test_functional_tensor.py 47.2 KB
Newer Older
1
from functools import partial
2
import itertools
3
import os
4
import colorsys
5
import math
6

vfdev's avatar
vfdev committed
7
import numpy as np
8
import pytest
vfdev's avatar
vfdev committed
9
10
11
12
13

import torch
import torchvision.transforms.functional_tensor as F_t
import torchvision.transforms.functional_pil as F_pil
import torchvision.transforms.functional as F
14
import torchvision.transforms as T
15
from torchvision.transforms import InterpolationMode
16

Nicolas Hug's avatar
Nicolas Hug committed
17
18
19
20
21
22
23
24
from common_utils import (
    cpu_and_gpu,
    needs_cuda,
    _create_data,
    _create_data_batch,
    _assert_equal_tensor_to_pil,
    _assert_approx_equal_tensor_to_pil,
    _test_fn_on_batch,
25
    assert_equal,
Nicolas Hug's avatar
Nicolas Hug committed
26
)
27

28
from typing import Dict, List, Sequence, Tuple
29

30

31
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
32
33


34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('fn', [F.get_image_size, F.get_image_num_channels])
def test_image_sizes(device, fn):
    script_F = torch.jit.script(fn)

    img_tensor, pil_img = _create_data(16, 18, 3, device=device)
    value_img = fn(img_tensor)
    value_pil_img = fn(pil_img)
    assert value_img == value_pil_img

    value_img_script = script_F(img_tensor)
    assert value_img == value_img_script

    batch_tensors = _create_data_batch(16, 18, 3, num_samples=4, device=device)
    value_img_batch = fn(batch_tensors)
    assert value_img == value_img_batch


52
53
54
55
56
57
58
59
60
61
62
63
@needs_cuda
def test_scale_channel():
    """Make sure that _scale_channel gives the same results on CPU and GPU as
    histc or bincount are used depending on the device.
    """
    # TODO: when # https://github.com/pytorch/pytorch/issues/53194 is fixed,
    # only use bincount and remove that test.
    size = (1_000,)
    img_chan = torch.randint(0, 256, size=size).to('cpu')
    scaled_cpu = F_t._scale_channel(img_chan)
    scaled_cuda = F_t._scale_channel(img_chan.to('cuda'))
    assert_equal(scaled_cpu, scaled_cuda.to('cpu'))
64

65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
class TestRotate:

    ALL_DTYPES = [None, torch.float32, torch.float64, torch.float16]
    scripted_rotate = torch.jit.script(F.rotate)
    IMG_W = 26

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('height, width', [(26, IMG_W), (32, IMG_W)])
    @pytest.mark.parametrize('center', [
        None,
        (int(IMG_W * 0.3), int(IMG_W * 0.4)),
        [int(IMG_W * 0.5), int(IMG_W * 0.6)],
    ])
    @pytest.mark.parametrize('dt', ALL_DTYPES)
    @pytest.mark.parametrize('angle', range(-180, 180, 17))
    @pytest.mark.parametrize('expand', [True, False])
    @pytest.mark.parametrize('fill', [None, [0, 0, 0], (1, 2, 3), [255, 255, 255], [1, ], (2.0, )])
    @pytest.mark.parametrize('fn', [F.rotate, scripted_rotate])
    def test_rotate(self, device, height, width, center, dt, angle, expand, fill, fn):
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and torch.device(device).type == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        f_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
        out_pil_img = F.rotate(pil_img, angle=angle, interpolation=NEAREST, expand=expand, center=center, fill=f_pil)
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

        out_tensor = fn(tensor, angle=angle, interpolation=NEAREST, expand=expand, center=center, fill=fill).cpu()

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        assert out_tensor.shape == out_pil_tensor.shape, (
            f"{(height, width, NEAREST, dt, angle, expand, center)}: "
            f"{out_tensor.shape} vs {out_pil_tensor.shape}")

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 3% of different pixels
        assert ratio_diff_pixels < 0.03, (
            f"{(height, width, NEAREST, dt, angle, expand, center, fill)}: "
            f"{ratio_diff_pixels}\n{out_tensor[0, :7, :7]} vs \n"
            f"{out_pil_tensor[0, :7, :7]}")

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('dt', ALL_DTYPES)
    def test_rotate_batch(self, device, dt):
        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
        if dt is not None:
            batch_tensors = batch_tensors.to(dtype=dt)

        center = (20, 22)
        _test_fn_on_batch(
            batch_tensors, F.rotate, angle=32, interpolation=NEAREST, expand=True, center=center
        )

    def test_rotate_deprecation_resample(self):
        tensor, _ = _create_data(26, 26)
        # assert deprecation warning and non-BC
        with pytest.warns(UserWarning, match=r"Argument resample is deprecated and will be removed"):
            res1 = F.rotate(tensor, 45, resample=2)
            res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
            assert_equal(res1, res2)

    def test_rotate_interpolation_type(self):
        tensor, _ = _create_data(26, 26)
        # assert changed type warning
        with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
            res1 = F.rotate(tensor, 45, interpolation=2)
            res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
            assert_equal(res1, res2)


