test_transforms.py 82.9 KB
Newer Older
1
import math
2
import os
3
import random
4
import re
5
import sys
6
import textwrap
7
import warnings
8
from functools import partial
9
10
11

import numpy as np
import pytest
12
13
import torch
import torchvision.transforms as transforms
14
import torchvision.transforms._functional_tensor as F_t
15
import torchvision.transforms.functional as F
16
from PIL import Image
17
18
from torch._utils_internal import get_file_path_2

19
20
21
22
23
try:
    import accimage
except ImportError:
    accimage = None

24
25
26
27
28
try:
    from scipy import stats
except ImportError:
    stats = None

29
from common_utils import assert_equal, assert_run_python_script, cycle_over, float_dtypes, int_dtypes
30
31


32
GRACE_HOPPER = get_file_path_2(
33
34
    os.path.dirname(os.path.abspath(__file__)), "assets", "encode_jpeg", "grace_hopper_517x606.jpg"
)
35
36


37
def _get_grayscale_test_image(img, fill=None):
38
39
    img = img.convert("L")
    fill = (fill[0],) if isinstance(fill, tuple) else fill
40
41
42
    return img, fill


43
class TestConvertImageDtype:
44
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(float_dtypes()))
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    def test_float_to_float(self, input_dtype, output_dtype):
        input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0.0, 1.0

        assert abs(actual_min - desired_min) < 1e-7
        assert abs(actual_max - desired_max) < 1e-7

61
62
    @pytest.mark.parametrize("input_dtype", float_dtypes())
    @pytest.mark.parametrize("output_dtype", int_dtypes())
63
64
65
66
67
68
    def test_float_to_int(self, input_dtype, output_dtype):
        input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        if (input_dtype == torch.float32 and output_dtype in (torch.int32, torch.int64)) or (
69
            input_dtype == torch.float64 and output_dtype == torch.int64
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        ):
            with pytest.raises(RuntimeError):
                transform(input_image)
        else:
            output_image = transform(input_image)
            output_image_script = transform_script(input_image, output_dtype)

            torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

            actual_min, actual_max = output_image.tolist()
            desired_min, desired_max = 0, torch.iinfo(output_dtype).max

            assert actual_min == desired_min
            assert actual_max == desired_max

85
86
    @pytest.mark.parametrize("input_dtype", int_dtypes())
    @pytest.mark.parametrize("output_dtype", float_dtypes())
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    def test_int_to_float(self, input_dtype, output_dtype):
        input_image = torch.tensor((0, torch.iinfo(input_dtype).max), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0.0, 1.0

        assert abs(actual_min - desired_min) < 1e-7
        assert actual_min >= desired_min
        assert abs(actual_max - desired_max) < 1e-7
        assert actual_max <= desired_max

105
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(int_dtypes()))
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    def test_dtype_int_to_int(self, input_dtype, output_dtype):
        input_max = torch.iinfo(input_dtype).max
        input_image = torch.tensor((0, input_max), dtype=input_dtype)
        output_max = torch.iinfo(output_dtype).max

        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(
            output_image_script,
            output_image,
            rtol=0.0,
            atol=1e-6,
122
            msg=f"{output_image_script} vs {output_image}",
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        )

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0, output_max

        # see https://github.com/pytorch/vision/pull/2078#issuecomment-641036236 for details
        if input_max >= output_max:
            error_term = 0
        else:
            error_term = 1 - (torch.iinfo(output_dtype).max + 1) // (torch.iinfo(input_dtype).max + 1)

        assert actual_min == desired_min
        assert actual_max == (desired_max + error_term)

137
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(int_dtypes()))
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    def test_int_to_int_consistency(self, input_dtype, output_dtype):
        input_max = torch.iinfo(input_dtype).max
        input_image = torch.tensor((0, input_max), dtype=input_dtype)

        output_max = torch.iinfo(output_dtype).max
        if output_max <= input_max:
            return

        transform = transforms.ConvertImageDtype(output_dtype)
        inverse_transfrom = transforms.ConvertImageDtype(input_dtype)
        output_image = inverse_transfrom(transform(input_image))

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0, input_max

        assert actual_min == desired_min
        assert actual_max == desired_max
155

156

157
158
159
@pytest.mark.skipif(accimage is None, reason="accimage not available")
class TestAccImage:
    def test_accimage_to_tensor(self):
160
        trans = transforms.PILToTensor()
161

162
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
163
164
165
166
167
168
169
        output = trans(accimage.Image(GRACE_HOPPER))

        torch.testing.assert_close(output, expected_output)

    def test_accimage_pil_to_tensor(self):
        trans = transforms.PILToTensor()

170
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
171
172
173
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
174
        torch.testing.assert_close(output, expected_output)
175
176

    def test_accimage_resize(self):
177
178
        trans = transforms.Compose(
            [
179
                transforms.Resize(256, interpolation=Image.LINEAR),
180
181
                transforms.PILToTensor(),
                transforms.ConvertImageDtype(dtype=torch.float),
182
183
            ]
        )
184
185
186
187

        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

188
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
189
190
191
192
193
194
195
196
197
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
        assert np.abs((expected_output - output).mean()) < 1e-3
        assert (expected_output - output).var() < 1e-5
        # note the high absolute tolerance
        torch.testing.assert_close(output.numpy(), expected_output.numpy(), rtol=1e-5, atol=5e-2)

    def test_accimage_crop(self):
198
        trans = transforms.Compose(
199
            [transforms.CenterCrop(256), transforms.PILToTensor(), transforms.ConvertImageDtype(dtype=torch.float)]
200
        )
201
202
203
204

        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

205
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
206
207
208
209
210
211
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
        torch.testing.assert_close(output, expected_output)


212
class TestToTensor:
213
    @pytest.mark.parametrize("channels", [1, 3, 4])
214
215
216
    def test_to_tensor(self, channels):
        height, width = 4, 4
        trans = transforms.ToTensor()
217
        np_rng = np.random.RandomState(0)
218

219
220
221
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
222
        torch.testing.assert_close(output, input_data)
223

224
        ndarray = np_rng.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
225
226
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1)) / 255.0
227
        torch.testing.assert_close(output.numpy(), expected_output, check_dtype=False)
228

229
        ndarray = np_rng.rand(height, width, channels).astype(np.float32)
230
231
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1))
232
        torch.testing.assert_close(output.numpy(), expected_output, check_dtype=False)
233
234
235

        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
236
        img = transforms.ToPILImage()(input_data.mul(255)).convert("1")
237
        output = trans(img)
238
        torch.testing.assert_close(input_data, output, check_dtype=False)
239
240
241
242

    def test_to_tensor_errors(self):
        height, width = 4, 4
        trans = transforms.ToTensor()
243
        np_rng = np.random.RandomState(0)
244

245
        with pytest.raises(TypeError):
246
            trans(np_rng.rand(1, height, width).tolist())
247

248
        with pytest.raises(ValueError):
249
            trans(np_rng.rand(height))
250

251
        with pytest.raises(ValueError):
252
            trans(np_rng.rand(1, 1, height, width))
253

254
    @pytest.mark.parametrize("dtype", [torch.float16, torch.float, torch.double])
255
    def test_to_tensor_with_other_default_dtypes(self, dtype):
256
        np_rng = np.random.RandomState(0)
257
        current_def_dtype = torch.get_default_dtype()
258

259
        t = transforms.ToTensor()
260
        np_arr = np_rng.randint(0, 255, (32, 32, 3), dtype=np.uint8)
261
        img = Image.fromarray(np_arr)
262

263
264
265
        torch.set_default_dtype(dtype)
        res = t(img)
        assert res.dtype == dtype, f"{res.dtype} vs {dtype}"
266

267
        torch.set_default_dtype(current_def_dtype)
268

269
    @pytest.mark.parametrize("channels", [1, 3, 4])
270
271
272
    def test_pil_to_tensor(self, channels):
        height, width = 4, 4
        trans = transforms.PILToTensor()
273
        np_rng = np.random.RandomState(0)
274

275
276
277
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
278
        torch.testing.assert_close(input_data, output)
279

280
        input_data = np_rng.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
281
282
283
284
285
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
        expected_output = input_data.transpose((2, 0, 1))
        torch.testing.assert_close(output.numpy(), expected_output)

286
        input_data = torch.as_tensor(np_rng.rand(channels, height, width).astype(np.float32))
287
288
289
        img = transforms.ToPILImage()(input_data)  # CHW -> HWC and (* 255).byte()
        output = trans(img)  # HWC -> CHW
        expected_output = (input_data * 255).byte()
290
        torch.testing.assert_close(output, expected_output)
291

292
293
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
294
        img = transforms.ToPILImage()(input_data.mul(255)).convert("1")
295
        output = trans(img).view(torch.uint8).bool().to(torch.uint8)
296
        torch.testing.assert_close(input_data, output)
297

