test_functional_tensor.py 48.6 KB
Newer Older
1
import colorsys
2
import itertools
3
import math
4
import os
5
from functools import partial
6
from typing import Sequence
7

vfdev's avatar
vfdev committed
8
import numpy as np
9
import pytest
vfdev's avatar
vfdev committed
10
import torch
11
import torchvision.transforms as T
12
13
14
import torchvision.transforms.functional as F
import torchvision.transforms.functional_pil as F_pil
import torchvision.transforms.functional_tensor as F_t
Nicolas Hug's avatar
Nicolas Hug committed
15
from common_utils import (
16
17
    _assert_approx_equal_tensor_to_pil,
    _assert_equal_tensor_to_pil,
Nicolas Hug's avatar
Nicolas Hug committed
18
19
20
    _create_data,
    _create_data_batch,
    _test_fn_on_batch,
21
    assert_equal,
22
23
    cpu_and_gpu,
    needs_cuda,
Nicolas Hug's avatar
Nicolas Hug committed
24
)
25
from torchvision.transforms import InterpolationMode
26

27
28
29
30
31
32
NEAREST, NEAREST_EXACT, BILINEAR, BICUBIC = (
    InterpolationMode.NEAREST,
    InterpolationMode.NEAREST_EXACT,
    InterpolationMode.BILINEAR,
    InterpolationMode.BICUBIC,
)
33
34


35
@pytest.mark.parametrize("device", cpu_and_gpu())
36
@pytest.mark.parametrize("fn", [F.get_image_size, F.get_image_num_channels, F.get_dimensions])
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
def test_image_sizes(device, fn):
    script_F = torch.jit.script(fn)

    img_tensor, pil_img = _create_data(16, 18, 3, device=device)
    value_img = fn(img_tensor)
    value_pil_img = fn(pil_img)
    assert value_img == value_pil_img

    value_img_script = script_F(img_tensor)
    assert value_img == value_img_script

    batch_tensors = _create_data_batch(16, 18, 3, num_samples=4, device=device)
    value_img_batch = fn(batch_tensors)
    assert value_img == value_img_batch


53
54
55
56
57
58
59
60
@needs_cuda
def test_scale_channel():
    """Make sure that _scale_channel gives the same results on CPU and GPU as
    histc or bincount are used depending on the device.
    """
    # TODO: when # https://github.com/pytorch/pytorch/issues/53194 is fixed,
    # only use bincount and remove that test.
    size = (1_000,)
61
    img_chan = torch.randint(0, 256, size=size).to("cpu")
62
    scaled_cpu = F_t._scale_channel(img_chan)
63
64
    scaled_cuda = F_t._scale_channel(img_chan.to("cuda"))
    assert_equal(scaled_cpu, scaled_cuda.to("cpu"))
65

66

67
68
69
70
71
72
class TestRotate:

    ALL_DTYPES = [None, torch.float32, torch.float64, torch.float16]
    scripted_rotate = torch.jit.script(F.rotate)
    IMG_W = 26

73
    @pytest.mark.parametrize("device", cpu_and_gpu())
74
    @pytest.mark.parametrize("height, width", [(7, 33), (26, IMG_W), (32, IMG_W)])
75
76
77
78
79
80
81
82
83
    @pytest.mark.parametrize(
        "center",
        [
            None,
            (int(IMG_W * 0.3), int(IMG_W * 0.4)),
            [int(IMG_W * 0.5), int(IMG_W * 0.6)],
        ],
    )
    @pytest.mark.parametrize("dt", ALL_DTYPES)
84
    @pytest.mark.parametrize("angle", range(-180, 180, 34))
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    @pytest.mark.parametrize("expand", [True, False])
    @pytest.mark.parametrize(
        "fill",
        [
            None,
            [0, 0, 0],
            (1, 2, 3),
            [255, 255, 255],
            [
                1,
            ],
            (2.0,),
        ],
    )
    @pytest.mark.parametrize("fn", [F.rotate, scripted_rotate])
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    def test_rotate(self, device, height, width, center, dt, angle, expand, fill, fn):
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and torch.device(device).type == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        f_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
        out_pil_img = F.rotate(pil_img, angle=angle, interpolation=NEAREST, expand=expand, center=center, fill=f_pil)
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

        out_tensor = fn(tensor, angle=angle, interpolation=NEAREST, expand=expand, center=center, fill=fill).cpu()

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

119
120
121
        assert (
            out_tensor.shape == out_pil_tensor.shape
        ), f"{(height, width, NEAREST, dt, angle, expand, center)}: {out_tensor.shape} vs {out_pil_tensor.shape}"
122
123
124
125
126
127
128

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 3% of different pixels
        assert ratio_diff_pixels < 0.03, (
            f"{(height, width, NEAREST, dt, angle, expand, center, fill)}: "
            f"{ratio_diff_pixels}\n{out_tensor[0, :7, :7]} vs \n"
129
130
            f"{out_pil_tensor[0, :7, :7]}"
        )
131

132
133
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dt", ALL_DTYPES)
134
135
136
137
138
139
140
141
142
143
    def test_rotate_batch(self, device, dt):
        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
        if dt is not None:
            batch_tensors = batch_tensors.to(dtype=dt)

        center = (20, 22)
144
        _test_fn_on_batch(batch_tensors, F.rotate, angle=32, interpolation=NEAREST, expand=True, center=center)
145
146


147
148
149
150
151
class TestAffine:

    ALL_DTYPES = [None, torch.float32, torch.float64, torch.float16]
    scripted_affine = torch.jit.script(F.affine)