148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
class TestAffine:

    ALL_DTYPES = [None, torch.float32, torch.float64, torch.float16]
    scripted_affine = torch.jit.script(F.affine)

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('height, width', [(26, 26), (32, 26)])
    @pytest.mark.parametrize('dt', ALL_DTYPES)
    def test_identity_map(self, device, height, width, dt):
        # Tests on square and rectangular images
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        # 1) identity map
        out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

        assert_equal(tensor, out_tensor, msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))
        out_tensor = self.scripted_affine(
            tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
        assert_equal(tensor, out_tensor, msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('height, width', [(26, 26)])
    @pytest.mark.parametrize('dt', ALL_DTYPES)
    @pytest.mark.parametrize('angle, config', [
        (90, {'k': 1, 'dims': (-1, -2)}),
        (45, None),
        (30, None),
        (-30, None),
        (-45, None),
        (-90, {'k': -1, 'dims': (-1, -2)}),
        (180, {'k': 2, 'dims': (-1, -2)}),
    ])
    @pytest.mark.parametrize('fn', [F.affine, scripted_affine])
    def test_square_rotations(self, device, height, width, dt, angle, config, fn):
        # 2) Test rotation
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(
            pil_img, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(device)

        out_tensor = fn(
            tensor, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
        if config is not None:
209
            assert_equal(torch.rot90(tensor, **config), out_tensor)
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 6% of different pixels
        assert ratio_diff_pixels < 0.06, "{}\n{} vs \n{}".format(
            ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
        )

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('height, width', [(32, 26)])
    @pytest.mark.parametrize('dt', ALL_DTYPES)
    @pytest.mark.parametrize('angle', [90, 45, 15, -30, -60, -120])
    @pytest.mark.parametrize('fn', [F.affine, scripted_affine])
    def test_rect_rotations(self, device, height, width, dt, angle, fn):
        # Tests on rectangular images
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(
            pil_img, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

        out_tensor = fn(
            tensor, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        ).cpu()

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 3% of different pixels
        assert ratio_diff_pixels < 0.03, "{}: {}\n{} vs \n{}".format(
            angle, ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
        )

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('height, width', [(26, 26), (32, 26)])
    @pytest.mark.parametrize('dt', ALL_DTYPES)
    @pytest.mark.parametrize('t', [[10, 12], (-12, -13)])
    @pytest.mark.parametrize('fn', [F.affine, scripted_affine])
    def test_translations(self, device, height, width, dt, t, fn):
        # 3) Test translation
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

        out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        _assert_equal_tensor_to_pil(out_tensor, out_pil_img)

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('height, width', [(26, 26), (32, 26)])
    @pytest.mark.parametrize('dt', ALL_DTYPES)
    @pytest.mark.parametrize('a, t, s, sh, f', [
        (45.5, [5, 6], 1.0, [0.0, 0.0], None),
        (33, (5, -4), 1.0, [0.0, 0.0], [0, 0, 0]),
        (45, [-5, 4], 1.2, [0.0, 0.0], (1, 2, 3)),
        (33, (-4, -8), 2.0, [0.0, 0.0], [255, 255, 255]),
        (85, (10, -10), 0.7, [0.0, 0.0], [1, ]),
        (0, [0, 0], 1.0, [35.0, ], (2.0, )),
        (-25, [0, 0], 1.2, [0.0, 15.0], None),
        (-45, [-10, 0], 0.7, [2.0, 5.0], None),
        (-45, [-10, -10], 1.2, [4.0, 5.0], None),
        (-90, [0, 0], 1.0, [0.0, 0.0], None),
    ])
    @pytest.mark.parametrize('fn', [F.affine, scripted_affine])
    def test_all_ops(self, device, height, width, dt, a, t, s, sh, f, fn):
        # 4) Test rotation + translation + scale + shear
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        f_pil = int(f[0]) if f is not None and len(f) == 1 else f
        out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, interpolation=NEAREST, fill=f_pil)
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

        out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, interpolation=NEAREST, fill=f).cpu()

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
        tol = 0.06 if device == "cuda" else 0.05
        assert ratio_diff_pixels < tol, "{}: {}\n{} vs \n{}".format(
322
            (NEAREST, a, t, s, sh, f), ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
        )

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('dt', ALL_DTYPES)
    def test_batches(self, device, dt):
        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
        if dt is not None:
            batch_tensors = batch_tensors.to(dtype=dt)

        _test_fn_on_batch(
            batch_tensors, F.affine, angle=-43, translate=[-3, 4], scale=1.2, shear=[4.0, 5.0]
        )

    @pytest.mark.parametrize('device', cpu_and_gpu())
    def test_warnings(self, device):
        tensor, pil_img = _create_data(26, 26, device=device)

        # assert deprecation warning and non-BC
        with pytest.warns(UserWarning, match=r"Argument resample is deprecated and will be removed"):
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
            assert_equal(res1, res2)

