test_functional_tensor.py 49.1 KB
Newer Older
1
import colorsys
2
import itertools
3
import math
4
import os
5
import warnings
6
from functools import partial
7
from typing import Sequence
8

vfdev's avatar
vfdev committed
9
import numpy as np
10
import PIL.Image
11
import pytest
vfdev's avatar
vfdev committed
12
import torch
13
import torchvision.transforms as T
14
15
import torchvision.transforms._functional_pil as F_pil
import torchvision.transforms._functional_tensor as F_t
16
import torchvision.transforms.functional as F
Nicolas Hug's avatar
Nicolas Hug committed
17
from common_utils import (
18
19
    _assert_approx_equal_tensor_to_pil,
    _assert_equal_tensor_to_pil,
Nicolas Hug's avatar
Nicolas Hug committed
20
21
22
    _create_data,
    _create_data_batch,
    _test_fn_on_batch,
23
    assert_equal,
24
    cpu_and_cuda,
25
    needs_cuda,
Nicolas Hug's avatar
Nicolas Hug committed
26
)
27
from torchvision.transforms import InterpolationMode
28

29
30
31
32
33
34
NEAREST, NEAREST_EXACT, BILINEAR, BICUBIC = (
    InterpolationMode.NEAREST,
    InterpolationMode.NEAREST_EXACT,
    InterpolationMode.BILINEAR,
    InterpolationMode.BICUBIC,
)
35
36


37
@pytest.mark.parametrize("device", cpu_and_cuda())
38
@pytest.mark.parametrize("fn", [F.get_image_size, F.get_image_num_channels, F.get_dimensions])
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def test_image_sizes(device, fn):
    script_F = torch.jit.script(fn)

    img_tensor, pil_img = _create_data(16, 18, 3, device=device)
    value_img = fn(img_tensor)
    value_pil_img = fn(pil_img)
    assert value_img == value_pil_img

    value_img_script = script_F(img_tensor)
    assert value_img == value_img_script

    batch_tensors = _create_data_batch(16, 18, 3, num_samples=4, device=device)
    value_img_batch = fn(batch_tensors)
    assert value_img == value_img_batch


55
56
57
58
59
60
61
62
@needs_cuda
def test_scale_channel():
    """Make sure that _scale_channel gives the same results on CPU and GPU as
    histc or bincount are used depending on the device.
    """
    # TODO: when # https://github.com/pytorch/pytorch/issues/53194 is fixed,
    # only use bincount and remove that test.
    size = (1_000,)
63
    img_chan = torch.randint(0, 256, size=size).to("cpu")
64
    scaled_cpu = F_t._scale_channel(img_chan)
65
66
    scaled_cuda = F_t._scale_channel(img_chan.to("cuda"))
    assert_equal(scaled_cpu, scaled_cuda.to("cpu"))
67

68

69
70
71
72
73
74
class TestRotate:

    ALL_DTYPES = [None, torch.float32, torch.float64, torch.float16]
    scripted_rotate = torch.jit.script(F.rotate)
    IMG_W = 26

75
    @pytest.mark.parametrize("device", cpu_and_cuda())
76
    @pytest.mark.parametrize("height, width", [(7, 33), (26, IMG_W), (32, IMG_W)])
77
78
79
80
81
82
83
84
85
    @pytest.mark.parametrize(
        "center",
        [
            None,
            (int(IMG_W * 0.3), int(IMG_W * 0.4)),
            [int(IMG_W * 0.5), int(IMG_W * 0.6)],
        ],
    )
    @pytest.mark.parametrize("dt", ALL_DTYPES)
86
    @pytest.mark.parametrize("angle", range(-180, 180, 34))
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    @pytest.mark.parametrize("expand", [True, False])
    @pytest.mark.parametrize(
        "fill",
        [
            None,
            [0, 0, 0],
            (1, 2, 3),
            [255, 255, 255],
            [
                1,
            ],
            (2.0,),
        ],
    )
    @pytest.mark.parametrize("fn", [F.rotate, scripted_rotate])
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    def test_rotate(self, device, height, width, center, dt, angle, expand, fill, fn):
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and torch.device(device).type == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        f_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
        out_pil_img = F.rotate(pil_img, angle=angle, interpolation=NEAREST, expand=expand, center=center, fill=f_pil)
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

        out_tensor = fn(tensor, angle=angle, interpolation=NEAREST, expand=expand, center=center, fill=fill).cpu()

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

121
122
123
        assert (
            out_tensor.shape == out_pil_tensor.shape
        ), f"{(height, width, NEAREST, dt, angle, expand, center)}: {out_tensor.shape} vs {out_pil_tensor.shape}"
124
125
126
127
128
129
130