298
299
300
    def test_pil_to_tensor_errors(self):
        height, width = 4, 4
        trans = transforms.PILToTensor()
301
        np_rng = np.random.RandomState(0)
302

303
        with pytest.raises(TypeError):
304
            trans(np_rng.rand(1, height, width).tolist())
305

306
        with pytest.raises(TypeError):
307
            trans(np_rng.rand(1, height, width))
308
309


310
311
312
313
314
315
316
317
318
319
320
321
322
323
def test_randomresized_params():
    height = random.randint(24, 32) * 2
    width = random.randint(24, 32) * 2
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    size = 100
    epsilon = 0.05
    min_scale = 0.25
    for _ in range(10):
        scale_min = max(round(random.random(), 2), min_scale)
        scale_range = (scale_min, scale_min + round(random.random(), 2))
        aspect_min = max(round(random.random(), 2), epsilon)
        aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
324
        randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range, antialias=True)
325
326
        i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
        aspect_ratio_obtained = w / h
327
328
329
330
        assert (
            min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained
            and aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon
        ) or aspect_ratio_obtained == 1.0
331
332
333
334
335
336
        assert isinstance(i, int)
        assert isinstance(j, int)
        assert isinstance(h, int)
        assert isinstance(w, int)


337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
@pytest.mark.parametrize(
    "height, width",
    [
        # height, width
        # square image
        (28, 28),
        (27, 27),
        # rectangular image: h < w
        (28, 34),
        (29, 35),
        # rectangular image: h > w
        (34, 28),
        (35, 29),
    ],
)
@pytest.mark.parametrize(
    "osize",
    [
        # single integer
        22,
        27,
        28,
        36,
        # single integer in tuple/list
        [
            22,
        ],
        (27,),
    ],
)
@pytest.mark.parametrize("max_size", (None, 37, 1000))
368
369
370
def test_resize(height, width, osize, max_size):
    img = Image.new("RGB", size=(width, height), color=127)

371
    t = transforms.Resize(osize, max_size=max_size, antialias=True)
372
373
    result = t(img)

374
    msg = f"{height}, {width} - {osize} - {max_size}"
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    osize = osize[0] if isinstance(osize, (list, tuple)) else osize
    # If size is an int, smaller edge of the image will be matched to this number.
    # i.e, if height > width, then image will be rescaled to (size * height / width, size).
    if height < width:
        exp_w, exp_h = (int(osize * width / height), osize)  # (w, h)
        if max_size is not None and max_size < exp_w:
            exp_w, exp_h = max_size, int(max_size * exp_h / exp_w)
        assert result.size == (exp_w, exp_h), msg
    elif width < height:
        exp_w, exp_h = (osize, int(osize * height / width))  # (w, h)
        if max_size is not None and max_size < exp_h:
            exp_w, exp_h = int(max_size * exp_w / exp_h), max_size
        assert result.size == (exp_w, exp_h), msg
    else:
        exp_w, exp_h = (osize, osize)  # (w, h)
        if max_size is not None and max_size < osize:
            exp_w, exp_h = max_size, max_size
        assert result.size == (exp_w, exp_h), msg


395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
@pytest.mark.parametrize(
    "height, width",
    [
        # height, width
        # square image
        (28, 28),
        (27, 27),
        # rectangular image: h < w
        (28, 34),
        (29, 35),
        # rectangular image: h > w
        (34, 28),
        (35, 29),
    ],
)
@pytest.mark.parametrize(
    "osize",
    [
        # two integers sequence output
        [22, 22],
        [22, 28],
        [22, 36],
        [27, 22],
        [36, 22],
        [28, 28],
        [28, 37],
        [37, 27],
        [37, 37],
    ],
)
425
426
427
428
def test_resize_sequence_output(height, width, osize):
    img = Image.new("RGB", size=(width, height), color=127)
    oheight, owidth = osize

429
    t = transforms.Resize(osize, antialias=True)
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    result = t(img)

    assert (owidth, oheight) == result.size


def test_resize_antialias_error():
    osize = [37, 37]
    img = Image.new("RGB", size=(35, 29), color=127)

    with pytest.warns(UserWarning, match=r"Anti-alias option is always applied for PIL Image input"):
        t = transforms.Resize(osize, antialias=False)
        t(img)


444
445
446
447
448
449
450
451
452
453
def test_resize_antialias_default_warning():

    img = Image.new("RGB", size=(10, 10), color=127)
    # We make sure we don't warn for PIL images since the default behaviour doesn't change
    with warnings.catch_warnings():
        warnings.simplefilter("error")
        transforms.Resize((20, 20))(img)
        transforms.RandomResizedCrop((20, 20))(img)


454
455
456
457
458
459
460
461
@pytest.mark.parametrize("height, width", ((32, 64), (64, 32)))
def test_resize_size_equals_small_edge_size(height, width):
    # Non-regression test for https://github.com/pytorch/vision/issues/5405
    # max_size used to be ignored if size == small_edge_size
    max_size = 40
    img = Image.new("RGB", size=(width, height), color=127)

    small_edge = min(height, width)
462
    t = transforms.Resize(small_edge, max_size=max_size, antialias=True)
463
464
465
466
    result = t(img)
    assert max(result.size) == max_size


467
class TestPad:
468
469
    @pytest.mark.parametrize("fill", [85, 85.0])
    def test_pad(self, fill):
470
471
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
472
        img = torch.ones(3, height, width, dtype=torch.uint8)
473
        padding = random.randint(1, 20)
474
475
476
477
        result = transforms.Compose(
            [
                transforms.ToPILImage(),
                transforms.Pad(padding, fill=fill),
478
                transforms.PILToTensor(),
479
480
            ]
        )(img)
481
482
483
484
485
486
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
        # check that all elements in the padded region correspond
        # to the pad value
        h_padded = result[:, :padding, :]
        w_padded = result[:, :, :padding]
487
488
        torch.testing.assert_close(h_padded, torch.full_like(h_padded, fill_value=fill), rtol=0.0, atol=0.0)
        torch.testing.assert_close(w_padded, torch.full_like(w_padded, fill_value=fill), rtol=0.0, atol=0.0)
489
        pytest.raises(ValueError, transforms.Pad(padding, fill=(1, 2)), transforms.ToPILImage()(img))
490
491
492
493
494
495

    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

496
        padding = tuple(random.randint(1, 20) for _ in range(2))
497
498
499
        output = transforms.Pad(padding)(img)
        assert output.size == (width + padding[0] * 2, height + padding[1] * 2)

500
        padding = [random.randint(1, 20) for _ in range(4)]
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
        output = transforms.Pad(padding)(img)
        assert output.size[0] == width + padding[0] + padding[2]
        assert output.size[1] == height + padding[1] + padding[3]

        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
        img = torch.zeros(3, 27, 27).byte()
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
516
        edge_padded_img = F.pad(img, 3, padding_mode="edge")
517
518
519
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
520
        assert_equal(edge_middle_slice, np.asarray([200, 200, 200, 200, 1, 0], dtype=np.uint8))
521
        assert transforms.PILToTensor()(edge_padded_img).size() == (3, 35, 35)
522
523

        # Pad 3 to left/right, 2 to top/bottom
524
        reflect_padded_img = F.pad(img, (3, 2), padding_mode="reflect")
525
526
527
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
528
        assert_equal(reflect_middle_slice, np.asarray([0, 0, 1, 200, 1, 0], dtype=np.uint8))
529
        assert transforms.PILToTensor()(reflect_padded_img).size() == (3, 33, 35)
530
531

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
532
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode="symmetric")
533
534
535
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
536
        assert_equal(symmetric_middle_slice, np.asarray([0, 1, 200, 200, 1, 0], dtype=np.uint8))
537
        assert transforms.PILToTensor()(symmetric_padded_img).size() == (3, 32, 34)
538
539
540
541

        # Check negative padding explicitly for symmetric case, since it is not
        # implemented for tensor case to compare to
        # Crop 1 to left, pad 2 to top, pad 3 to right, crop 3 to bottom
542
        symmetric_padded_img_neg = F.pad(img, (-1, 2, 3, -3), padding_mode="symmetric")
543
544
        symmetric_neg_middle_left = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][:3]
        symmetric_neg_middle_right = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][-4:]
545
546
        assert_equal(symmetric_neg_middle_left, np.asarray([1, 0, 0], dtype=np.uint8))
        assert_equal(symmetric_neg_middle_right, np.asarray([200, 200, 0, 0], dtype=np.uint8))
547
        assert transforms.PILToTensor()(symmetric_padded_img_neg).size() == (3, 28, 31)
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

    def test_pad_raises_with_invalid_pad_sequence_len(self):
        with pytest.raises(ValueError):
            transforms.Pad(())

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3))