        # assert changed type warning
        with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
            assert_equal(res1, res2)

        with pytest.warns(UserWarning, match=r"Argument fillcolor is deprecated and will be removed"):
            res1 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fillcolor=10)
            res2 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fill=10)
            # we convert the PIL images to numpy as assert_equal doesn't work on PIL images.
            assert_equal(np.asarray(res1), np.asarray(res2))


363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def _get_data_dims_and_points_for_perspective():
    # Ideally we would parametrize independently over data dims and points, but
    # we want to tests on some points that also depend on the data dims.
    # Pytest doesn't support covariant parametrization, so we do it somewhat manually here.

    data_dims = [(26, 34), (26, 26)]
    points = [
        [[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
    ]

    dims_and_points = list(itertools.product(data_dims, points))

    # up to here, we could just have used 2 @parametrized.
    # Down below is the covarariant part as the points depend on the data dims.

    n = 10
    for dim in data_dims:
        points += [
            (dim, T.RandomPerspective.get_params(dim[1], dim[0], i / n))
            for i in range(n)
        ]
    return dims_and_points


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dims_and_points', _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('fill', (None, [0, 0, 0], [1, 2, 3], [255, 255, 255], [1, ], (2.0, )))
@pytest.mark.parametrize('fn', [F.perspective, torch.jit.script(F.perspective)])
Nicolas Hug's avatar
Nicolas Hug committed
394
def test_perspective_pil_vs_tensor(device, dims_and_points, dt, fill, fn):
395
396
397
398
399
400
401

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

Nicolas Hug's avatar
Nicolas Hug committed
402
    tensor, pil_img = _create_data(*data_dims, device=device)
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
    if dt is not None:
        tensor = tensor.to(dtype=dt)

    interpolation = NEAREST
    fill_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
    out_pil_img = F.perspective(pil_img, startpoints=spoints, endpoints=epoints, interpolation=interpolation,
                                fill=fill_pil)
    out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
    out_tensor = fn(tensor, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill).cpu()

    if out_tensor.dtype != torch.uint8:
        out_tensor = out_tensor.to(torch.uint8)

    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
    # Tolerance : less than 5% of different pixels
    assert ratio_diff_pixels < 0.05


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dims_and_points', _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
Nicolas Hug's avatar
Nicolas Hug committed
425
def test_perspective_batch(device, dims_and_points, dt):
426
427
428
429
430
431
432

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

Nicolas Hug's avatar
Nicolas Hug committed
433
    batch_tensors = _create_data_batch(*data_dims, num_samples=4, device=device)
434
435
436
437
438
439
    if dt is not None:
        batch_tensors = batch_tensors.to(dtype=dt)

    # Ignore the equivalence between scripted and regular function on float16 cuda. The pixels at
    # the border may be entirely different due to small rounding errors.
    scripted_fn_atol = -1 if (dt == torch.float16 and device == "cuda") else 1e-8
Nicolas Hug's avatar
Nicolas Hug committed
440
    _test_fn_on_batch(
441
442
443
444
445
        batch_tensors, F.perspective, scripted_fn_atol=scripted_fn_atol,
        startpoints=spoints, endpoints=epoints, interpolation=NEAREST
    )


Nicolas Hug's avatar
Nicolas Hug committed
446
def test_perspective_interpolation_warning():
447
448
449
450
    # assert changed type warning
    spoints = [[0, 0], [33, 0], [33, 25], [0, 25]]
    epoints = [[3, 2], [32, 3], [30, 24], [2, 25]]
    tensor = torch.randint(0, 256, (3, 26, 26))
Nicolas Hug's avatar
Nicolas Hug committed
451
    with pytest.warns(UserWarning, match="Argument interpolation should be of type InterpolationMode"):
452
453
        res1 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=2)
        res2 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=BILINEAR)
Nicolas Hug's avatar
Nicolas Hug committed
454
        assert_equal(res1, res2)
455
456


457
458
459
460
461
@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('size', [32, 26, [32, ], [32, 32], (32, 32), [26, 35]])
@pytest.mark.parametrize('max_size', [None, 34, 40, 1000])
@pytest.mark.parametrize('interpolation', [BILINEAR, BICUBIC, NEAREST])
Nicolas Hug's avatar
Nicolas Hug committed
462
def test_resize(device, dt, size, max_size, interpolation):
463
464
465
466
467
468
469
470
471
472

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if max_size is not None and isinstance(size, Sequence) and len(size) != 1:
        return  # unsupported

    torch.manual_seed(12)
    script_fn = torch.jit.script(F.resize)
Nicolas Hug's avatar
Nicolas Hug committed
473
474
    tensor, pil_img = _create_data(26, 36, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)
        batch_tensors = batch_tensors.to(dt)