152
153
154
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    def test_identity_map(self, device, height, width, dt):
        # Tests on square and rectangular images
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        # 1) identity map
        out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

169
        assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
170
171
172
        out_tensor = self.scripted_affine(
            tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
173
        assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(26, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize(
        "angle, config",
        [
            (90, {"k": 1, "dims": (-1, -2)}),
            (45, None),
            (30, None),
            (-30, None),
            (-45, None),
            (-90, {"k": -1, "dims": (-1, -2)}),
            (180, {"k": 2, "dims": (-1, -2)}),
        ],
    )
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    def test_square_rotations(self, device, height, width, dt, angle, config, fn):
        # 2) Test rotation
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(
            pil_img, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(device)

207
        out_tensor = fn(tensor, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
208
        if config is not None:
209
            assert_equal(torch.rot90(tensor, **config), out_tensor)
210
211
212
213
214
215
216

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 6% of different pixels
217
        assert ratio_diff_pixels < 0.06
218

219
220
221
222
223
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize("angle", [90, 45, 15, -30, -60, -120])
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
224
225
    @pytest.mark.parametrize("center", [None, [0, 0]])
    def test_rect_rotations(self, device, height, width, dt, angle, fn, center):
226
227
228
229
230
231
232
233
234
235
236
        # Tests on rectangular images
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(
237
            pil_img, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST, center=center
238
239
240
        )
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

241
242
243
        out_tensor = fn(
            tensor, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST, center=center
        ).cpu()
244
245
246
247
248
249
250

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 3% of different pixels
251
        assert ratio_diff_pixels < 0.03
252

253
254
255
256
257
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize("t", [[10, 12], (-12, -13)])
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    def test_translations(self, device, height, width, dt, t, fn):
        # 3) Test translation
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

        out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        _assert_equal_tensor_to_pil(out_tensor, out_pil_img)

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize(
        "a, t, s, sh, f",
        [
            (45.5, [5, 6], 1.0, [0.0, 0.0], None),
            (33, (5, -4), 1.0, [0.0, 0.0], [0, 0, 0]),
            (45, [-5, 4], 1.2, [0.0, 0.0], (1, 2, 3)),
            (33, (-4, -8), 2.0, [0.0, 0.0], [255, 255, 255]),
            (
                85,
                (10, -10),
                0.7,
                [0.0, 0.0],
                [
                    1,
                ],
            ),
            (
                0,
                [0, 0],
                1.0,
                [
                    35.0,
                ],
                (2.0,),
            ),
            (-25, [0, 0], 1.2, [0.0, 15.0], None),
            (-45, [-10, 0], 0.7, [2.0, 5.0], None),
            (-45, [-10, -10], 1.2, [4.0, 5.0], None),
            (-90, [0, 0], 1.0, [0.0, 0.0], None),
        ],
    )
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    def test_all_ops(self, device, height, width, dt, a, t, s, sh, f, fn):
        # 4) Test rotation + translation + scale + shear
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        f_pil = int(f[0]) if f is not None and len(f) == 1 else f
        out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, interpolation=NEAREST, fill=f_pil)
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

        out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, interpolation=NEAREST, fill=f).cpu()

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
        tol = 0.06 if device == "cuda" else 0.05
337
        assert ratio_diff_pixels < tol
338

339
340
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dt", ALL_DTYPES)
341
342
343
344
345
346
347
348
349
    def test_batches(self, device, dt):
        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
        if dt is not None:
            batch_tensors = batch_tensors.to(dtype=dt)

350
        _test_fn_on_batch(batch_tensors, F.affine, angle=-43, translate=[-3, 4], scale=1.2, shear=[4.0, 5.0])
351
352


353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
def _get_data_dims_and_points_for_perspective():
    # Ideally we would parametrize independently over data dims and points, but
    # we want to tests on some points that also depend on the data dims.
    # Pytest doesn't support covariant parametrization, so we do it somewhat manually here.

    data_dims = [(26, 34), (26, 26)]
    points = [
        [[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
    ]

    dims_and_points = list(itertools.product(data_dims, points))

    # up to here, we could just have used 2 @parametrized.
    # Down below is the covarariant part as the points depend on the data dims.

    n = 10
    for dim in data_dims:
372
        points += [(dim, T.RandomPerspective.get_params(dim[1], dim[0], i / n)) for i in range(n)]
373
374
375
    return dims_and_points


376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dims_and_points", _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize(
    "fill",
    (
        None,
        [0, 0, 0],
        [1, 2, 3],
        [255, 255, 255],
        [
            1,
        ],
        (2.0,),
    ),
)
@pytest.mark.parametrize("fn", [F.perspective, torch.jit.script(F.perspective)])
Nicolas Hug's avatar
Nicolas Hug committed
393
def test_perspective_pil_vs_tensor(device, dims_and_points, dt, fill, fn):
394
395
396
397
398
399
400

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

Nicolas Hug's avatar
Nicolas Hug committed
401
    tensor, pil_img = _create_data(*data_dims, device=device)
402
403
404
405
406
    if dt is not None:
        tensor = tensor.to(dtype=dt)

    interpolation = NEAREST
    fill_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
407
408
409
    out_pil_img = F.perspective(
        pil_img, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill_pil
    )
410
411
412
413
414
415
416
417
418
419
420
421
    out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
    out_tensor = fn(tensor, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill).cpu()

    if out_tensor.dtype != torch.uint8:
        out_tensor = out_tensor.to(torch.uint8)

    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
    # Tolerance : less than 5% of different pixels
    assert ratio_diff_pixels < 0.05