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

    def test_pad_with_mode_F_images(self):
        pad = 2
        transform = transforms.Pad(pad)

        img = Image.new("F", (10, 10))
        padded_img = transform(img)
565
        assert_equal(padded_img.size, [edge_size + 2 * pad for edge_size in img.size])
566
567


568
@pytest.mark.parametrize(
569
    "fn, trans, kwargs",
570
571
572
573
574
575
576
    [
        (F.invert, transforms.RandomInvert, {}),
        (F.posterize, transforms.RandomPosterize, {"bits": 4}),
        (F.solarize, transforms.RandomSolarize, {"threshold": 192}),
        (F.adjust_sharpness, transforms.RandomAdjustSharpness, {"sharpness_factor": 2.0}),
        (F.autocontrast, transforms.RandomAutocontrast, {}),
        (F.equalize, transforms.RandomEqualize, {}),
577
578
579
        (F.vflip, transforms.RandomVerticalFlip, {}),
        (F.hflip, transforms.RandomHorizontalFlip, {}),
        (partial(F.to_grayscale, num_output_channels=3), transforms.RandomGrayscale, {}),
580
581
    ],
)
582
583
584
585
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("p", (0, 1))
def test_randomness(fn, trans, kwargs, seed, p):
    torch.manual_seed(seed)
586
587
    img = transforms.ToPILImage()(torch.rand(3, 16, 18))

588
589
    expected_transformed_img = fn(img, **kwargs)
    randomly_transformed_img = trans(p=p, **kwargs)(img)
590

591
592
593
594
    if p == 0:
        assert randomly_transformed_img == img
    elif p == 1:
        assert randomly_transformed_img == expected_transformed_img
595

596
    trans(**kwargs).__repr__()
597
598


599
600
601
602
603
604
605
606
607
def test_autocontrast_equal_minmax():
    img_tensor = torch.tensor([[[10]], [[128]], [[245]]], dtype=torch.uint8).expand(3, 32, 32)
    img_pil = F.to_pil_image(img_tensor)

    img_tensor = F.autocontrast(img_tensor)
    img_pil = F.autocontrast(img_pil)
    torch.testing.assert_close(img_tensor, F.pil_to_tensor(img_pil))


608
609
610
611
class TestToPil:
    def _get_1_channel_tensor_various_types():
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
        expected_output = img_data_float.mul(255).int().float().div(255).numpy()
612
        yield img_data_float, expected_output, "L"
613

614
615
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        expected_output = img_data_byte.float().div(255.0).numpy()
616
        yield img_data_byte, expected_output, "L"
617

618
619
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        expected_output = img_data_short.numpy()
620
        yield img_data_short, expected_output, "I;16"
621

622
623
        img_data_int = torch.IntTensor(1, 4, 4).random_()
        expected_output = img_data_int.numpy()
624
        yield img_data_int, expected_output, "I"
625

626
627
628
    def _get_2d_tensor_various_types():
        img_data_float = torch.Tensor(4, 4).uniform_()
        expected_output = img_data_float.mul(255).int().float().div(255).numpy()
629
        yield img_data_float, expected_output, "L"
630

631
632
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        expected_output = img_data_byte.float().div(255.0).numpy()
633
        yield img_data_byte, expected_output, "L"
634

635
636
        img_data_short = torch.ShortTensor(4, 4).random_()
        expected_output = img_data_short.numpy()
637
        yield img_data_short, expected_output, "I;16"
638

639
640
        img_data_int = torch.IntTensor(4, 4).random_()
        expected_output = img_data_int.numpy()
641
        yield img_data_int, expected_output, "I"
642

643
644
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize("img_data, expected_output, expected_mode", _get_1_channel_tensor_various_types())
645
646
647
    def test_1_channel_tensor_to_pil_image(self, with_mode, img_data, expected_output, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        to_tensor = transforms.ToTensor()
648

649
        img = transform(img_data)
650
        assert img.mode == expected_mode
651
        torch.testing.assert_close(expected_output, to_tensor(img).numpy())
652

653
654
655
    def test_1_channel_float_tensor_to_pil_image(self):
        img_data = torch.Tensor(1, 4, 4).uniform_()
        # 'F' mode for torch.FloatTensor
656
657
        img_F_mode = transforms.ToPILImage(mode="F")(img_data)
        assert img_F_mode.mode == "F"
658
        torch.testing.assert_close(
659
            np.array(Image.fromarray(img_data.squeeze(0).numpy(), mode="F")), np.array(img_F_mode)
660
        )
661

662
663
664
665
666
667
668
669
670
671
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize(
        "img_data, expected_mode",
        [
            (torch.Tensor(4, 4, 1).uniform_().numpy(), "F"),
            (torch.ByteTensor(4, 4, 1).random_(0, 255).numpy(), "L"),
            (torch.ShortTensor(4, 4, 1).random_().numpy(), "I;16"),
            (torch.IntTensor(4, 4, 1).random_().numpy(), "I"),
        ],
    )
672
673
674
    def test_1_channel_ndarray_to_pil_image(self, with_mode, img_data, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        img = transform(img_data)
675
        assert img.mode == expected_mode
676
677
678
        # note: we explicitly convert img's dtype because pytorch doesn't support uint16
        # and otherwise assert_close wouldn't be able to construct a tensor from the uint16 array
        torch.testing.assert_close(img_data[:, :, 0], np.asarray(img).astype(img_data.dtype))
679

680
    @pytest.mark.parametrize("expected_mode", [None, "LA"])
681
682
    def test_2_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
683

684
685
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
686
            assert img.mode == "LA"  # default should assume LA
687
688
689
690
691
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(2):
692
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
693
694
695
696
697
698
699

    def test_2_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        transforms.ToPILImage().__repr__()

        # should raise if we try a mode for 4 or 1 or 3 channel images
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
700
            transforms.ToPILImage(mode="RGBA")(img_data)
701
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
702
            transforms.ToPILImage(mode="P")(img_data)
703
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
704
            transforms.ToPILImage(mode="RGB")(img_data)
705

706
    @pytest.mark.parametrize("expected_mode", [None, "LA"])
707
708
709
710
711
    def test_2_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
712
            assert img.mode == "LA"  # default should assume LA
713
714
715
716
717
718
719
720
721
722
723
724
725
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode

        split = img.split()
        for i in range(2):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_2_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(2, 4, 4).uniform_()

        # should raise if we try a mode for 4 or 1 or 3 channel images
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
726
            transforms.ToPILImage(mode="RGBA")(img_data)
727
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
728
            transforms.ToPILImage(mode="P")(img_data)
729
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
730
            transforms.ToPILImage(mode="RGB")(img_data)
731

732
733
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize("img_data, expected_output, expected_mode", _get_2d_tensor_various_types())
734
735
736
737
738
    def test_2d_tensor_to_pil_image(self, with_mode, img_data, expected_output, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        to_tensor = transforms.ToTensor()

        img = transform(img_data)
739
        assert img.mode == expected_mode
740
741
        torch.testing.assert_close(expected_output, to_tensor(img).numpy()[0])

742
743
744
745
746
747
748
749
750
751
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize(
        "img_data, expected_mode",
        [
            (torch.Tensor(4, 4).uniform_().numpy(), "F"),
            (torch.ByteTensor(4, 4).random_(0, 255).numpy(), "L"),
            (torch.ShortTensor(4, 4).random_().numpy(), "I;16"),
            (torch.IntTensor(4, 4).random_().numpy(), "I"),
        ],
    )
752
753
754
    def test_2d_ndarray_to_pil_image(self, with_mode, img_data, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        img = transform(img_data)
755
        assert img.mode == expected_mode
756
        np.testing.assert_allclose(img_data, img)
757

758
    @pytest.mark.parametrize("expected_mode", [None, "RGB", "HSV", "YCbCr"])
759
760
761
    def test_3_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
762

763
764
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
765
            assert img.mode == "RGB"  # default should assume RGB
766
767
768
769
770
771
772
773
774
775
776
777
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(3):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_3_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(3, 4, 4).uniform_()
        error_message_3d = r"Only modes \['RGB', 'YCbCr', 'HSV'\] are supported for 3D inputs"
        # should raise if we try a mode for 4 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_3d):
778
            transforms.ToPILImage(mode="RGBA")(img_data)
779
        with pytest.raises(ValueError, match=error_message_3d):
780
            transforms.ToPILImage(mode="P")(img_data)
781
        with pytest.raises(ValueError, match=error_message_3d):
782
            transforms.ToPILImage(mode="LA")(img_data)
783

784
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
785
786
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

787
    @pytest.mark.parametrize("expected_mode", [None, "RGB", "HSV", "YCbCr"])
788
789
790
791
792
    def test_3_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
793
            assert img.mode == "RGB"  # default should assume RGB
794
795
796
797
798
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(3):
799
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
800
801
802
803
804
805
806
807
808
809

    def test_3_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()