    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, max_size=max_size)
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation, max_size=max_size)

    assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]

    if interpolation not in [NEAREST, ]:
        # We can not check values if mode = NEAREST, as results are different
        # E.g. resized_tensor  = [[a, a, b, c, d, d, e, ...]]
        # E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
        resized_tensor_f = resized_tensor
        # we need to cast to uint8 to compare with PIL image
        if resized_tensor_f.dtype == torch.uint8:
            resized_tensor_f = resized_tensor_f.to(torch.float)

        # Pay attention to high tolerance for MAE
Nicolas Hug's avatar
Nicolas Hug committed
496
        _assert_approx_equal_tensor_to_pil(resized_tensor_f, resized_pil_img, tol=8.0)
497
498
499
500
501
502
503
504
505
506
507

    if isinstance(size, int):
        script_size = [size, ]
    else:
        script_size = size

    resize_result = script_fn(
        tensor, size=script_size, interpolation=interpolation, max_size=max_size
    )
    assert_equal(resized_tensor, resize_result)

Nicolas Hug's avatar
Nicolas Hug committed
508
    _test_fn_on_batch(
509
510
511
512
513
        batch_tensors, F.resize, size=script_size, interpolation=interpolation, max_size=max_size
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
Nicolas Hug's avatar
Nicolas Hug committed
514
def test_resize_asserts(device):
515

Nicolas Hug's avatar
Nicolas Hug committed
516
    tensor, pil_img = _create_data(26, 36, device=device)
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532

    # assert changed type warning
    with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
        res1 = F.resize(tensor, size=32, interpolation=2)

    res2 = F.resize(tensor, size=32, interpolation=BILINEAR)
    assert_equal(res1, res2)

    for img in (tensor, pil_img):
        exp_msg = "max_size should only be passed if size specifies the length of the smaller edge"
        with pytest.raises(ValueError, match=exp_msg):
            F.resize(img, size=(32, 34), max_size=35)
        with pytest.raises(ValueError, match="max_size = 32 must be strictly greater"):
            F.resize(img, size=32, max_size=32)


533
@pytest.mark.parametrize('device', cpu_and_gpu())
534
535
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('size', [[96, 72], [96, 420], [420, 72]])
536
@pytest.mark.parametrize('interpolation', [BILINEAR, BICUBIC])
Nicolas Hug's avatar
Nicolas Hug committed
537
def test_resize_antialias(device, dt, size, interpolation):
538
539
540
541
542

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

543
    torch.manual_seed(12)
544
    script_fn = torch.jit.script(F.resize)
Nicolas Hug's avatar
Nicolas Hug committed
545
    tensor, pil_img = _create_data(320, 290, device=device)
546
547
548
549
550
551
552
553

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)

    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, antialias=True)
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation)

Nicolas Hug's avatar
Nicolas Hug committed
554
    assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]
555
556
557
558
559
560

    resized_tensor_f = resized_tensor
    # we need to cast to uint8 to compare with PIL image
    if resized_tensor_f.dtype == torch.uint8:
        resized_tensor_f = resized_tensor_f.to(torch.float)

Nicolas Hug's avatar
Nicolas Hug committed
561
    _assert_approx_equal_tensor_to_pil(
562
563
        resized_tensor_f, resized_pil_img, tol=0.5, msg=f"{size}, {interpolation}, {dt}"
    )
564
565
566
567
568
569
570
571
572

    accepted_tol = 1.0 + 1e-5
    if interpolation == BICUBIC:
        # this overall mean value to make the tests pass
        # High value is mostly required for test cases with
        # downsampling and upsampling where we can not exactly
        # match PIL implementation.
        accepted_tol = 15.0

Nicolas Hug's avatar
Nicolas Hug committed
573
    _assert_approx_equal_tensor_to_pil(
574
        resized_tensor_f, resized_pil_img, tol=accepted_tol, agg_method="max",
575
576
577
578
579
580
581
582
583
        msg=f"{size}, {interpolation}, {dt}"
    )

    if isinstance(size, int):
        script_size = [size, ]
    else:
        script_size = size

    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, antialias=True)
Nicolas Hug's avatar
Nicolas Hug committed
584
    assert_equal(resized_tensor, resize_result)
585
586


587
588
@needs_cuda
@pytest.mark.parametrize('interpolation', [BILINEAR, BICUBIC])
Nicolas Hug's avatar
Nicolas Hug committed
589
def test_assert_resize_antialias(interpolation):
590
591
592
593

    # Checks implementation on very large scales
    # and catch TORCH_CHECK inside interpolate_aa_kernels.cu
    torch.manual_seed(12)
Nicolas Hug's avatar
Nicolas Hug committed
594
    tensor, pil_img = _create_data(1000, 1000, device="cuda")
595
596
597
598
599

    with pytest.raises(RuntimeError, match=r"Max supported scale factor is"):
        F.resize(tensor, size=(5, 5), interpolation=interpolation, antialias=True)