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 3% of different pixels
        assert ratio_diff_pixels < 0.03, (
            f"{(height, width, NEAREST, dt, angle, expand, center, fill)}: "
            f"{ratio_diff_pixels}\n{out_tensor[0, :7, :7]} vs \n"
131
132
            f"{out_pil_tensor[0, :7, :7]}"
        )
133

134
    @pytest.mark.parametrize("device", cpu_and_cuda())
135
    @pytest.mark.parametrize("dt", ALL_DTYPES)
136
137
138
139
140
141
142
143
144
145
    def test_rotate_batch(self, device, dt):
        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
        if dt is not None:
            batch_tensors = batch_tensors.to(dtype=dt)

        center = (20, 22)
146
        _test_fn_on_batch(batch_tensors, F.rotate, angle=32, interpolation=NEAREST, expand=True, center=center)
147

148
149
150
151
152
153
    def test_rotate_interpolation_type(self):
        tensor, _ = _create_data(26, 26)
        res1 = F.rotate(tensor, 45, interpolation=PIL.Image.BILINEAR)
        res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
        assert_equal(res1, res2)

154

155
156
157
158
159
class TestAffine:

    ALL_DTYPES = [None, torch.float32, torch.float64, torch.float16]
    scripted_affine = torch.jit.script(F.affine)

160
    @pytest.mark.parametrize("device", cpu_and_cuda())
161
162
    @pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    def test_identity_map(self, device, height, width, dt):
        # Tests on square and rectangular images
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        # 1) identity map
        out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

177
        assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
178
179
180
        out_tensor = self.scripted_affine(
            tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
181
        assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
182

183
    @pytest.mark.parametrize("device", cpu_and_cuda())
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    @pytest.mark.parametrize("height, width", [(26, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize(
        "angle, config",
        [
            (90, {"k": 1, "dims": (-1, -2)}),
            (45, None),
            (30, None),
            (-30, None),
            (-45, None),
            (-90, {"k": -1, "dims": (-1, -2)}),
            (180, {"k": 2, "dims": (-1, -2)}),
        ],
    )
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    def test_square_rotations(self, device, height, width, dt, angle, config, fn):
        # 2) Test rotation
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(
            pil_img, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(device)

215
        out_tensor = fn(tensor, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
216
        if config is not None:
217
            assert_equal(torch.rot90(tensor, **config), out_tensor)
218
219
220
221
222
223
224

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 6% of different pixels
225
        assert ratio_diff_pixels < 0.06
226

227
    @pytest.mark.parametrize("device", cpu_and_cuda())
228
229
230
231
    @pytest.mark.parametrize("height, width", [(32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize("angle", [90, 45, 15, -30, -60, -120])
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
232
233
    @pytest.mark.parametrize("center", [None, [0, 0]])
    def test_rect_rotations(self, device, height, width, dt, angle, fn, center):
234
235
236
237
238
239
240
241
242
243
244
        # Tests on rectangular images
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(
245
            pil_img, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST, center=center
246
247
248
        )
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

249
250
251
        out_tensor = fn(
            tensor, angle=angle, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST, center=center
        ).cpu()
252
253
254
255
256
257
258

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 3% of different pixels
259
        assert ratio_diff_pixels < 0.03
260

261
    @pytest.mark.parametrize("device", cpu_and_cuda())
262
263
264
265
    @pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize("t", [[10, 12], (-12, -13)])
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    def test_translations(self, device, height, width, dt, t, fn):
        # 3) Test translation
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

        out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        _assert_equal_tensor_to_pil(out_tensor, out_pil_img)

286
    @pytest.mark.parametrize("device", cpu_and_cuda())
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    @pytest.mark.parametrize("height, width", [(26, 26), (32, 26)])
    @pytest.mark.parametrize("dt", ALL_DTYPES)
    @pytest.mark.parametrize(
        "a, t, s, sh, f",
        [
            (45.5, [5, 6], 1.0, [0.0, 0.0], None),
            (33, (5, -4), 1.0, [0.0, 0.0], [0, 0, 0]),
            (45, [-5, 4], 1.2, [0.0, 0.0], (1, 2, 3)),
            (33, (-4, -8), 2.0, [0.0, 0.0], [255, 255, 255]),
            (
                85,
                (10, -10),
                0.7,
                [0.0, 0.0],
                [
                    1,
                ],
            ),
            (
                0,
                [0, 0],
                1.0,
                [
                    35.0,
                ],
                (2.0,),
            ),
            (-25, [0, 0], 1.2, [0.0, 15.0], None),
            (-45, [-10, 0], 0.7, [2.0, 5.0], None),
            (-45, [-10, -10], 1.2, [4.0, 5.0], None),
            (-90, [0, 0], 1.0, [0.0, 0.0], None),
        ],
    )
    @pytest.mark.parametrize("fn", [F.affine, scripted_affine])
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    def test_all_ops(self, device, height, width, dt, a, t, s, sh, f, fn):
        # 4) Test rotation + translation + scale + shear
        tensor, pil_img = _create_data(height, width, device=device)