        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

        error_message_3d = r"Only modes \['RGB', 'YCbCr', 'HSV'\] are supported for 3D inputs"
        # should raise if we try a mode for 4 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_3d):
810
            transforms.ToPILImage(mode="RGBA")(img_data)
811
        with pytest.raises(ValueError, match=error_message_3d):
812
            transforms.ToPILImage(mode="P")(img_data)
813
        with pytest.raises(ValueError, match=error_message_3d):
814
            transforms.ToPILImage(mode="LA")(img_data)
815

816
    @pytest.mark.parametrize("expected_mode", [None, "RGBA", "CMYK", "RGBX"])
817
818
819
820
821
822
    def test_4_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(4, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
823
            assert img.mode == "RGBA"  # default should assume RGBA
824
825
826
827
828
829
830
831
832
833
834
835
836
837
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode

        split = img.split()
        for i in range(4):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_4_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(4, 4, 4).uniform_()

        error_message_4d = r"Only modes \['RGBA', 'CMYK', 'RGBX'\] are supported for 4D inputs"
        # should raise if we try a mode for 3 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_4d):
838
            transforms.ToPILImage(mode="RGB")(img_data)
839
        with pytest.raises(ValueError, match=error_message_4d):
840
            transforms.ToPILImage(mode="P")(img_data)
841
        with pytest.raises(ValueError, match=error_message_4d):
842
            transforms.ToPILImage(mode="LA")(img_data)
843

844
    @pytest.mark.parametrize("expected_mode", [None, "RGBA", "CMYK", "RGBX"])
845
846
847
848
849
    def test_4_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
850
            assert img.mode == "RGBA"  # default should assume RGBA
851
852
853
854
855
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(4):
856
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
857
858
859
860
861
862
863

    def test_4_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()

        error_message_4d = r"Only modes \['RGBA', 'CMYK', 'RGBX'\] are supported for 4D inputs"
        # should raise if we try a mode for 3 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_4d):
864
            transforms.ToPILImage(mode="RGB")(img_data)
865
        with pytest.raises(ValueError, match=error_message_4d):
866
            transforms.ToPILImage(mode="P")(img_data)
867
        with pytest.raises(ValueError, match=error_message_4d):
868
            transforms.ToPILImage(mode="LA")(img_data)
869
870
871

    def test_ndarray_bad_types_to_pil_image(self):
        trans = transforms.ToPILImage()
872
        reg_msg = r"Input type \w+ is not supported"
873
874
875
876
877
878
879
880
881
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.int64))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.uint16))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.uint32))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.float64))

882
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
883
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))
884
        with pytest.raises(ValueError, match=r"pic should not have > 4 channels. Got \d+ channels."):
885
886
887
            transforms.ToPILImage()(np.ones([4, 4, 6]))

    def test_tensor_bad_types_to_pil_image(self):
888
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
889
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))
890
        with pytest.raises(ValueError, match=r"pic should not have > 4 channels. Got \d+ channels."):
891
            transforms.ToPILImage()(torch.ones(6, 4, 4))
892
893


894
895
896
897
def test_adjust_brightness():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
898
    x_pil = Image.fromarray(x_np, mode="RGB")
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

    # test 0
    y_pil = F.adjust_brightness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_brightness(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_brightness(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_contrast():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
924
    x_pil = Image.fromarray(x_np, mode="RGB")
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945

    # test 0
    y_pil = F.adjust_contrast(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_contrast(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_contrast(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


946
@pytest.mark.skipif(Image.__version__ >= "7", reason="Temporarily disabled")
947
948
949
950
def test_adjust_saturation():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
951
    x_pil = Image.fromarray(x_np, mode="RGB")
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

    # test 0
    y_pil = F.adjust_saturation(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_saturation(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_saturation(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_hue():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
977
    x_pil = Image.fromarray(x_np, mode="RGB")
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007

    with pytest.raises(ValueError):
        F.adjust_hue(x_pil, -0.7)
        F.adjust_hue(x_pil, 1)

    # test 0: almost same as x_data but not exact.
    # probably because hsv <-> rgb floating point ops
    y_pil = F.adjust_hue(x_pil, 0)
    y_np = np.array(y_pil)
    y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 1
    y_pil = F.adjust_hue(x_pil, 0.25)
    y_np = np.array(y_pil)
    y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_hue(x_pil, -0.25)
    y_np = np.array(y_pil)
    y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_sharpness():
    x_shape = [4, 4, 3]
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
    x_data = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        0,
        0,
        65,
        108,
        101,
        120,
        97,
        110,
        100,
        101,
        114,
        32,
        86,
        114,
        121,
        110,
        105,
        111,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1058
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1059
    x_pil = Image.fromarray(x_np, mode="RGB")
1060
1061
1062
1063
1064
1065
1066
1067
1068

    # test 0
    y_pil = F.adjust_sharpness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_sharpness(x_pil, 0.5)
    y_np = np.array(y_pil)
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
    y_ans = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        30,
        30,
        74,
        103,
        96,
        114,
        97,
        110,
        100,
        101,
        114,
        32,
        81,
        103,
        108,
        102,
        101,
        107,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1119
1120
1121
1122
1123
1124
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil)
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
    y_ans = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        0,
        0,
        46,
        118,
        111,
        132,
        97,
        110,
        100,
        101,
        114,
        32,
        95,
        135,
        146,
        126,
        112,
        119,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1175
1176
1177
1178
1179
1180
1181
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 3
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1182
    x_pil = Image.fromarray(x_np, mode="RGB")
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
    x_th = torch.tensor(x_np.transpose(2, 0, 1))
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil).transpose(2, 0, 1)
    y_th = F.adjust_sharpness(x_th, 2)
    torch.testing.assert_close(y_np, y_th.numpy())


def test_adjust_gamma():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1194
    x_pil = Image.fromarray(x_np, mode="RGB")
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219

    # test 0
    y_pil = F.adjust_gamma(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_gamma(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 35, 57, 117, 186, 241, 97, 45, 245, 152, 255, 16]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_gamma(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 11, 71, 201, 5, 0, 215, 31, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjusts_L_mode():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1220
    x_rgb = Image.fromarray(x_np, mode="RGB")
1221

1222
1223
1224
1225
1226
1227
1228
    x_l = x_rgb.convert("L")
    assert F.adjust_brightness(x_l, 2).mode == "L"
    assert F.adjust_saturation(x_l, 2).mode == "L"
    assert F.adjust_contrast(x_l, 2).mode == "L"
    assert F.adjust_hue(x_l, 0.4).mode == "L"
    assert F.adjust_sharpness(x_l, 2).mode == "L"
    assert F.adjust_gamma(x_l, 0.5).mode == "L"
1229
1230


1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
def test_rotate():
    x = np.zeros((100, 100, 3), dtype=np.uint8)
    x[40, 40] = [255, 255, 255]

    with pytest.raises(TypeError, match=r"img should be PIL Image"):
        F.rotate(x, 10)

    img = F.to_pil_image(x)

    result = F.rotate(img, 45)
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [49, 50])
    assert all(x in c for x in [36])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, expand=True)
    assert result.size == (142, 142)
    r, c, ch = np.where(result)
    assert all(x in r for x in [70, 71])
    assert all(x in c for x in [57])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, center=(40, 40))
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [40])
    assert all(x in c for x in [40])
    assert all(x in ch for x in [0, 1, 2])

    result_a = F.rotate(img, 90)
    result_b = F.rotate(img, -270)

    assert_equal(np.array(result_a), np.array(result_b))


1267
@pytest.mark.parametrize("mode", ["L", "RGB", "F"])
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
def test_rotate_fill(mode):
    img = F.to_pil_image(np.ones((100, 100, 3), dtype=np.uint8) * 255, "RGB")

    num_bands = len(mode)
    wrong_num_bands = num_bands + 1
    fill = 127

    img_conv = img.convert(mode)
    img_rot = F.rotate(img_conv, 45.0, fill=fill)
    pixel = img_rot.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    with pytest.raises(ValueError):
        F.rotate(img_conv, 45.0, fill=tuple([fill] * wrong_num_bands))


def test_gaussian_blur_asserts():
    np_img = np.ones((100, 100, 3), dtype=np.uint8) * 255
    img = F.to_pil_image(np_img, "RGB")