600
@pytest.mark.parametrize('device', cpu_and_gpu())
601
602
603
@pytest.mark.parametrize('dt', [torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('size', [[10, 7], [10, 42], [42, 7]])
@pytest.mark.parametrize('interpolation', [BILINEAR, BICUBIC])
604
def test_interpolate_antialias_backward(device, dt, size, interpolation):
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    torch.manual_seed(12)
    if interpolation == BILINEAR:
        forward_op = torch.ops.torchvision._interpolate_bilinear2d_aa
        backward_op = torch.ops.torchvision._interpolate_bilinear2d_aa_backward
    elif interpolation == BICUBIC:
        forward_op = torch.ops.torchvision._interpolate_bicubic2d_aa
        backward_op = torch.ops.torchvision._interpolate_bicubic2d_aa_backward

    class F(torch.autograd.Function):

        @staticmethod
        def forward(ctx, i):
            result = forward_op(i, size, False)
            ctx.save_for_backward(i, result)
            return result

        @staticmethod
        def backward(ctx, grad_output):
            i, result = ctx.saved_tensors
            ishape = i.shape
            oshape = result.shape[2:]
            return backward_op(grad_output, oshape, ishape, False)

    x = (
        torch.rand(1, 32, 29, 3, dtype=torch.double, device=device).permute(0, 3, 1, 2).requires_grad_(True),
    )
    assert torch.autograd.gradcheck(F.apply, x, eps=1e-8, atol=1e-6, rtol=1e-6, fast_mode=False)

    x = (
        torch.rand(1, 3, 32, 29, dtype=torch.double, device=device, requires_grad=True),
    )
    assert torch.autograd.gradcheck(F.apply, x, eps=1e-8, atol=1e-6, rtol=1e-6, fast_mode=False)


644
645
646
def check_functional_vs_PIL_vs_scripted(
    fn, fn_pil, fn_t, config, device, dtype, channels=3, tol=2.0 + 1e-10, agg_method="max"
):
647
648
649

    script_fn = torch.jit.script(fn)
    torch.manual_seed(15)
650
651
    tensor, pil_img = _create_data(26, 34, channels=channels, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, channels=channels, device=device)
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669

    if dtype is not None:
        tensor = F.convert_image_dtype(tensor, dtype)
        batch_tensors = F.convert_image_dtype(batch_tensors, dtype)

    out_fn_t = fn_t(tensor, **config)
    out_pil = fn_pil(pil_img, **config)
    out_scripted = script_fn(tensor, **config)
    assert out_fn_t.dtype == out_scripted.dtype
    assert out_fn_t.size()[1:] == out_pil.size[::-1]

    rbg_tensor = out_fn_t

    if out_fn_t.dtype != torch.uint8:
        rbg_tensor = F.convert_image_dtype(out_fn_t, torch.uint8)

    # Check that max difference does not exceed 2 in [0, 255] range
    # Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
Nicolas Hug's avatar
Nicolas Hug committed
670
    _assert_approx_equal_tensor_to_pil(rbg_tensor.float(), out_pil, tol=tol, agg_method=agg_method)
671
672
673
674
675
676
677

    atol = 1e-6
    if out_fn_t.dtype == torch.uint8 and "cuda" in torch.device(device).type:
        atol = 1.0
    assert out_fn_t.allclose(out_scripted, atol=atol)

    # FIXME: fn will be scripted again in _test_fn_on_batch. We could avoid that.
Nicolas Hug's avatar
Nicolas Hug committed
678
    _test_fn_on_batch(batch_tensors, fn, scripted_fn_atol=atol, **config)
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"brightness_factor": f} for f in (0.1, 0.5, 1.0, 1.34, 2.5)])
def test_adjust_brightness(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_brightness,
        F_pil.adjust_brightness,
        F_t.adjust_brightness,
        config,
        device,
        dtype,
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
def test_invert(device, dtype):
    check_functional_vs_PIL_vs_scripted(
        F.invert,
        F_pil.invert,
        F_t.invert,
        {},
        device,
        dtype,
        tol=1.0,
        agg_method="max"
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('config', [{"bits": bits} for bits in range(0, 8)])
def test_posterize(device, config):
    check_functional_vs_PIL_vs_scripted(
        F.posterize,
        F_pil.posterize,
        F_t.posterize,
        config,
        device,
        dtype=None,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('config', [{"threshold": threshold} for threshold in [0, 64, 128, 192, 255]])
def test_solarize1(device, config):
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        F_pil.solarize,
        F_t.solarize,
        config,
        device,
        dtype=None,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"threshold": threshold} for threshold in [0.0, 0.25, 0.5, 0.75, 1.0]])
def test_solarize2(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        lambda img, threshold: F_pil.solarize(img, 255 * threshold),
        F_t.solarize,
        config,
        device,
        dtype,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"sharpness_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
def test_adjust_sharpness(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_sharpness,
        F_pil.adjust_sharpness,
        F_t.adjust_sharpness,
        config,
        device,
        dtype,
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
def test_autocontrast(device, dtype):
    check_functional_vs_PIL_vs_scripted(
        F.autocontrast,
        F_pil.autocontrast,
        F_t.autocontrast,
        {},
        device,
        dtype,
        tol=1.0,
        agg_method="max"
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_equalize(device):
787
    torch.use_deterministic_algorithms(False)
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
    check_functional_vs_PIL_vs_scripted(
        F.equalize,
        F_pil.equalize,
        F_t.equalize,
        {},
        device,
        dtype=None,
        tol=1.0,
        agg_method="max",
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"contrast_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
803
804
@pytest.mark.parametrize('channels', [1, 3])
def test_adjust_contrast(device, dtype, config, channels):
805
806
807
808
809
810
    check_functional_vs_PIL_vs_scripted(
        F.adjust_contrast,
        F_pil.adjust_contrast,
        F_t.adjust_contrast,
        config,
        device,
811
812
        dtype,
        channels=channels
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"saturation_factor": f} for f in [0.5, 0.75, 1.0, 1.5, 2.0]])
def test_adjust_saturation(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_saturation,
        F_pil.adjust_saturation,
        F_t.adjust_saturation,
        config,
        device,
        dtype
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"hue_factor": f} for f in [-0.45, -0.25, 0.0, 0.25, 0.45]])
def test_adjust_hue(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_hue,
        F_pil.adjust_hue,
        F_t.adjust_hue,
        config,
        device,
        dtype,
        tol=16.1,
        agg_method="max"
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dtype', (None, torch.float32, torch.float64))
@pytest.mark.parametrize('config', [{"gamma": g1, "gain": g2} for g1, g2 in zip([0.8, 1.0, 1.2], [0.7, 1.0, 1.3])])
def test_adjust_gamma(device, dtype, config):
    check_functional_vs_PIL_vs_scripted(
        F.adjust_gamma,
        F_pil.adjust_gamma,
        F_t.adjust_gamma,
        config,
        device,
        dtype,
    )


