844
845
        batch_tensors, F.resize, size=script_size, interpolation=interpolation, max_size=max_size
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
Nicolas Hug's avatar
Nicolas Hug committed
846
def test_resize_asserts(device):
847

Nicolas Hug's avatar
Nicolas Hug committed
848
    tensor, pil_img = _create_data(26, 36, device=device)
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864

    # assert changed type warning
    with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
        res1 = F.resize(tensor, size=32, interpolation=2)

    res2 = F.resize(tensor, size=32, interpolation=BILINEAR)
    assert_equal(res1, res2)

    for img in (tensor, pil_img):
        exp_msg = "max_size should only be passed if size specifies the length of the smaller edge"
        with pytest.raises(ValueError, match=exp_msg):
            F.resize(img, size=(32, 34), max_size=35)
        with pytest.raises(ValueError, match="max_size = 32 must be strictly greater"):
            F.resize(img, size=32, max_size=32)


865
@pytest.mark.parametrize('device', cpu_and_gpu())
866
867
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('size', [[96, 72], [96, 420], [420, 72]])
868
@pytest.mark.parametrize('interpolation', [BILINEAR, BICUBIC])
Nicolas Hug's avatar
Nicolas Hug committed
869
def test_resize_antialias(device, dt, size, interpolation):
870
871
872
873
874

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

875
    torch.manual_seed(12)
876
    script_fn = torch.jit.script(F.resize)
Nicolas Hug's avatar
Nicolas Hug committed
877
    tensor, pil_img = _create_data(320, 290, device=device)
878
879
880
881
882
883
884
885

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)

    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, antialias=True)
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation)

Nicolas Hug's avatar
Nicolas Hug committed
886
    assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]
887
888
889
890
891
892

    resized_tensor_f = resized_tensor
    # we need to cast to uint8 to compare with PIL image
    if resized_tensor_f.dtype == torch.uint8:
        resized_tensor_f = resized_tensor_f.to(torch.float)

Nicolas Hug's avatar
Nicolas Hug committed
893
    _assert_approx_equal_tensor_to_pil(
894
895
        resized_tensor_f, resized_pil_img, tol=0.5, msg=f"{size}, {interpolation}, {dt}"
    )
896
897
898
899
900
901
902
903
904

    accepted_tol = 1.0 + 1e-5
    if interpolation == BICUBIC:
        # this overall mean value to make the tests pass
        # High value is mostly required for test cases with
        # downsampling and upsampling where we can not exactly
        # match PIL implementation.
        accepted_tol = 15.0

Nicolas Hug's avatar
Nicolas Hug committed
905
    _assert_approx_equal_tensor_to_pil(
906
        resized_tensor_f, resized_pil_img, tol=accepted_tol, agg_method="max",
907
908
909
910
911
912
913
914
915
        msg=f"{size}, {interpolation}, {dt}"
    )

    if isinstance(size, int):
        script_size = [size, ]
    else:
        script_size = size

    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, antialias=True)
Nicolas Hug's avatar
Nicolas Hug committed
916
    assert_equal(resized_tensor, resize_result)
917
918


919
920
@needs_cuda
@pytest.mark.parametrize('interpolation', [BILINEAR, BICUBIC])
Nicolas Hug's avatar
Nicolas Hug committed
921
def test_assert_resize_antialias(interpolation):
922
923
924
925

    # Checks implementation on very large scales
    # and catch TORCH_CHECK inside interpolate_aa_kernels.cu
    torch.manual_seed(12)
Nicolas Hug's avatar
Nicolas Hug committed
926
    tensor, pil_img = _create_data(1000, 1000, device="cuda")
927
928
929
930
931

    with pytest.raises(RuntimeError, match=r"Max supported scale factor is"):
        F.resize(tensor, size=(5, 5), interpolation=interpolation, antialias=True)