    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3])
    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3, 3, 3])
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur([3, 3, 3])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [4, 4])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([4, 4])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [-3, -3])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([-3, -3])

    with pytest.raises(ValueError, match=r"If sigma is a sequence, its length should be 2"):
        F.gaussian_blur(img, 3, [1, 1, 1])
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, [1, 1, 1])

    with pytest.raises(ValueError, match=r"sigma should have positive values"):
        F.gaussian_blur(img, 3, -1.0)
    with pytest.raises(ValueError, match=r"If sigma is a single number, it must be positive"):
        transforms.GaussianBlur(3, -1.0)

    with pytest.raises(TypeError, match=r"kernel_size should be int or a sequence of integers"):
        F.gaussian_blur(img, "kernel_size_string")
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur("kernel_size_string")

    with pytest.raises(TypeError, match=r"sigma should be either float or sequence of floats"):
        F.gaussian_blur(img, 3, "sigma_string")
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, "sigma_string")


def test_lambda():
    trans = transforms.Lambda(lambda x: x.add(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, torch.add(x, 10))

    trans = transforms.Lambda(lambda x: x.add_(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, x)

    # Checking if Lambda can be printed as string
    trans.__repr__()


1344
1345
1346
1347
1348
1349
def test_to_grayscale():
    """Unit tests for grayscale transform"""

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1350
1351
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1352
1353
1354
1355
1356
1357
1358
    gray_np = np.array(x_pil_2)

    # Test Set: Grayscale an image with desired number of output channels
    # Case 1: RGB -> 1 channel grayscale
    trans1 = transforms.Grayscale(num_output_channels=1)
    gray_pil_1 = trans1(x_pil)
    gray_np_1 = np.array(gray_pil_1)
1359
1360
    assert gray_pil_1.mode == "L", "mode should be L"
    assert gray_np_1.shape == tuple(x_shape[0:2]), "should be 1 channel"
1361
1362
1363
1364
1365
1366
    assert_equal(gray_np, gray_np_1)

    # Case 2: RGB -> 3 channel grayscale
    trans2 = transforms.Grayscale(num_output_channels=3)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
1367
1368
    assert gray_pil_2.mode == "RGB", "mode should be RGB"
    assert gray_np_2.shape == tuple(x_shape), "should be 3 channel"
1369
1370
    assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
    assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
1371
    assert_equal(gray_np, gray_np_2[:, :, 0])
1372
1373
1374
1375
1376

    # Case 3: 1 channel grayscale -> 1 channel grayscale
    trans3 = transforms.Grayscale(num_output_channels=1)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
1377
1378
    assert gray_pil_3.mode == "L", "mode should be L"
    assert gray_np_3.shape == tuple(x_shape[0:2]), "should be 1 channel"
1379
1380
1381
1382
1383
1384
    assert_equal(gray_np, gray_np_3)

    # Case 4: 1 channel grayscale -> 3 channel grayscale
    trans4 = transforms.Grayscale(num_output_channels=3)
    gray_pil_4 = trans4(x_pil_2)
    gray_np_4 = np.array(gray_pil_4)
1385
1386
    assert gray_pil_4.mode == "RGB", "mode should be RGB"
    assert gray_np_4.shape == tuple(x_shape), "should be 3 channel"
1387
1388
    assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
    assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
1389
    assert_equal(gray_np, gray_np_4[:, :, 0])
1390
1391
1392
1393
1394

    # Checking if Grayscale can be printed as string
    trans4.__repr__()


1395
1396
1397
1398
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("p", (0, 1))
def test_random_apply(p, seed):
    torch.manual_seed(seed)
1399
    random_apply_transform = transforms.RandomApply([transforms.RandomRotation((45, 50))], p=p)
1400
1401
1402
1403
1404
1405
    img = transforms.ToPILImage()(torch.rand(3, 30, 40))
    out = random_apply_transform(img)
    if p == 0:
        assert out == img
    elif p == 1:
        assert out != img
1406

1407
1408
    # Checking if RandomApply can be printed as string
    random_apply_transform.__repr__()
1409
1410


1411
1412
1413
1414
@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("proba_passthrough", (0, 1))
def test_random_choice(proba_passthrough, seed):
    random.seed(seed)  # RandomChoice relies on python builtin random.choice, not pytorch
1415

1416
    random_choice_transform = transforms.RandomChoice(
1417
        [
1418
            lambda x: x,  # passthrough
1419
            transforms.RandomRotation((45, 50)),
1420
        ],
1421
        p=[proba_passthrough, 1 - proba_passthrough],
1422
1423
    )

1424
1425
1426
1427
1428
1429
    img = transforms.ToPILImage()(torch.rand(3, 30, 40))
    out = random_choice_transform(img)
    if proba_passthrough == 1:
        assert out == img
    elif proba_passthrough == 0:
        assert out != img
1430
1431
1432
1433
1434

    # Checking if RandomChoice can be printed as string
    random_choice_transform.__repr__()


1435
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1436
1437
1438
def test_random_order():
    random_state = random.getstate()
    random.seed(42)
1439
    random_order_transform = transforms.RandomOrder([transforms.Resize(20, antialias=True), transforms.CenterCrop(10)])
1440
1441
1442
    img = transforms.ToPILImage()(torch.rand(3, 25, 25))
    num_samples = 250
    num_normal_order = 0
1443
    resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20, antialias=True)(img))
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
    for _ in range(num_samples):
        out = random_order_transform(img)
        if out == resize_crop_out:
            num_normal_order += 1

    p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomOrder can be printed as string
    random_order_transform.__repr__()


1457
1458
1459
1460
1461
1462
1463
1464
def test_linear_transformation():
    num_samples = 1000
    x = torch.randn(num_samples, 3, 10, 10)
    flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
    # compute principal components
    sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
    u, s, _ = np.linalg.svd(sigma.numpy())
    zca_epsilon = 1e-10  # avoid division by 0
1465
    d = torch.Tensor(np.diag(1.0 / np.sqrt(s + zca_epsilon)))
1466
1467
    u = torch.Tensor(u)
    principal_components = torch.mm(torch.mm(u, d), u.t())
1468
    mean_vector = torch.sum(flat_x, dim=0) / flat_x.size(0)
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
    # initialize whitening matrix
    whitening = transforms.LinearTransformation(principal_components, mean_vector)
    # estimate covariance and mean using weak law of large number
    num_features = flat_x.size(1)
    cov = 0.0
    mean = 0.0
    for i in x:
        xwhite = whitening(i)
        xwhite = xwhite.view(1, -1).numpy()
        cov += np.dot(xwhite, xwhite.T) / num_features
        mean += np.sum(xwhite) / num_features
    # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
1481
1482
1483
1484
1485
1486
    torch.testing.assert_close(
        cov / num_samples, np.identity(1), rtol=2e-3, atol=1e-8, check_dtype=False, msg="cov not close to 1"
    )
    torch.testing.assert_close(
        mean / num_samples, 0, rtol=1e-3, atol=1e-8, check_dtype=False, msg="mean not close to 0"
    )
1487
1488
1489
1490
1491

    # Checking if LinearTransformation can be printed as string
    whitening.__repr__()


1492
@pytest.mark.parametrize("dtype", int_dtypes())
1493
1494
1495
1496
1497
1498
1499
1500
1501
def test_max_value(dtype):

    assert F_t._max_value(dtype) == torch.iinfo(dtype).max
    # remove float testing as it can lead to errors such as
    # runtime error: 5.7896e+76 is outside the range of representable values of type 'float'
    # for dtype in float_dtypes():
    # self.assertGreater(F_t._max_value(dtype), torch.finfo(dtype).max)


1502
1503
1504
1505
1506
1507
1508
1509
1510
@pytest.mark.xfail(
    reason="torch.iinfo() is not supported by torchscript. See https://github.com/pytorch/pytorch/issues/41492."
)
def test_max_value_iinfo():
    @torch.jit.script
    def max_value(image: torch.Tensor) -> int:
        return 1 if image.is_floating_point() else torch.iinfo(image.dtype).max


1511
1512
@pytest.mark.parametrize("should_vflip", [True, False])
@pytest.mark.parametrize("single_dim", [True, False])
1513
1514
1515
1516
1517
1518
1519
1520
1521
def test_ten_crop(should_vflip, single_dim):
    to_pil_image = transforms.ToPILImage()
    h = random.randint(5, 25)
    w = random.randint(5, 25)
    crop_h = random.randint(1, h)
    crop_w = random.randint(1, w)
    if single_dim:
        crop_h = min(crop_h, crop_w)
        crop_w = crop_h
1522
        transform = transforms.TenCrop(crop_h, vertical_flip=should_vflip)
1523
1524
        five_crop = transforms.FiveCrop(crop_h)
    else:
1525
        transform = transforms.TenCrop((crop_h, crop_w), vertical_flip=should_vflip)
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
        five_crop = transforms.FiveCrop((crop_h, crop_w))

    img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
    results = transform(img)
    expected_output = five_crop(img)