        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        if dt is not None:
            tensor = tensor.to(dtype=dt)

        f_pil = int(f[0]) if f is not None and len(f) == 1 else f
        out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, interpolation=NEAREST, fill=f_pil)
        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

        out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, interpolation=NEAREST, fill=f).cpu()

        if out_tensor.dtype != torch.uint8:
            out_tensor = out_tensor.to(torch.uint8)

        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
        # Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
        tol = 0.06 if device == "cuda" else 0.05
345
        assert ratio_diff_pixels < tol
346

347
    @pytest.mark.parametrize("device", cpu_and_cuda())
348
    @pytest.mark.parametrize("dt", ALL_DTYPES)
349
350
351
352
353
354
355
356
357
    def test_batches(self, device, dt):
        if dt == torch.float16 and device == "cpu":
            # skip float16 on CPU case
            return

        batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
        if dt is not None:
            batch_tensors = batch_tensors.to(dtype=dt)

358
        _test_fn_on_batch(batch_tensors, F.affine, angle=-43, translate=[-3, 4], scale=1.2, shear=[4.0, 5.0])
359

360
    @pytest.mark.parametrize("device", cpu_and_cuda())
361
362
363
364
365
366
367
    def test_interpolation_type(self, device):
        tensor, pil_img = _create_data(26, 26, device=device)

        res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=PIL.Image.BILINEAR)
        res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
        assert_equal(res1, res2)

368

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
def _get_data_dims_and_points_for_perspective():
    # Ideally we would parametrize independently over data dims and points, but
    # we want to tests on some points that also depend on the data dims.
    # Pytest doesn't support covariant parametrization, so we do it somewhat manually here.

    data_dims = [(26, 34), (26, 26)]
    points = [
        [[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
        [[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
    ]

    dims_and_points = list(itertools.product(data_dims, points))

    # up to here, we could just have used 2 @parametrized.
    # Down below is the covarariant part as the points depend on the data dims.

    n = 10
    for dim in data_dims:
388
        points += [(dim, T.RandomPerspective.get_params(dim[1], dim[0], i / n)) for i in range(n)]
389
390
391
    return dims_and_points


392
@pytest.mark.parametrize("device", cpu_and_cuda())
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
@pytest.mark.parametrize("dims_and_points", _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize(
    "fill",
    (
        None,
        [0, 0, 0],
        [1, 2, 3],
        [255, 255, 255],
        [
            1,
        ],
        (2.0,),
    ),
)
@pytest.mark.parametrize("fn", [F.perspective, torch.jit.script(F.perspective)])
Nicolas Hug's avatar
Nicolas Hug committed
409
def test_perspective_pil_vs_tensor(device, dims_and_points, dt, fill, fn):
410
411
412
413
414
415
416

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

Nicolas Hug's avatar
Nicolas Hug committed
417
    tensor, pil_img = _create_data(*data_dims, device=device)
418
419
420
421
422
    if dt is not None:
        tensor = tensor.to(dtype=dt)

    interpolation = NEAREST
    fill_pil = int(fill[0]) if fill is not None and len(fill) == 1 else fill
423
424
425
    out_pil_img = F.perspective(
        pil_img, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill_pil
    )
426
427
428
429
430
431
432
433
434
435
436
437
    out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
    out_tensor = fn(tensor, startpoints=spoints, endpoints=epoints, interpolation=interpolation, fill=fill).cpu()

    if out_tensor.dtype != torch.uint8:
        out_tensor = out_tensor.to(torch.uint8)

    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
    # Tolerance : less than 5% of different pixels
    assert ratio_diff_pixels < 0.05


438
@pytest.mark.parametrize("device", cpu_and_cuda())
439
440
@pytest.mark.parametrize("dims_and_points", _get_data_dims_and_points_for_perspective())
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
Nicolas Hug's avatar
Nicolas Hug committed
441
def test_perspective_batch(device, dims_and_points, dt):
442
443
444
445
446
447
448

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    data_dims, (spoints, epoints) = dims_and_points

Nicolas Hug's avatar
Nicolas Hug committed
449
    batch_tensors = _create_data_batch(*data_dims, num_samples=4, device=device)
450
451
452
453
454
455
    if dt is not None:
        batch_tensors = batch_tensors.to(dtype=dt)