422
423
424
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dims_and_points", _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
Nicolas Hug's avatar
Nicolas Hug committed
425
def test_perspective_batch(device, dims_and_points, dt):
426
427
428
429
430
431
432

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

Nicolas Hug's avatar
Nicolas Hug committed
433
    batch_tensors = _create_data_batch(*data_dims, num_samples=4, device=device)
434
435
436
437
438
439
    if dt is not None:
        batch_tensors = batch_tensors.to(dtype=dt)

    # Ignore the equivalence between scripted and regular function on float16 cuda. The pixels at
    # the border may be entirely different due to small rounding errors.
    scripted_fn_atol = -1 if (dt == torch.float16 and device == "cuda") else 1e-8
Nicolas Hug's avatar
Nicolas Hug committed
440
    _test_fn_on_batch(
441
442
443
444
445
446
        batch_tensors,
        F.perspective,
        scripted_fn_atol=scripted_fn_atol,
        startpoints=spoints,
        endpoints=epoints,
        interpolation=NEAREST,
447
448
449
    )


450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize(
    "size",
    [
        32,
        26,
        [
            32,
        ],
        [32, 32],
        (32, 32),
        [26, 35],
    ],
)
@pytest.mark.parametrize("max_size", [None, 34, 40, 1000])
466
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC, NEAREST, NEAREST_EXACT])
Nicolas Hug's avatar
Nicolas Hug committed
467
def test_resize(device, dt, size, max_size, interpolation):
468
469
470
471
472
473
474
475
476
477

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if max_size is not None and isinstance(size, Sequence) and len(size) != 1:
        return  # unsupported

    torch.manual_seed(12)
    script_fn = torch.jit.script(F.resize)
Nicolas Hug's avatar
Nicolas Hug committed
478
479
    tensor, pil_img = _create_data(26, 36, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
480
481
482
483
484
485
486
487
488
489
490

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)
        batch_tensors = batch_tensors.to(dt)

    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, max_size=max_size)
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation, max_size=max_size)

    assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]

491
492
493
    if interpolation not in [
        NEAREST,
    ]:
494
495
496
497
498
499
500
501
502
        # We can not check values if mode = NEAREST, as results are different
        # E.g. resized_tensor  = [[a, a, b, c, d, d, e, ...]]
        # E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
        resized_tensor_f = resized_tensor
        # we need to cast to uint8 to compare with PIL image
        if resized_tensor_f.dtype == torch.uint8:
            resized_tensor_f = resized_tensor_f.to(torch.float)

        # Pay attention to high tolerance for MAE
Nicolas Hug's avatar
Nicolas Hug committed
503
        _assert_approx_equal_tensor_to_pil(resized_tensor_f, resized_pil_img, tol=8.0)
504
505

    if isinstance(size, int):
506
507
508
        script_size = [
            size,
        ]
509
510
511
    else:
        script_size = size

512
    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, max_size=max_size)
513
514
    assert_equal(resized_tensor, resize_result)

515
    _test_fn_on_batch(batch_tensors, F.resize, size=script_size, interpolation=interpolation, max_size=max_size)
516
517


518
@pytest.mark.parametrize("device", cpu_and_gpu())
Nicolas Hug's avatar
Nicolas Hug committed
519
def test_resize_asserts(device):
520

Nicolas Hug's avatar
Nicolas Hug committed
521
    tensor, pil_img = _create_data(26, 36, device=device)
522
523
524
525
526
527
528
529
530

    for img in (tensor, pil_img):
        exp_msg = "max_size should only be passed if size specifies the length of the smaller edge"
        with pytest.raises(ValueError, match=exp_msg):
            F.resize(img, size=(32, 34), max_size=35)
        with pytest.raises(ValueError, match="max_size = 32 must be strictly greater"):
            F.resize(img, size=32, max_size=32)


531
532
533
534
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("size", [[96, 72], [96, 420], [420, 72]])
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC])
Nicolas Hug's avatar
Nicolas Hug committed
535
def test_resize_antialias(device, dt, size, interpolation):
536
537
538
539
540

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

541
    torch.manual_seed(12)
542
    script_fn = torch.jit.script(F.resize)
Nicolas Hug's avatar
Nicolas Hug committed
543
    tensor, pil_img = _create_data(320, 290, device=device)
544
545
546
547
548
549
550
551

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)

    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, antialias=True)
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation)

Nicolas Hug's avatar
Nicolas Hug committed
552
    assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]
553
554
555
556
557
558

    resized_tensor_f = resized_tensor
    # we need to cast to uint8 to compare with PIL image
    if resized_tensor_f.dtype == torch.uint8:
        resized_tensor_f = resized_tensor_f.to(torch.float)

559
    _assert_approx_equal_tensor_to_pil(resized_tensor_f, resized_pil_img, tol=0.5, msg=f"{size}, {interpolation}, {dt}")
560
561
562
563
564
565
566
567
568

    accepted_tol = 1.0 + 1e-5
    if interpolation == BICUBIC:
        # this overall mean value to make the tests pass
        # High value is mostly required for test cases with
        # downsampling and upsampling where we can not exactly
        # match PIL implementation.
        accepted_tol = 15.0

Nicolas Hug's avatar
Nicolas Hug committed
569
    _assert_approx_equal_tensor_to_pil(
570
        resized_tensor_f, resized_pil_img, tol=accepted_tol, agg_method="max", msg=f"{size}, {interpolation}, {dt}"
571
572
573
    )

    if isinstance(size, int):
574
575
576
        script_size = [
            size,
        ]
577
578
579
580
    else:
        script_size = size