860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('pad', [2, [3, ], [0, 3], (3, 3), [4, 2, 4, 3]])
@pytest.mark.parametrize('config', [
    {"padding_mode": "constant", "fill": 0},
    {"padding_mode": "constant", "fill": 10},
    {"padding_mode": "constant", "fill": 20},
    {"padding_mode": "edge"},
    {"padding_mode": "reflect"},
    {"padding_mode": "symmetric"},
])
def test_pad(device, dt, pad, config):
    script_fn = torch.jit.script(F.pad)
    tensor, pil_img = _create_data(7, 8, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)
        batch_tensors = batch_tensors.to(dt)

    pad_tensor = F_t.pad(tensor, pad, **config)
    pad_pil_img = F_pil.pad(pil_img, pad, **config)

    pad_tensor_8b = pad_tensor
    # we need to cast to uint8 to compare with PIL image
    if pad_tensor_8b.dtype != torch.uint8:
        pad_tensor_8b = pad_tensor_8b.to(torch.uint8)

    _assert_equal_tensor_to_pil(pad_tensor_8b, pad_pil_img, msg="{}, {}".format(pad, config))

    if isinstance(pad, int):
        script_pad = [pad, ]
    else:
        script_pad = pad
    pad_tensor_script = script_fn(tensor, script_pad, **config)
    assert_equal(pad_tensor, pad_tensor_script, msg="{}, {}".format(pad, config))

    _test_fn_on_batch(batch_tensors, F.pad, padding=script_pad, **config)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('mode', [NEAREST, BILINEAR, BICUBIC])
def test_resized_crop(device, mode):
    # test values of F.resized_crop in several cases:
    # 1) resize to the same size, crop to the same size => should be identity
    tensor, _ = _create_data(26, 36, device=device)

    out_tensor = F.resized_crop(tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=mode)
    assert_equal(tensor, out_tensor, msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))

    # 2) resize by half and crop a TL corner
    tensor, _ = _create_data(26, 36, device=device)
    out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=NEAREST)
    expected_out_tensor = tensor[:, :20:2, :30:2]
    assert_equal(
        expected_out_tensor,
        out_tensor,
        msg="{} vs {}".format(expected_out_tensor[0, :10, :10], out_tensor[0, :10, :10]),
    )

    batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
    _test_fn_on_batch(
        batch_tensors, F.resized_crop, top=1, left=2, height=20, width=30, size=[10, 15], interpolation=NEAREST
    )


931
932
@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('func, args', [
933
    (F_t.get_image_size, ()), (F_t.vflip, ()),
934
935
936
    (F_t.hflip, ()), (F_t.crop, (1, 2, 4, 5)),
    (F_t.adjust_brightness, (0., )), (F_t.adjust_contrast, (1., )),
    (F_t.adjust_hue, (-0.5, )), (F_t.adjust_saturation, (2., )),
937
    (F_t.pad, ([2, ], 2, "constant")),
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
    (F_t.resize, ([10, 11], )), (F_t.perspective, ([0.2, ])),
    (F_t.gaussian_blur, ((2, 2), (0.7, 0.5))),
    (F_t.invert, ()), (F_t.posterize, (0, )),
    (F_t.solarize, (0.3, )), (F_t.adjust_sharpness, (0.3, )),
    (F_t.autocontrast, ()), (F_t.equalize, ())
])
def test_assert_image_tensor(device, func, args):
    shape = (100,)
    tensor = torch.rand(*shape, dtype=torch.float, device=device)
    with pytest.raises(Exception, match=r"Tensor is not a torch image."):
        func(tensor, *args)