    # Checking if FiveCrop and TenCrop can be printed as string
    transform.__repr__()
    five_crop.__repr__()

    if should_vflip:
1537
        vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
1538
1539
        expected_output += five_crop(vflipped_img)
    else:
1540
        hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
1541
1542
1543
1544
1545
1546
        expected_output += five_crop(hflipped_img)

    assert len(results) == 10
    assert results == expected_output


1547
@pytest.mark.parametrize("single_dim", [True, False])
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
def test_five_crop(single_dim):
    to_pil_image = transforms.ToPILImage()
    h = random.randint(5, 25)
    w = random.randint(5, 25)
    crop_h = random.randint(1, h)
    crop_w = random.randint(1, w)
    if single_dim:
        crop_h = min(crop_h, crop_w)
        crop_w = crop_h
        transform = transforms.FiveCrop(crop_h)
    else:
        transform = transforms.FiveCrop((crop_h, crop_w))

    img = torch.FloatTensor(3, h, w).uniform_()

    results = transform(to_pil_image(img))

    assert len(results) == 5
    for crop in results:
        assert crop.size == (crop_w, crop_h)

    to_pil_image = transforms.ToPILImage()
    tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
1571
1572
1573
    tr = to_pil_image(img[:, 0:crop_h, w - crop_w :])
    bl = to_pil_image(img[:, h - crop_h :, 0:crop_w])
    br = to_pil_image(img[:, h - crop_h :, w - crop_w :])
1574
1575
1576
1577
1578
    center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
    expected_output = (tl, tr, bl, br, center)
    assert results == expected_output


1579
1580
1581
@pytest.mark.parametrize("policy", transforms.AutoAugmentPolicy)
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("grayscale", [True, False])
1582
def test_autoaugment(policy, fill, grayscale):
1583
1584
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1585
1586
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1587
1588
1589
1590
1591
1592
    transform = transforms.AutoAugment(policy=policy, fill=fill)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1593
1594
1595
1596
@pytest.mark.parametrize("num_ops", [1, 2, 3])
@pytest.mark.parametrize("magnitude", [7, 9, 11])
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("grayscale", [True, False])
1597
def test_randaugment(num_ops, magnitude, fill, grayscale):
1598
1599
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1600
1601
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1602
1603
1604
1605
1606
1607
    transform = transforms.RandAugment(num_ops=num_ops, magnitude=magnitude, fill=fill)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1608
1609
1610
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("num_magnitude_bins", [10, 13, 30])
@pytest.mark.parametrize("grayscale", [True, False])
1611
def test_trivialaugmentwide(fill, num_magnitude_bins, grayscale):
1612
1613
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1614
1615
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1616
1617
1618
1619
1620
1621
    transform = transforms.TrivialAugmentWide(fill=fill, num_magnitude_bins=num_magnitude_bins)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("severity", [1, 10])
@pytest.mark.parametrize("mixture_width", [1, 2])
@pytest.mark.parametrize("chain_depth", [-1, 2])
@pytest.mark.parametrize("all_ops", [True, False])
@pytest.mark.parametrize("grayscale", [True, False])
def test_augmix(fill, severity, mixture_width, chain_depth, all_ops, grayscale):
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
    transform = transforms.AugMix(
        fill=fill, severity=severity, mixture_width=mixture_width, chain_depth=chain_depth, all_ops=all_ops
    )
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1641
1642
1643
1644
1645
def test_random_crop():
    height = random.randint(10, 32) * 2
    width = random.randint(10, 32) * 2
    oheight = random.randint(5, (height - 2) / 2) * 2
    owidth = random.randint(5, (width - 2) / 2) * 2
1646
    img = torch.ones(3, height, width, dtype=torch.uint8)
1647
1648
1649
1650
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
1651
            transforms.PILToTensor(),
1652
1653
        ]
    )(img)
1654
1655
1656
1657
    assert result.size(1) == oheight
    assert result.size(2) == owidth

    padding = random.randint(1, 20)
1658
1659
1660
1661
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
1662
            transforms.PILToTensor(),
1663
1664
        ]
    )(img)
1665
1666
1667
    assert result.size(1) == oheight
    assert result.size(2) == owidth

1668
    result = transforms.Compose(
1669
        [transforms.ToPILImage(), transforms.RandomCrop((height, width)), transforms.PILToTensor()]
1670
    )(img)
1671
1672
1673
1674
    assert result.size(1) == height
    assert result.size(2) == width
    torch.testing.assert_close(result, img)

1675
1676
1677
1678
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
1679
            transforms.PILToTensor(),
1680
1681
        ]
    )(img)
1682
1683
1684
    assert result.size(1) == height + 1
    assert result.size(2) == width + 1

1685
    t = transforms.RandomCrop(33)
1686
    img = torch.ones(3, 32, 32)
Nicolas Hug's avatar
Nicolas Hug committed
1687
    with pytest.raises(ValueError, match=r"Required crop size .+ is larger than input image size .+"):
1688
1689
1690
        t(img)


1691
1692
1693
1694
1695
1696
def test_center_crop():
    height = random.randint(10, 32) * 2
    width = random.randint(10, 32) * 2
    oheight = random.randint(5, (height - 2) / 2) * 2
    owidth = random.randint(5, (width - 2) / 2) * 2

1697
    img = torch.ones(3, height, width, dtype=torch.uint8)
1698
1699
    oh1 = (height - oheight) // 2
    ow1 = (width - owidth) // 2
1700
    imgnarrow = img[:, oh1 : oh1 + oheight, ow1 : ow1 + owidth]
1701
    imgnarrow.fill_(0)
1702
1703
1704
1705
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
1706
            transforms.PILToTensor(),
1707
1708
        ]
    )(img)
1709
1710
1711
    assert result.sum() == 0
    oheight += 1
    owidth += 1
1712
1713
1714
1715
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
1716
            transforms.PILToTensor(),
1717
1718
        ]
    )(img)
1719
1720
1721
1722
    sum1 = result.sum()
    assert sum1 > 1
    oheight += 1
    owidth += 1
1723
1724
1725
1726
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
1727
            transforms.PILToTensor(),
1728
1729
        ]
    )(img)
1730
1731
1732
1733
1734
    sum2 = result.sum()
    assert sum2 > 0
    assert sum2 > sum1


1735
1736
1737
1738
@pytest.mark.parametrize("odd_image_size", (True, False))
@pytest.mark.parametrize("delta", (1, 3, 5))
@pytest.mark.parametrize("delta_width", (-2, -1, 0, 1, 2))
@pytest.mark.parametrize("delta_height", (-2, -1, 0, 1, 2))
1739
def test_center_crop_2(odd_image_size, delta, delta_width, delta_height):
1740
    """Tests when center crop size is larger than image size, along any dimension"""
1741
1742
1743
1744
1745
1746
1747
1748
1749

    # Since height is independent of width, we can ignore images with odd height and even width and vice-versa.
    input_image_size = (random.randint(10, 32) * 2, random.randint(10, 32) * 2)
    if odd_image_size:
        input_image_size = (input_image_size[0] + 1, input_image_size[1] + 1)

    delta_height *= delta
    delta_width *= delta

1750
    img = torch.ones(3, *input_image_size, dtype=torch.uint8)
1751
1752
1753
    crop_size = (input_image_size[0] + delta_height, input_image_size[1] + delta_width)

    # Test both transforms, one with PIL input and one with tensor
1754
    output_pil = transforms.Compose(
1755
        [transforms.ToPILImage(), transforms.CenterCrop(crop_size), transforms.PILToTensor()],
1756
1757
1758
1759
1760
1761
1762
1763
    )(img)
    assert output_pil.size()[1:3] == crop_size

    output_tensor = transforms.CenterCrop(crop_size)(img)
    assert output_tensor.size()[1:3] == crop_size

    # Ensure output for PIL and Tensor are equal
    assert_equal(
1764
1765
        output_tensor,
        output_pil,
1766
        msg=f"image_size: {input_image_size} crop_size: {crop_size}",
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
    )

    # Check if content in center of both image and cropped output is same.
    center_size = (min(crop_size[0], input_image_size[0]), min(crop_size[1], input_image_size[1]))
    crop_center_tl, input_center_tl = [0, 0], [0, 0]
    for index in range(2):
        if crop_size[index] > input_image_size[index]:
            crop_center_tl[index] = (crop_size[index] - input_image_size[index]) // 2
        else:
            input_center_tl[index] = (input_image_size[index] - crop_size[index]) // 2

    output_center = output_pil[
        :,
1780
1781
        crop_center_tl[0] : crop_center_tl[0] + center_size[0],
        crop_center_tl[1] : crop_center_tl[1] + center_size[1],
1782
1783
1784
1785
    ]

    img_center = img[
        :,
1786
1787
        input_center_tl[0] : input_center_tl[0] + center_size[0],
        input_center_tl[1] : input_center_tl[1] + center_size[1],
1788
1789
    ]