    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, antialias=True)
Nicolas Hug's avatar
Nicolas Hug committed
581
    assert_equal(resized_tensor, resize_result)
582
583


584
@needs_cuda
585
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC])
Nicolas Hug's avatar
Nicolas Hug committed
586
def test_assert_resize_antialias(interpolation):
587
588

    # Checks implementation on very large scales
589
    # and catch TORCH_CHECK inside PyTorch implementation
590
    torch.manual_seed(12)
591
    tensor, _ = _create_data(1000, 1000, device="cuda")
592

593
594
595
    # Error message is not yet updated in pytorch nightly
    # with pytest.raises(RuntimeError, match=r"Provided interpolation parameters can not be handled"):
    with pytest.raises(RuntimeError, match=r"Too much shared memory required"):
596
597
598
        F.resize(tensor, size=(5, 5), interpolation=interpolation, antialias=True)


599
600
601
602
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dt", [torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("size", [[10, 7], [10, 42], [42, 7]])
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC])
603
def test_interpolate_antialias_backward(device, dt, size, interpolation):
604
605
606
607
608
609

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    torch.manual_seed(12)
610
    x = (torch.rand(1, 32, 29, 3, dtype=torch.double, device=device).permute(0, 3, 1, 2).requires_grad_(True),)
611
612
    resize = partial(F.resize, size=size, interpolation=interpolation, antialias=True)
    assert torch.autograd.gradcheck(resize, x, eps=1e-8, atol=1e-6, rtol=1e-6, fast_mode=False)
613

614
    x = (torch.rand(1, 3, 32, 29, dtype=torch.double, device=device, requires_grad=True),)
615
    assert torch.autograd.gradcheck(resize, x, eps=1e-8, atol=1e-6, rtol=1e-6, fast_mode=False)
616
617


618
619
620
def check_functional_vs_PIL_vs_scripted(
    fn, fn_pil, fn_t, config, device, dtype, channels=3, tol=2.0 + 1e-10, agg_method="max"
):
621
622
623

    script_fn = torch.jit.script(fn)
    torch.manual_seed(15)
624
625
    tensor, pil_img = _create_data(26, 34, channels=channels, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, channels=channels, device=device)
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

    if dtype is not None:
        tensor = F.convert_image_dtype(tensor, dtype)
        batch_tensors = F.convert_image_dtype(batch_tensors, dtype)

    out_fn_t = fn_t(tensor, **config)
    out_pil = fn_pil(pil_img, **config)
    out_scripted = script_fn(tensor, **config)
    assert out_fn_t.dtype == out_scripted.dtype
    assert out_fn_t.size()[1:] == out_pil.size[::-1]

    rbg_tensor = out_fn_t

    if out_fn_t.dtype != torch.uint8:
        rbg_tensor = F.convert_image_dtype(out_fn_t, torch.uint8)

    # Check that max difference does not exceed 2 in [0, 255] range
    # Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
Nicolas Hug's avatar
Nicolas Hug committed
644
    _assert_approx_equal_tensor_to_pil(rbg_tensor.float(), out_pil, tol=tol, agg_method=agg_method)
645
646
647
648
649
650
651

    atol = 1e-6
    if out_fn_t.dtype == torch.uint8 and "cuda" in torch.device(device).type:
        atol = 1.0
    assert out_fn_t.allclose(out_scripted, atol=atol)

    # FIXME: fn will be scripted again in _test_fn_on_batch. We could avoid that.
Nicolas Hug's avatar
Nicolas Hug committed
652
    _test_fn_on_batch(batch_tensors, fn, scripted_fn_atol=atol, **config)
653
654


655
656
657
658
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"brightness_factor": f} for f in (0.1, 0.5, 1.0, 1.34, 2.5)])
@pytest.mark.parametrize("channels", [1, 3])
659
def test_adjust_brightness(device, dtype, config, channels):
660
661
662
663
664
665
666
    check_functional_vs_PIL_vs_scripted(
        F.adjust_brightness,
        F_pil.adjust_brightness,
        F_t.adjust_brightness,
        config,
        device,
        dtype,
667
        channels,
668
669
670
    )


671
672
673
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
674
def test_invert(device, dtype, channels):
675
    check_functional_vs_PIL_vs_scripted(
676
        F.invert, F_pil.invert, F_t.invert, {}, device, dtype, channels, tol=1.0, agg_method="max"
677
678
679
    )


680
681
682
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("config", [{"bits": bits} for bits in range(0, 8)])
@pytest.mark.parametrize("channels", [1, 3])
683
def test_posterize(device, config, channels):
684
685
686
687
688
689
690
    check_functional_vs_PIL_vs_scripted(
        F.posterize,
        F_pil.posterize,
        F_t.posterize,
        config,
        device,
        dtype=None,
691
        channels=channels,
692
693
694
695
696
        tol=1.0,
        agg_method="max",
    )


697
698
699
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("config", [{"threshold": threshold} for threshold in [0, 64, 128, 192, 255]])
@pytest.mark.parametrize("channels", [1, 3])
700
def test_solarize1(device, config, channels):
701
702
703
704
705
706
707
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        F_pil.solarize,
        F_t.solarize,
        config,
        device,
        dtype=None,
708
        channels=channels,
709
710
711
712
713
        tol=1.0,
        agg_method="max",
    )


714
715
716
717
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"threshold": threshold} for threshold in [0.0, 0.25, 0.5, 0.75, 1.0]])
@pytest.mark.parametrize("channels", [1, 3])
718
def test_solarize2(device, dtype, config, channels):
719
720
721
722
723
724
725
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        lambda img, threshold: F_pil.solarize(img, 255 * threshold),
        F_t.solarize,
        config,
        device,
        dtype,
726
        channels,
727
728
729
730
731
        tol=1.0,
        agg_method="max",
    )