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_vflip(device):
    script_vflip = torch.jit.script(F.vflip)

    img_tensor, pil_img = _create_data(16, 18, device=device)
    vflipped_img = F.vflip(img_tensor)
    vflipped_pil_img = F.vflip(pil_img)
    _assert_equal_tensor_to_pil(vflipped_img, vflipped_pil_img)

    # scriptable function test
    vflipped_img_script = script_vflip(img_tensor)
    assert_equal(vflipped_img, vflipped_img_script)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.vflip)


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_hflip(device):
    script_hflip = torch.jit.script(F.hflip)

    img_tensor, pil_img = _create_data(16, 18, device=device)
    hflipped_img = F.hflip(img_tensor)
    hflipped_pil_img = F.hflip(pil_img)
    _assert_equal_tensor_to_pil(hflipped_img, hflipped_pil_img)

    # scriptable function test
    hflipped_img_script = script_hflip(img_tensor)
    assert_equal(hflipped_img, hflipped_img_script)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.hflip)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('top, left, height, width', [
    (1, 2, 4, 5),   # crop inside top-left corner
    (2, 12, 3, 4),  # crop inside top-right corner
    (8, 3, 5, 6),   # crop inside bottom-left corner
    (8, 11, 4, 3),  # crop inside bottom-right corner
])
def test_crop(device, top, left, height, width):
    script_crop = torch.jit.script(F.crop)

    img_tensor, pil_img = _create_data(16, 18, device=device)

    pil_img_cropped = F.crop(pil_img, top, left, height, width)

    img_tensor_cropped = F.crop(img_tensor, top, left, height, width)
    _assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)

    img_tensor_cropped = script_crop(img_tensor, top, left, height, width)
    _assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.crop, top=top, left=left, height=height, width=width)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('image_size', ('small', 'large'))
@pytest.mark.parametrize('dt', [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize('ksize', [(3, 3), [3, 5], (23, 23)])
@pytest.mark.parametrize('sigma', [[0.5, 0.5], (0.5, 0.5), (0.8, 0.8), (1.7, 1.7)])
@pytest.mark.parametrize('fn', [F.gaussian_blur, torch.jit.script(F.gaussian_blur)])
def test_gaussian_blur(device, image_size, dt, ksize, sigma, fn):

    # true_cv2_results = {
    #     # np_img = np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
    #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.8)
    #     "3_3_0.8": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.5)
    #     "3_3_0.5": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.8)
    #     "3_5_0.8": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.5)
    #     "3_5_0.5": ...
    #     # np_img2 = np.arange(26 * 28, dtype="uint8").reshape((26, 28))
    #     # cv2.GaussianBlur(np_img2, ksize=(23, 23), sigmaX=1.7)
    #     "23_23_1.7": ...
    # }
    p = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'assets', 'gaussian_blur_opencv_results.pt')
    true_cv2_results = torch.load(p)

    if image_size == 'small':
        tensor = torch.from_numpy(
            np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
        ).permute(2, 0, 1).to(device)
    else:
        tensor = torch.from_numpy(
            np.arange(26 * 28, dtype="uint8").reshape((1, 26, 28))
        ).to(device)

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if dt is not None:
        tensor = tensor.to(dtype=dt)

    _ksize = (ksize, ksize) if isinstance(ksize, int) else ksize
    _sigma = sigma[0] if sigma is not None else None
    shape = tensor.shape
    gt_key = "{}_{}_{}__{}_{}_{}".format(
        shape[-2], shape[-1], shape[-3],
        _ksize[0], _ksize[1], _sigma
    )
    if gt_key not in true_cv2_results:
        return

    true_out = torch.tensor(
        true_cv2_results[gt_key]
    ).reshape(shape[-2], shape[-1], shape[-3]).permute(2, 0, 1).to(tensor)

    out = fn(tensor, kernel_size=ksize, sigma=sigma)
1065
    torch.testing.assert_close(out, true_out, rtol=0.0, atol=1.0, msg="{}, {}".format(ksize, sigma))
1066
1067


1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
@pytest.mark.parametrize('device', cpu_and_gpu())
def test_hsv2rgb(device):
    scripted_fn = torch.jit.script(F_t._hsv2rgb)
    shape = (3, 100, 150)
    for _ in range(10):
        hsv_img = torch.rand(*shape, dtype=torch.float, device=device)
        rgb_img = F_t._hsv2rgb(hsv_img)
        ft_img = rgb_img.permute(1, 2, 0).flatten(0, 1)

        h, s, v, = hsv_img.unbind(0)
        h = h.flatten().cpu().numpy()
        s = s.flatten().cpu().numpy()
        v = v.flatten().cpu().numpy()

        rgb = []
        for h1, s1, v1 in zip(h, s, v):
            rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))
        colorsys_img = torch.tensor(rgb, dtype=torch.float32, device=device)
        torch.testing.assert_close(ft_img, colorsys_img, rtol=0.0, atol=1e-5)

        s_rgb_img = scripted_fn(hsv_img)
        torch.testing.assert_close(rgb_img, s_rgb_img)

    batch_tensors = _create_data_batch(120, 100, num_samples=4, device=device).float()
    _test_fn_on_batch(batch_tensors, F_t._hsv2rgb)