1790
    assert_equal(output_center, img_center)
1791
1792
1793
1794
1795
1796
1797
1798


def test_color_jitter():
    color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1799
1800
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812

    for _ in range(10):
        y_pil = color_jitter(x_pil)
        assert y_pil.mode == x_pil.mode

        y_pil_2 = color_jitter(x_pil_2)
        assert y_pil_2.mode == x_pil_2.mode

    # Checking if ColorJitter can be printed as string
    color_jitter.__repr__()


1813
1814
1815
1816
1817
1818
@pytest.mark.parametrize("hue", [1, (-1, 1)])
def test_color_jitter_hue_out_of_bounds(hue):
    with pytest.raises(ValueError, match=re.escape("hue values should be between (-0.5, 0.5)")):
        transforms.ColorJitter(hue=hue)


1819
@pytest.mark.parametrize("seed", range(10))
1820
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1821
1822
def test_random_erasing(seed):
    torch.random.manual_seed(seed)
1823
1824
    img = torch.ones(3, 128, 128)

1825
1826
1827
1828
1829
1830
1831
1832
1833
    t = transforms.RandomErasing(scale=(0.1, 0.1), ratio=(1 / 3, 3.0))
    y, x, h, w, v = t.get_params(
        img,
        t.scale,
        t.ratio,
        [
            t.value,
        ],
    )
1834
1835
1836
    aspect_ratio = h / w
    # Add some tolerance due to the rounding and int conversion used in the transform
    tol = 0.05
1837
    assert 1 / 3 - tol <= aspect_ratio <= 3 + tol
1838

1839
    # Make sure that h > w and h < w are equally likely (log-scale sampling)
1840
1841
1842
1843
    aspect_ratios = []
    random.seed(42)
    trial = 1000
    for _ in range(trial):
1844
1845
1846
1847
1848
1849
1850
1851
        y, x, h, w, v = t.get_params(
            img,
            t.scale,
            t.ratio,
            [
                t.value,
            ],
        )
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
        aspect_ratios.append(h / w)

    count_bigger_then_ones = len([1 for aspect_ratio in aspect_ratios if aspect_ratio > 1])
    p_value = stats.binom_test(count_bigger_then_ones, trial, p=0.5)
    assert p_value > 0.0001

    # Checking if RandomErasing can be printed as string
    t.__repr__()


def test_random_rotation():

    with pytest.raises(ValueError):
        transforms.RandomRotation(-0.7)

    with pytest.raises(ValueError):
        transforms.RandomRotation([-0.7])

    with pytest.raises(ValueError):
        transforms.RandomRotation([-0.7, 0, 0.7])

    t = transforms.RandomRotation(0, fill=None)
    assert t.fill == 0

    t = transforms.RandomRotation(10)
    angle = t.get_params(t.degrees)
1878
    assert angle > -10 and angle < 10
1879
1880
1881

    t = transforms.RandomRotation((-10, 10))
    angle = t.get_params(t.degrees)
1882
    assert -10 < angle < 10
1883
1884
1885
1886

    # Checking if RandomRotation can be printed as string
    t.__repr__()

1887
1888
1889
    t = transforms.RandomRotation((-10, 10), interpolation=Image.BILINEAR)
    assert t.interpolation == transforms.InterpolationMode.BILINEAR

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906

def test_random_rotation_error():
    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomRotation(0, fill={})


def test_randomperspective():
    for _ in range(10):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        perp = transforms.RandomPerspective()
        startpoints, endpoints = perp.get_params(width, height, 0.5)
        tr_img = F.perspective(img, startpoints, endpoints)
1907
1908
        tr_img2 = F.convert_image_dtype(F.pil_to_tensor(F.perspective(tr_img, endpoints, startpoints)))
        tr_img = F.convert_image_dtype(F.pil_to_tensor(tr_img))
1909
1910
        assert img.size[0] == width
        assert img.size[1] == height
1911
1912
1913
        assert torch.nn.functional.mse_loss(
            tr_img, F.convert_image_dtype(F.pil_to_tensor(img))
        ) + 0.3 > torch.nn.functional.mse_loss(tr_img2, F.convert_image_dtype(F.pil_to_tensor(img)))
1914
1915


1916
@pytest.mark.parametrize("seed", range(10))
1917
@pytest.mark.parametrize("mode", ["L", "RGB", "F"])
1918
1919
def test_randomperspective_fill(mode, seed):
    torch.random.manual_seed(seed)
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957

    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomPerspective(fill={})

    t = transforms.RandomPerspective(fill=None)
    assert t.fill == 0

    height = 100
    width = 100
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    fill = 127
    num_bands = len(mode)

    img_conv = img.convert(mode)
    perspective = transforms.RandomPerspective(p=1, fill=fill)
    tr_img = perspective(img_conv)
    pixel = tr_img.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    startpoints, endpoints = transforms.RandomPerspective.get_params(width, height, 0.5)
    tr_img = F.perspective(img_conv, startpoints, endpoints, fill=fill)
    pixel = tr_img.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    wrong_num_bands = num_bands + 1
    with pytest.raises(ValueError):
        F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))


1958
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1959
1960
def test_normalize():
    def samples_from_standard_normal(tensor):
1961
        p_value = stats.kstest(list(tensor.view(-1)), "norm", args=(0, 1)).pvalue
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
        return p_value > 0.0001

    random_state = random.getstate()
    random.seed(42)
    for channels in [1, 3]:
        img = torch.rand(channels, 10, 10)
        mean = [img[c].mean() for c in range(channels)]
        std = [img[c].std() for c in range(channels)]
        normalized = transforms.Normalize(mean, std)(img)
        assert samples_from_standard_normal(normalized)
    random.setstate(random_state)

    # Checking if Normalize can be printed as string
    transforms.Normalize(mean, std).__repr__()

    # Checking the optional in-place behaviour
    tensor = torch.rand((1, 16, 16))
    tensor_inplace = transforms.Normalize((0.5,), (0.5,), inplace=True)(tensor)
    assert_equal(tensor, tensor_inplace)


1983
1984
@pytest.mark.parametrize("dtype1", [torch.float32, torch.float64])
@pytest.mark.parametrize("dtype2", [torch.int64, torch.float32, torch.float64])
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
def test_normalize_different_dtype(dtype1, dtype2):
    img = torch.rand(3, 10, 10, dtype=dtype1)
    mean = torch.tensor([1, 2, 3], dtype=dtype2)
    std = torch.tensor([1, 2, 1], dtype=dtype2)
    # checks that it doesn't crash
    transforms.functional.normalize(img, mean, std)


def test_normalize_3d_tensor():
    torch.manual_seed(28)
    n_channels = 3
    img_size = 10
    mean = torch.rand(n_channels)
    std = torch.rand(n_channels)
    img = torch.rand(n_channels, img_size, img_size)
    target = F.normalize(img, mean, std)

    mean_unsqueezed = mean.view(-1, 1, 1)
    std_unsqueezed = std.view(-1, 1, 1)
    result1 = F.normalize(img, mean_unsqueezed, std_unsqueezed)
2005
2006
2007
    result2 = F.normalize(
        img, mean_unsqueezed.repeat(1, img_size, img_size), std_unsqueezed.repeat(1, img_size, img_size)
    )
2008
2009
2010
2011
    torch.testing.assert_close(target, result1)
    torch.testing.assert_close(target, result2)


2012
class TestAffine:
2013
    @pytest.fixture(scope="class")
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
    def input_img(self):
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
        for pt in [(16, 16), (20, 16), (20, 20)]:
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]
        return input_img

    def test_affine_translate_seq(self, input_img):
        with pytest.raises(TypeError, match=r"Argument translate should be a sequence"):
            F.affine(input_img, 10, translate=0, scale=1, shear=1)

2026
    @pytest.fixture(scope="class")
2027
2028
2029
2030
2031
2032
2033
2034
2035
    def pil_image(self, input_img):
        return F.to_pil_image(input_img)

    def _to_3x3_inv(self, inv_result_matrix):
        result_matrix = np.zeros((3, 3))
        result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
        result_matrix[2, 2] = 1
        return np.linalg.inv(result_matrix)

2036
    def _test_transformation(self, angle, translate, scale, shear, pil_image, input_img, center=None):
2037
2038
2039

        a_rad = math.radians(angle)
        s_rad = [math.radians(sh_) for sh_ in shear]
2040
        cnt = [20, 20] if center is None else center
2041
2042
2043
2044
2045
2046
        cx, cy = cnt
        tx, ty = translate
        sx, sy = s_rad
        rot = a_rad

        # 1) Check transformation matrix:
2047
2048
        C = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
        T = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
2049
2050
2051
        Cinv = np.linalg.inv(C)

        RS = np.array(
2052
2053
2054
2055
2056
2057
            [
                [scale * math.cos(rot), -scale * math.sin(rot), 0],
                [scale * math.sin(rot), scale * math.cos(rot), 0],
                [0, 0, 1],
            ]
        )
2058