Philip Meier's avatar
Philip Meier committed
732
733
734
735
736
737
738
739
740
741
742
743
744
745
@pytest.mark.parametrize(
    ("dtype", "threshold"),
    [
        *[
            (dtype, threshold)
            for dtype, threshold in itertools.product(
                [torch.float32, torch.float16],
                [0.0, 0.25, 0.5, 0.75, 1.0],
            )
        ],
        *[(torch.uint8, threshold) for threshold in [0, 64, 128, 192, 255]],
        *[(torch.int64, threshold) for threshold in [0, 2**32, 2**63 - 1]],
    ],
)
puhuk's avatar
puhuk committed
746
@pytest.mark.parametrize("device", cpu_and_gpu())
Philip Meier's avatar
Philip Meier committed
747
748
749
def test_solarize_threshold_within_bound(threshold, dtype, device):
    make_img = torch.rand if dtype.is_floating_point else partial(torch.randint, 0, torch.iinfo(dtype).max)
    img = make_img((3, 12, 23), dtype=dtype, device=device)
puhuk's avatar
puhuk committed
750
751
752
    F_t.solarize(img, threshold)


Philip Meier's avatar
Philip Meier committed
753
754
755
756
757
758
759
760
761
@pytest.mark.parametrize(
    ("dtype", "threshold"),
    [
        (torch.float32, 1.5),
        (torch.float16, 1.5),
        (torch.uint8, 260),
        (torch.int64, 2**64),
    ],
)
puhuk's avatar
puhuk committed
762
@pytest.mark.parametrize("device", cpu_and_gpu())
Philip Meier's avatar
Philip Meier committed
763
764
765
def test_solarize_threshold_above_bound(threshold, dtype, device):
    make_img = torch.rand if dtype.is_floating_point else partial(torch.randint, 0, torch.iinfo(dtype).max)
    img = make_img((3, 12, 23), dtype=dtype, device=device)
puhuk's avatar
puhuk committed
766
767
768
769
    with pytest.raises(TypeError, match="Threshold should be less than bound of img."):
        F_t.solarize(img, threshold)


770
771
772
773
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"sharpness_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
774
def test_adjust_sharpness(device, dtype, config, channels):
775
776
777
778
779
780
781
    check_functional_vs_PIL_vs_scripted(
        F.adjust_sharpness,
        F_pil.adjust_sharpness,
        F_t.adjust_sharpness,
        config,
        device,
        dtype,
782
        channels,
783
784
785
    )


786
787
788
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
789
def test_autocontrast(device, dtype, channels):
790
    check_functional_vs_PIL_vs_scripted(
791
        F.autocontrast, F_pil.autocontrast, F_t.autocontrast, {}, device, dtype, channels, tol=1.0, agg_method="max"
792
793
794
    )


795
796
797
798
799
800
801
802
803
804
805
806
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
def test_autocontrast_equal_minmax(device, dtype, channels):
    a = _create_data_batch(32, 32, num_samples=1, channels=channels, device=device)
    a = a / 2.0 + 0.3
    assert (F.autocontrast(a)[0] == F.autocontrast(a[0])).all()

    a[0, 0] = 0.7
    assert (F.autocontrast(a)[0] == F.autocontrast(a[0])).all()


807
808
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("channels", [1, 3])
809
def test_equalize(device, channels):
810
    torch.use_deterministic_algorithms(False)
811
812
813
814
815
816
817
    check_functional_vs_PIL_vs_scripted(
        F.equalize,
        F_pil.equalize,
        F_t.equalize,
        {},
        device,
        dtype=None,
818
        channels=channels,
819
820
821
822
823
        tol=1.0,
        agg_method="max",
    )


824
825
826
827
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"contrast_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
828
def test_adjust_contrast(device, dtype, config, channels):
829
    check_functional_vs_PIL_vs_scripted(
830
        F.adjust_contrast, F_pil.adjust_contrast, F_t.adjust_contrast, config, device, dtype, channels
831
832
833
    )


834
835
836
837
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"saturation_factor": f} for f in [0.5, 0.75, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
838
def test_adjust_saturation(device, dtype, config, channels):
839
    check_functional_vs_PIL_vs_scripted(
840
        F.adjust_saturation, F_pil.adjust_saturation, F_t.adjust_saturation, config, device, dtype, channels
841
842
843
    )


844
845
846
847
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"hue_factor": f} for f in [-0.45, -0.25, 0.0, 0.25, 0.45]])
@pytest.mark.parametrize("channels", [1, 3])
848
def test_adjust_hue(device, dtype, config, channels):
849
    check_functional_vs_PIL_vs_scripted(
850
        F.adjust_hue, F_pil.adjust_hue, F_t.adjust_hue, config, device, dtype, channels, tol=16.1, agg_method="max"
851
852
853
    )


854
855
856
857
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"gamma": g1, "gain": g2} for g1, g2 in zip([0.8, 1.0, 1.2], [0.7, 1.0, 1.3])])
@pytest.mark.parametrize("channels", [1, 3])
858
def test_adjust_gamma(device, dtype, config, channels):
859
860
861
862
863
864
865
    check_functional_vs_PIL_vs_scripted(
        F.adjust_gamma,
        F_pil.adjust_gamma,
        F_t.adjust_gamma,
        config,
        device,
        dtype,
866
        channels,
867
868
869
    )