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_rgb2hsv(device):
    scripted_fn = torch.jit.script(F_t._rgb2hsv)
    shape = (3, 150, 100)
    for _ in range(10):
        rgb_img = torch.rand(*shape, dtype=torch.float, device=device)
        hsv_img = F_t._rgb2hsv(rgb_img)
        ft_hsv_img = hsv_img.permute(1, 2, 0).flatten(0, 1)

        r, g, b, = rgb_img.unbind(dim=-3)
        r = r.flatten().cpu().numpy()
        g = g.flatten().cpu().numpy()
        b = b.flatten().cpu().numpy()

        hsv = []
        for r1, g1, b1 in zip(r, g, b):
            hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))

        colorsys_img = torch.tensor(hsv, dtype=torch.float32, device=device)

        ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
        colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)

        max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
        max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
        max_diff = max(max_diff_h, max_diff_sv)
        assert max_diff < 1e-5

        s_hsv_img = scripted_fn(rgb_img)
        torch.testing.assert_close(hsv_img, s_hsv_img, rtol=1e-5, atol=1e-7)

    batch_tensors = _create_data_batch(120, 100, num_samples=4, device=device).float()
    _test_fn_on_batch(batch_tensors, F_t._rgb2hsv)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('num_output_channels', (3, 1))
def test_rgb_to_grayscale(device, num_output_channels):
    script_rgb_to_grayscale = torch.jit.script(F.rgb_to_grayscale)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    gray_pil_image = F.rgb_to_grayscale(pil_img, num_output_channels=num_output_channels)
    gray_tensor = F.rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)

    _assert_approx_equal_tensor_to_pil(gray_tensor.float(), gray_pil_image, tol=1.0 + 1e-10, agg_method="max")

    s_gray_tensor = script_rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)
    assert_equal(s_gray_tensor, gray_tensor)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.rgb_to_grayscale, num_output_channels=num_output_channels)


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_center_crop(device):
    script_center_crop = torch.jit.script(F.center_crop)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    cropped_pil_image = F.center_crop(pil_img, [10, 11])

    cropped_tensor = F.center_crop(img_tensor, [10, 11])
    _assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)

    cropped_tensor = script_center_crop(img_tensor, [10, 11])
    _assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.center_crop, output_size=[10, 11])


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_five_crop(device):
    script_five_crop = torch.jit.script(F.five_crop)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    cropped_pil_images = F.five_crop(pil_img, [10, 11])

    cropped_tensors = F.five_crop(img_tensor, [10, 11])
    for i in range(5):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    cropped_tensors = script_five_crop(img_tensor, [10, 11])
    for i in range(5):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    tuple_transformed_batches = F.five_crop(batch_tensors, [10, 11])
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        tuple_transformed_imgs = F.five_crop(img_tensor, [10, 11])
        assert len(tuple_transformed_imgs) == len(tuple_transformed_batches)

        for j in range(len(tuple_transformed_imgs)):
            true_transformed_img = tuple_transformed_imgs[j]
            transformed_img = tuple_transformed_batches[j][i, ...]
            assert_equal(true_transformed_img, transformed_img)

    # scriptable function test
    s_tuple_transformed_batches = script_five_crop(batch_tensors, [10, 11])
    for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
        assert_equal(transformed_batch, s_transformed_batch)


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_ten_crop(device):
    script_ten_crop = torch.jit.script(F.ten_crop)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    cropped_pil_images = F.ten_crop(pil_img, [10, 11])

    cropped_tensors = F.ten_crop(img_tensor, [10, 11])
    for i in range(10):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    cropped_tensors = script_ten_crop(img_tensor, [10, 11])
    for i in range(10):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    tuple_transformed_batches = F.ten_crop(batch_tensors, [10, 11])
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        tuple_transformed_imgs = F.ten_crop(img_tensor, [10, 11])
        assert len(tuple_transformed_imgs) == len(tuple_transformed_batches)

        for j in range(len(tuple_transformed_imgs)):
            true_transformed_img = tuple_transformed_imgs[j]
            transformed_img = tuple_transformed_batches[j][i, ...]
            assert_equal(true_transformed_img, transformed_img)

    # scriptable function test
    s_tuple_transformed_batches = script_ten_crop(batch_tensors, [10, 11])
    for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
        assert_equal(transformed_batch, s_transformed_batch)


1235
if __name__ == '__main__':
1236
    pytest.main([__file__])