932
933
934
935
def check_functional_vs_PIL_vs_scripted(fn, fn_pil, fn_t, config, device, dtype, tol=2.0 + 1e-10, agg_method="max"):

    script_fn = torch.jit.script(fn)
    torch.manual_seed(15)
Nicolas Hug's avatar
Nicolas Hug committed
936
937
    tensor, pil_img = _create_data(26, 34, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955

    if dtype is not None:
        tensor = F.convert_image_dtype(tensor, dtype)
        batch_tensors = F.convert_image_dtype(batch_tensors, dtype)

    out_fn_t = fn_t(tensor, **config)
    out_pil = fn_pil(pil_img, **config)
    out_scripted = script_fn(tensor, **config)
    assert out_fn_t.dtype == out_scripted.dtype
    assert out_fn_t.size()[1:] == out_pil.size[::-1]

    rbg_tensor = out_fn_t

    if out_fn_t.dtype != torch.uint8:
        rbg_tensor = F.convert_image_dtype(out_fn_t, torch.uint8)

    # Check that max difference does not exceed 2 in [0, 255] range
    # Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
Nicolas Hug's avatar
Nicolas Hug committed
956
    _assert_approx_equal_tensor_to_pil(rbg_tensor.float(), out_pil, tol=tol, agg_method=agg_method)
957
958
959
960
961
962
963

    atol = 1e-6
    if out_fn_t.dtype == torch.uint8 and "cuda" in torch.device(device).type:
        atol = 1.0
    assert out_fn_t.allclose(out_scripted, atol=atol)

    # FIXME: fn will be scripted again in _test_fn_on_batch. We could avoid that.
Nicolas Hug's avatar
Nicolas Hug committed
964
    _test_fn_on_batch(batch_tensors, fn, scripted_fn_atol=atol, **config)
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"brightness_factor": f} for f in (0.1, 0.5, 1.0, 1.34, 2.5)])
def test_adjust_brightness(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_brightness,
        F_pil.adjust_brightness,
        F_t.adjust_brightness,
        config,
        device,
        dtype,
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
def test_invert(device, dtype):
    check_functional_vs_PIL_vs_scripted(
        F.invert,
        F_pil.invert,
        F_t.invert,
        {},
        device,
        dtype,
        tol=1.0,
        agg_method="max"
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('config', [{"bits": bits} for bits in range(0, 8)])
def test_posterize(device, config):
    check_functional_vs_PIL_vs_scripted(
        F.posterize,
        F_pil.posterize,
        F_t.posterize,
        config,
        device,
        dtype=None,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('config', [{"threshold": threshold} for threshold in [0, 64, 128, 192, 255]])
def test_solarize1(device, config):
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        F_pil.solarize,
        F_t.solarize,
        config,
        device,
        dtype=None,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"threshold": threshold} for threshold in [0.0, 0.25, 0.5, 0.75, 1.0]])
def test_solarize2(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        lambda img, threshold: F_pil.solarize(img, 255 * threshold),
        F_t.solarize,
        config,
        device,
        dtype,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"sharpness_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
def test_adjust_sharpness(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_sharpness,
        F_pil.adjust_sharpness,
        F_t.adjust_sharpness,
        config,
        device,
        dtype,
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
def test_autocontrast(device, dtype):
    check_functional_vs_PIL_vs_scripted(
        F.autocontrast,
        F_pil.autocontrast,
        F_t.autocontrast,
        {},
        device,
        dtype,
        tol=1.0,
        agg_method="max"
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_equalize(device):
    torch.set_deterministic(False)
    check_functional_vs_PIL_vs_scripted(
        F.equalize,
        F_pil.equalize,
        F_t.equalize,
        {},
        device,
        dtype=None,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"contrast_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
def test_adjust_contrast(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_contrast,
        F_pil.adjust_contrast,
        F_t.adjust_contrast,
        config,
        device,
        dtype
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"saturation_factor": f} for f in [0.5, 0.75, 1.0, 1.5, 2.0]])
def test_adjust_saturation(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_saturation,
        F_pil.adjust_saturation,
        F_t.adjust_saturation,
        config,
        device,
        dtype
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"hue_factor": f} for f in [-0.45, -0.25, 0.0, 0.25, 0.45]])
def test_adjust_hue(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_hue,
        F_pil.adjust_hue,
        F_t.adjust_hue,
        config,
        device,
        dtype,
        tol=16.1,
        agg_method="max"
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"gamma": g1, "gain": g2} for g1, g2 in zip([0.8, 1.0, 1.2], [0.7, 1.0, 1.3])])
def test_adjust_gamma(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_gamma,
        F_pil.adjust_gamma,
        F_t.adjust_gamma,
        config,
        device,
        dtype,
    )


1144
1145
if __name__ == '__main__':
    unittest.main()