870
871
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
872
@pytest.mark.parametrize("pad", [2, [3], [0, 3], (3, 3), [4, 2, 4, 3]])
873
874
875
876
877
@pytest.mark.parametrize(
    "config",
    [
        {"padding_mode": "constant", "fill": 0},
        {"padding_mode": "constant", "fill": 10},
878
        {"padding_mode": "constant", "fill": 20.2},
879
880
881
882
883
        {"padding_mode": "edge"},
        {"padding_mode": "reflect"},
        {"padding_mode": "symmetric"},
    ],
)
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
def test_pad(device, dt, pad, config):
    script_fn = torch.jit.script(F.pad)
    tensor, pil_img = _create_data(7, 8, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)
        batch_tensors = batch_tensors.to(dt)

    pad_tensor = F_t.pad(tensor, pad, **config)
    pad_pil_img = F_pil.pad(pil_img, pad, **config)

    pad_tensor_8b = pad_tensor
    # we need to cast to uint8 to compare with PIL image
    if pad_tensor_8b.dtype != torch.uint8:
        pad_tensor_8b = pad_tensor_8b.to(torch.uint8)

906
    _assert_equal_tensor_to_pil(pad_tensor_8b, pad_pil_img, msg=f"{pad}, {config}")
907
908

    if isinstance(pad, int):
909
910
911
        script_pad = [
            pad,
        ]
912
913
914
    else:
        script_pad = pad
    pad_tensor_script = script_fn(tensor, script_pad, **config)
915
    assert_equal(pad_tensor, pad_tensor_script, msg=f"{pad}, {config}")
916
917
918
919

    _test_fn_on_batch(batch_tensors, F.pad, padding=script_pad, **config)


920
@pytest.mark.parametrize("device", cpu_and_gpu())
921
@pytest.mark.parametrize("mode", [NEAREST, NEAREST_EXACT, BILINEAR, BICUBIC])
922
923
924
925
926
927
def test_resized_crop(device, mode):
    # test values of F.resized_crop in several cases:
    # 1) resize to the same size, crop to the same size => should be identity
    tensor, _ = _create_data(26, 36, device=device)

    out_tensor = F.resized_crop(tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=mode)
928
    assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
929
930
931
932
933
934
935
936

    # 2) resize by half and crop a TL corner
    tensor, _ = _create_data(26, 36, device=device)
    out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=NEAREST)
    expected_out_tensor = tensor[:, :20:2, :30:2]
    assert_equal(
        expected_out_tensor,
        out_tensor,
937
        msg=f"{expected_out_tensor[0, :10, :10]} vs {out_tensor[0, :10, :10]}",
938
939
940
941
942
943
944
945
    )

    batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
    _test_fn_on_batch(
        batch_tensors, F.resized_crop, top=1, left=2, height=20, width=30, size=[10, 15], interpolation=NEAREST
    )


946
947
948
949
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "func, args",
    [
950
        (F_t.get_dimensions, ()),
951
        (F_t.get_image_size, ()),
952
        (F_t.get_image_num_channels, ()),
953
954
955
956
957
958
959
        (F_t.vflip, ()),
        (F_t.hflip, ()),
        (F_t.crop, (1, 2, 4, 5)),
        (F_t.adjust_brightness, (0.0,)),
        (F_t.adjust_contrast, (1.0,)),
        (F_t.adjust_hue, (-0.5,)),
        (F_t.adjust_saturation, (2.0,)),
960
        (F_t.pad, ([2], 2, "constant")),
961
        (F_t.resize, ([10, 11],)),
962
        (F_t.perspective, ([0.2])),
963
964
965
966
967
968
969
970
971
        (F_t.gaussian_blur, ((2, 2), (0.7, 0.5))),
        (F_t.invert, ()),
        (F_t.posterize, (0,)),
        (F_t.solarize, (0.3,)),
        (F_t.adjust_sharpness, (0.3,)),
        (F_t.autocontrast, ()),
        (F_t.equalize, ()),
    ],
)
972
973
974
975
976
977
978
def test_assert_image_tensor(device, func, args):
    shape = (100,)
    tensor = torch.rand(*shape, dtype=torch.float, device=device)
    with pytest.raises(Exception, match=r"Tensor is not a torch image."):
        func(tensor, *args)


979
@pytest.mark.parametrize("device", cpu_and_gpu())
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
def test_vflip(device):
    script_vflip = torch.jit.script(F.vflip)

    img_tensor, pil_img = _create_data(16, 18, device=device)
    vflipped_img = F.vflip(img_tensor)
    vflipped_pil_img = F.vflip(pil_img)
    _assert_equal_tensor_to_pil(vflipped_img, vflipped_pil_img)

    # scriptable function test
    vflipped_img_script = script_vflip(img_tensor)
    assert_equal(vflipped_img, vflipped_img_script)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.vflip)


996
@pytest.mark.parametrize("device", cpu_and_gpu())
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
def test_hflip(device):
    script_hflip = torch.jit.script(F.hflip)

    img_tensor, pil_img = _create_data(16, 18, device=device)
    hflipped_img = F.hflip(img_tensor)
    hflipped_pil_img = F.hflip(pil_img)
    _assert_equal_tensor_to_pil(hflipped_img, hflipped_pil_img)

    # scriptable function test
    hflipped_img_script = script_hflip(img_tensor)
    assert_equal(hflipped_img, hflipped_img_script)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.hflip)