2059
        SHx = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
2060

2061
        SHy = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
2062
2063
2064
2065
2066

        RSS = np.matmul(RS, np.matmul(SHy, SHx))

        true_matrix = np.matmul(T, np.matmul(C, np.matmul(RSS, Cinv)))

2067
2068
2069
        result_matrix = self._to_3x3_inv(
            F._get_inverse_affine_matrix(center=cnt, angle=angle, translate=translate, scale=scale, shear=shear)
        )
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
        assert np.sum(np.abs(true_matrix - result_matrix)) < 1e-10
        # 2) Perform inverse mapping:
        true_result = np.zeros((40, 40, 3), dtype=np.uint8)
        inv_true_matrix = np.linalg.inv(true_matrix)
        for y in range(true_result.shape[0]):
            for x in range(true_result.shape[1]):
                # Same as for PIL:
                # https://github.com/python-pillow/Pillow/blob/71f8ec6a0cfc1008076a023c0756542539d057ab/
                # src/libImaging/Geometry.c#L1060
                input_pt = np.array([x + 0.5, y + 0.5, 1.0])
2080
                res = np.floor(np.dot(inv_true_matrix, input_pt)).astype(int)
2081
2082
2083
2084
                _x, _y = res[:2]
                if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                    true_result[y, x, :] = input_img[_y, _x, :]

2085
        result = F.affine(pil_image, angle=angle, translate=translate, scale=scale, shear=shear, center=center)
2086
2087
2088
2089
2090
        assert result.size == pil_image.size
        # Compute number of different pixels:
        np_result = np.array(result)
        n_diff_pixels = np.sum(np_result != true_result) / 3
        # Accept 3 wrong pixels
2091
2092
2093
        error_msg = (
            f"angle={angle}, translate={translate}, scale={scale}, shear={shear}\nn diff pixels={n_diff_pixels}\n"
        )
2094
2095
2096
2097
2098
        assert n_diff_pixels < 3, error_msg

    def test_transformation_discrete(self, pil_image, input_img):
        # Test rotation
        angle = 45
2099
2100
2101
        self._test_transformation(
            angle=angle, translate=(0, 0), scale=1.0, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2102

2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
        # Test rotation
        angle = 45
        self._test_transformation(
            angle=angle,
            translate=(0, 0),
            scale=1.0,
            shear=(0.0, 0.0),
            pil_image=pil_image,
            input_img=input_img,
            center=[0, 0],
        )

2115
2116
        # Test translation
        translate = [10, 15]
2117
2118
2119
        self._test_transformation(
            angle=0.0, translate=translate, scale=1.0, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2120
2121
2122

        # Test scale
        scale = 1.2
2123
2124
2125
        self._test_transformation(
            angle=0.0, translate=(0.0, 0.0), scale=scale, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2126
2127
2128

        # Test shear
        shear = [45.0, 25.0]
2129
2130
2131
        self._test_transformation(
            angle=0.0, translate=(0.0, 0.0), scale=1.0, shear=shear, pil_image=pil_image, input_img=input_img
        )
2132

2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
        # Test shear with top-left as center
        shear = [45.0, 25.0]
        self._test_transformation(
            angle=0.0,
            translate=(0.0, 0.0),
            scale=1.0,
            shear=shear,
            pil_image=pil_image,
            input_img=input_img,
            center=[0, 0],
        )

2145
2146
2147
2148
2149
    @pytest.mark.parametrize("angle", range(-90, 90, 36))
    @pytest.mark.parametrize("translate", range(-10, 10, 5))
    @pytest.mark.parametrize("scale", [0.77, 1.0, 1.27])
    @pytest.mark.parametrize("shear", range(-15, 15, 5))
    def test_transformation_range(self, angle, translate, scale, shear, pil_image, input_img):
2150
2151
2152
2153
2154
2155
2156
2157
        self._test_transformation(
            angle=angle,
            translate=(translate, translate),
            scale=scale,
            shear=(shear, shear),
            pil_image=pil_image,
            input_img=input_img,
        )
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204


def test_random_affine():

    with pytest.raises(ValueError):
        transforms.RandomAffine(-0.7)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-0.7])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-0.7, 0, 0.7])
    with pytest.raises(TypeError):
        transforms.RandomAffine([-90, 90], translate=2.0)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10, 0, 10])

    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomAffine(0, fill={})

    t = transforms.RandomAffine(0, fill=None)
    assert t.fill == 0

    x = np.zeros((100, 100, 3), dtype=np.uint8)
    img = F.to_pil_image(x)

    t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10, 20, 40])
    for _ in range(100):
2205
        angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear, img_size=img.size)
2206
        assert -10 < angle < 10
2207
2208
        assert -img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5
        assert -img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
        assert 0.7 < scale < 1.3
        assert -10 < shear[0] < 10
        assert -20 < shear[1] < 40

    # Checking if RandomAffine can be printed as string
    t.__repr__()

    t = transforms.RandomAffine(10, interpolation=transforms.InterpolationMode.BILINEAR)
    assert "bilinear" in t.__repr__()

2219
2220
2221
    t = transforms.RandomAffine(10, interpolation=Image.BILINEAR)
    assert t.interpolation == transforms.InterpolationMode.BILINEAR

2222

2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
def test_elastic_transformation():
    with pytest.raises(TypeError, match=r"alpha should be float or a sequence of floats"):
        transforms.ElasticTransform(alpha=True, sigma=2.0)
    with pytest.raises(TypeError, match=r"alpha should be a sequence of floats"):
        transforms.ElasticTransform(alpha=[1.0, True], sigma=2.0)
    with pytest.raises(ValueError, match=r"alpha is a sequence its length should be 2"):
        transforms.ElasticTransform(alpha=[1.0, 0.0, 1.0], sigma=2.0)

    with pytest.raises(TypeError, match=r"sigma should be float or a sequence of floats"):
        transforms.ElasticTransform(alpha=2.0, sigma=True)
    with pytest.raises(TypeError, match=r"sigma should be a sequence of floats"):
        transforms.ElasticTransform(alpha=2.0, sigma=[1.0, True])
    with pytest.raises(ValueError, match=r"sigma is a sequence its length should be 2"):
        transforms.ElasticTransform(alpha=2.0, sigma=[1.0, 0.0, 1.0])

2238
2239
    t = transforms.transforms.ElasticTransform(alpha=2.0, sigma=2.0, interpolation=Image.BILINEAR)
    assert t.interpolation == transforms.InterpolationMode.BILINEAR
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258

    with pytest.raises(TypeError, match=r"fill should be int or float"):
        transforms.ElasticTransform(alpha=1.0, sigma=1.0, fill={})

    x = torch.randint(0, 256, (3, 32, 32), dtype=torch.uint8)
    img = F.to_pil_image(x)
    t = transforms.ElasticTransform(alpha=0.0, sigma=0.0)
    transformed_img = t(img)
    assert transformed_img == img

    # Smoke test on PIL images
    t = transforms.ElasticTransform(alpha=0.5, sigma=0.23)
    transformed_img = t(img)
    assert isinstance(transformed_img, Image.Image)

    # Checking if ElasticTransform can be printed as string
    t.__repr__()


2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
def test_random_grayscale_with_grayscale_input():
    transform = transforms.RandomGrayscale(p=1.0)

    image_tensor = torch.randint(0, 256, (1, 16, 16), dtype=torch.uint8)
    output_tensor = transform(image_tensor)
    torch.testing.assert_close(output_tensor, image_tensor)

    image_pil = F.to_pil_image(image_tensor)
    output_pil = transform(image_pil)
    torch.testing.assert_close(F.pil_to_tensor(output_pil), image_tensor)


2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
# TODO: remove in 0.17 when we can delete functional_pil.py and functional_tensor.py
@pytest.mark.parametrize(
    "import_statement",
    (
        "from torchvision.transforms import functional_pil",
        "from torchvision.transforms import functional_tensor",
        "from torchvision.transforms.functional_tensor import resize",
        "from torchvision.transforms.functional_pil import resize",
    ),
)
@pytest.mark.parametrize("from_private", (True, False))
2282
2283
2284
2285
@pytest.mark.skipif(
    sys.platform in ("win32", "cygwin"),
    reason="assert_run_python_script is broken on Windows. Possible fix in https://github.com/pytorch/vision/pull/7346",
)
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
def test_functional_deprecation_warning(import_statement, from_private):
    if from_private:
        import_statement = import_statement.replace("functional", "_functional")
        source = f"""
        import warnings

        with warnings.catch_warnings():
            warnings.simplefilter("error")
            {import_statement}
        """
    else:
        source = f"""
        import pytest
        with pytest.warns(UserWarning, match="removed in 0.17"):
            {import_statement}
        """
    assert_run_python_script(textwrap.dedent(source))


2305
if __name__ == "__main__":
2306
    pytest.main([__file__])