1013
1014
1015
1016
1017
1018
1019
1020
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "top, left, height, width",
    [
        (1, 2, 4, 5),  # crop inside top-left corner
        (2, 12, 3, 4),  # crop inside top-right corner
        (8, 3, 5, 6),  # crop inside bottom-left corner
        (8, 11, 4, 3),  # crop inside bottom-right corner
1021
1022
        (50, 50, 10, 10),  # crop outside the image
        (-50, -50, 10, 10),  # crop outside the image
1023
1024
    ],
)
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
def test_crop(device, top, left, height, width):
    script_crop = torch.jit.script(F.crop)

    img_tensor, pil_img = _create_data(16, 18, device=device)

    pil_img_cropped = F.crop(pil_img, top, left, height, width)

    img_tensor_cropped = F.crop(img_tensor, top, left, height, width)
    _assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)

    img_tensor_cropped = script_crop(img_tensor, top, left, height, width)
    _assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.crop, top=top, left=left, height=height, width=width)


1042
1043
1044
1045
1046
1047
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("image_size", ("small", "large"))
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("ksize", [(3, 3), [3, 5], (23, 23)])
@pytest.mark.parametrize("sigma", [[0.5, 0.5], (0.5, 0.5), (0.8, 0.8), (1.7, 1.7)])
@pytest.mark.parametrize("fn", [F.gaussian_blur, torch.jit.script(F.gaussian_blur)])
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
def test_gaussian_blur(device, image_size, dt, ksize, sigma, fn):

    # true_cv2_results = {
    #     # np_img = np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
    #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.8)
    #     "3_3_0.8": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.5)
    #     "3_3_0.5": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.8)
    #     "3_5_0.8": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.5)
    #     "3_5_0.5": ...
    #     # np_img2 = np.arange(26 * 28, dtype="uint8").reshape((26, 28))
    #     # cv2.GaussianBlur(np_img2, ksize=(23, 23), sigmaX=1.7)
    #     "23_23_1.7": ...
    # }
1064
    p = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "gaussian_blur_opencv_results.pt")
1065
1066
    true_cv2_results = torch.load(p)

1067
1068
1069
1070
    if image_size == "small":
        tensor = (
            torch.from_numpy(np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))).permute(2, 0, 1).to(device)
        )
1071
    else:
1072
        tensor = torch.from_numpy(np.arange(26 * 28, dtype="uint8").reshape((1, 26, 28))).to(device)
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if dt is not None:
        tensor = tensor.to(dtype=dt)

    _ksize = (ksize, ksize) if isinstance(ksize, int) else ksize
    _sigma = sigma[0] if sigma is not None else None
    shape = tensor.shape
1084
    gt_key = f"{shape[-2]}_{shape[-1]}_{shape[-3]}__{_ksize[0]}_{_ksize[1]}_{_sigma}"
1085
1086
1087
    if gt_key not in true_cv2_results:
        return

1088
1089
1090
    true_out = (
        torch.tensor(true_cv2_results[gt_key]).reshape(shape[-2], shape[-1], shape[-3]).permute(2, 0, 1).to(tensor)
    )
1091
1092

    out = fn(tensor, kernel_size=ksize, sigma=sigma)
1093
    torch.testing.assert_close(out, true_out, rtol=0.0, atol=1.0, msg=f"{ksize}, {sigma}")
1094
1095


1096
@pytest.mark.parametrize("device", cpu_and_gpu())
1097
1098
1099
1100
1101
1102
1103
1104
def test_hsv2rgb(device):
    scripted_fn = torch.jit.script(F_t._hsv2rgb)
    shape = (3, 100, 150)
    for _ in range(10):
        hsv_img = torch.rand(*shape, dtype=torch.float, device=device)
        rgb_img = F_t._hsv2rgb(hsv_img)
        ft_img = rgb_img.permute(1, 2, 0).flatten(0, 1)

1105
1106
1107
1108
1109
        (
            h,
            s,
            v,
        ) = hsv_img.unbind(0)
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
        h = h.flatten().cpu().numpy()
        s = s.flatten().cpu().numpy()
        v = v.flatten().cpu().numpy()

        rgb = []
        for h1, s1, v1 in zip(h, s, v):
            rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))
        colorsys_img = torch.tensor(rgb, dtype=torch.float32, device=device)
        torch.testing.assert_close(ft_img, colorsys_img, rtol=0.0, atol=1e-5)

        s_rgb_img = scripted_fn(hsv_img)
        torch.testing.assert_close(rgb_img, s_rgb_img)

    batch_tensors = _create_data_batch(120, 100, num_samples=4, device=device).float()
    _test_fn_on_batch(batch_tensors, F_t._hsv2rgb)


1127
@pytest.mark.parametrize("device", cpu_and_gpu())
1128
1129
1130
1131
1132
1133
1134
1135
def test_rgb2hsv(device):
    scripted_fn = torch.jit.script(F_t._rgb2hsv)
    shape = (3, 150, 100)
    for _ in range(10):
        rgb_img = torch.rand(*shape, dtype=torch.float, device=device)
        hsv_img = F_t._rgb2hsv(rgb_img)
        ft_hsv_img = hsv_img.permute(1, 2, 0).flatten(0, 1)

1136
1137
1138
1139
1140
        (
            r,
            g,
            b,
        ) = rgb_img.unbind(dim=-3)
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
        r = r.flatten().cpu().numpy()
        g = g.flatten().cpu().numpy()
        b = b.flatten().cpu().numpy()

        hsv = []
        for r1, g1, b1 in zip(r, g, b):
            hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))

        colorsys_img = torch.tensor(hsv, dtype=torch.float32, device=device)

        ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
        colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)

        max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
        max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
        max_diff = max(max_diff_h, max_diff_sv)
        assert max_diff < 1e-5

        s_hsv_img = scripted_fn(rgb_img)
        torch.testing.assert_close(hsv_img, s_hsv_img, rtol=1e-5, atol=1e-7)

    batch_tensors = _create_data_batch(120, 100, num_samples=4, device=device).float()
    _test_fn_on_batch(batch_tensors, F_t._rgb2hsv)


1166
1167
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("num_output_channels", (3, 1))
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
def test_rgb_to_grayscale(device, num_output_channels):
    script_rgb_to_grayscale = torch.jit.script(F.rgb_to_grayscale)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    gray_pil_image = F.rgb_to_grayscale(pil_img, num_output_channels=num_output_channels)
    gray_tensor = F.rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)

    _assert_approx_equal_tensor_to_pil(gray_tensor.float(), gray_pil_image, tol=1.0 + 1e-10, agg_method="max")

    s_gray_tensor = script_rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)
    assert_equal(s_gray_tensor, gray_tensor)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.rgb_to_grayscale, num_output_channels=num_output_channels)


1185
@pytest.mark.parametrize("device", cpu_and_gpu())
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
def test_center_crop(device):
    script_center_crop = torch.jit.script(F.center_crop)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    cropped_pil_image = F.center_crop(pil_img, [10, 11])

    cropped_tensor = F.center_crop(img_tensor, [10, 11])
    _assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)

    cropped_tensor = script_center_crop(img_tensor, [10, 11])
    _assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.center_crop, output_size=[10, 11])


1203
@pytest.mark.parametrize("device", cpu_and_gpu())
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
def test_five_crop(device):
    script_five_crop = torch.jit.script(F.five_crop)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    cropped_pil_images = F.five_crop(pil_img, [10, 11])

    cropped_tensors = F.five_crop(img_tensor, [10, 11])
    for i in range(5):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    cropped_tensors = script_five_crop(img_tensor, [10, 11])
    for i in range(5):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    tuple_transformed_batches = F.five_crop(batch_tensors, [10, 11])
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        tuple_transformed_imgs = F.five_crop(img_tensor, [10, 11])
        assert len(tuple_transformed_imgs) == len(tuple_transformed_batches)

        for j in range(len(tuple_transformed_imgs)):
            true_transformed_img = tuple_transformed_imgs[j]
            transformed_img = tuple_transformed_batches[j][i, ...]
            assert_equal(true_transformed_img, transformed_img)

    # scriptable function test
    s_tuple_transformed_batches = script_five_crop(batch_tensors, [10, 11])
    for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
        assert_equal(transformed_batch, s_transformed_batch)


1237
@pytest.mark.parametrize("device", cpu_and_gpu())
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
def test_ten_crop(device):
    script_ten_crop = torch.jit.script(F.ten_crop)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    cropped_pil_images = F.ten_crop(pil_img, [10, 11])

    cropped_tensors = F.ten_crop(img_tensor, [10, 11])
    for i in range(10):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    cropped_tensors = script_ten_crop(img_tensor, [10, 11])
    for i in range(10):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    tuple_transformed_batches = F.ten_crop(batch_tensors, [10, 11])
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        tuple_transformed_imgs = F.ten_crop(img_tensor, [10, 11])
        assert len(tuple_transformed_imgs) == len(tuple_transformed_batches)

        for j in range(len(tuple_transformed_imgs)):
            true_transformed_img = tuple_transformed_imgs[j]
            transformed_img = tuple_transformed_batches[j][i, ...]
            assert_equal(true_transformed_img, transformed_img)

    # scriptable function test
    s_tuple_transformed_batches = script_ten_crop(batch_tensors, [10, 11])
    for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
        assert_equal(transformed_batch, s_transformed_batch)


1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
def test_elastic_transform_asserts():
    with pytest.raises(TypeError, match="Argument displacement should be a Tensor"):
        _ = F.elastic_transform("abc", displacement=None)

    with pytest.raises(TypeError, match="img should be PIL Image or Tensor"):
        _ = F.elastic_transform("abc", displacement=torch.rand(1))

    img_tensor = torch.rand(1, 3, 32, 24)
    with pytest.raises(ValueError, match="Argument displacement shape should"):
        _ = F.elastic_transform(img_tensor, displacement=torch.rand(1, 2))


1283
1284
1285
1286
1287
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR, BICUBIC])
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize(
    "fill",
1288
    [None, [255, 255, 255], (2.0,)],
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
)
def test_elastic_transform_consistency(device, interpolation, dt, fill):
    script_elastic_transform = torch.jit.script(F.elastic_transform)
    img_tensor, _ = _create_data(32, 34, device=device)
    # As there is no PIL implementation for elastic_transform,
    # thus we do not run tests tensor vs pillow

    if dt is not None:
        img_tensor = img_tensor.to(dt)

    displacement = T.ElasticTransform.get_params([1.5, 1.5], [2.0, 2.0], [32, 34])
    kwargs = dict(
        displacement=displacement,
        interpolation=interpolation,
        fill=fill,
    )

    out_tensor1 = F.elastic_transform(img_tensor, **kwargs)
    out_tensor2 = script_elastic_transform(img_tensor, **kwargs)
    assert_equal(out_tensor1, out_tensor2)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    displacement = T.ElasticTransform.get_params([1.5, 1.5], [2.0, 2.0], [16, 18])
    kwargs["displacement"] = displacement
    if dt is not None:
        batch_tensors = batch_tensors.to(dt)
    _test_fn_on_batch(batch_tensors, F.elastic_transform, **kwargs)


1318
if __name__ == "__main__":
1319
    pytest.main([__file__])