    # Ignore the equivalence between scripted and regular function on float16 cuda. The pixels at
    # the border may be entirely different due to small rounding errors.
    scripted_fn_atol = -1 if (dt == torch.float16 and device == "cuda") else 1e-8
Nicolas Hug's avatar
Nicolas Hug committed
456
    _test_fn_on_batch(
457
458
459
460
461
462
        batch_tensors,
        F.perspective,
        scripted_fn_atol=scripted_fn_atol,
        startpoints=spoints,
        endpoints=epoints,
        interpolation=NEAREST,
463
464
465
    )


466
467
468
469
470
471
472
473
474
475
def test_perspective_interpolation_type():
    spoints = [[0, 0], [33, 0], [33, 25], [0, 25]]
    epoints = [[3, 2], [32, 3], [30, 24], [2, 25]]
    tensor = torch.randint(0, 256, (3, 26, 26))

    res1 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=PIL.Image.BILINEAR)
    res2 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=BILINEAR)
    assert_equal(res1, res2)


476
@pytest.mark.parametrize("device", cpu_and_cuda())
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize(
    "size",
    [
        32,
        26,
        [
            32,
        ],
        [32, 32],
        (32, 32),
        [26, 35],
    ],
)
@pytest.mark.parametrize("max_size", [None, 34, 40, 1000])
492
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC, NEAREST, NEAREST_EXACT])
Nicolas Hug's avatar
Nicolas Hug committed
493
def test_resize(device, dt, size, max_size, interpolation):
494
495
496
497
498
499
500
501
502
503

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if max_size is not None and isinstance(size, Sequence) and len(size) != 1:
        return  # unsupported

    torch.manual_seed(12)
    script_fn = torch.jit.script(F.resize)
Nicolas Hug's avatar
Nicolas Hug committed
504
505
    tensor, pil_img = _create_data(26, 36, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
506
507
508
509
510
511

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)
        batch_tensors = batch_tensors.to(dt)

512
513
    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, max_size=max_size, antialias=True)
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation, max_size=max_size, antialias=True)
514
515
516

    assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]

517
    if interpolation != NEAREST:
518
519
520
521
522
523
524
525
526
        # We can not check values if mode = NEAREST, as results are different
        # E.g. resized_tensor  = [[a, a, b, c, d, d, e, ...]]
        # E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
        resized_tensor_f = resized_tensor
        # we need to cast to uint8 to compare with PIL image
        if resized_tensor_f.dtype == torch.uint8:
            resized_tensor_f = resized_tensor_f.to(torch.float)

        # Pay attention to high tolerance for MAE
527
        _assert_approx_equal_tensor_to_pil(resized_tensor_f, resized_pil_img, tol=3.0)
528
529

    if isinstance(size, int):
530
        script_size = [size]
531
532
533
    else:
        script_size = size

534
    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, max_size=max_size, antialias=True)
535
536
    assert_equal(resized_tensor, resize_result)

537
538
539
    _test_fn_on_batch(
        batch_tensors, F.resize, size=script_size, interpolation=interpolation, max_size=max_size, antialias=True
    )
540
541


542
@pytest.mark.parametrize("device", cpu_and_cuda())
Nicolas Hug's avatar
Nicolas Hug committed
543
def test_resize_asserts(device):
544

Nicolas Hug's avatar
Nicolas Hug committed
545
    tensor, pil_img = _create_data(26, 36, device=device)
546

547
548
549
550
    res1 = F.resize(tensor, size=32, interpolation=PIL.Image.BILINEAR)
    res2 = F.resize(tensor, size=32, interpolation=BILINEAR)
    assert_equal(res1, res2)

551
552
553
554
555
556
557
558
    for img in (tensor, pil_img):
        exp_msg = "max_size should only be passed if size specifies the length of the smaller edge"
        with pytest.raises(ValueError, match=exp_msg):
            F.resize(img, size=(32, 34), max_size=35)
        with pytest.raises(ValueError, match="max_size = 32 must be strictly greater"):
            F.resize(img, size=32, max_size=32)


559
@pytest.mark.parametrize("device", cpu_and_cuda())
560
561
562
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("size", [[96, 72], [96, 420], [420, 72]])
@pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC])
Nicolas Hug's avatar
Nicolas Hug committed
563
def test_resize_antialias(device, dt, size, interpolation):
564
565
566
567
568

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

569
    torch.manual_seed(12)
570
    script_fn = torch.jit.script(F.resize)
Nicolas Hug's avatar
Nicolas Hug committed
571
    tensor, pil_img = _create_data(320, 290, device=device)
572
573
574
575
576
577

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)

    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation, antialias=True)
578
    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation, antialias=True)
579

Nicolas Hug's avatar
Nicolas Hug committed
580
    assert resized_tensor.size()[1:] == resized_pil_img.size[::-1]
581
582
583
584
585
586

    resized_tensor_f = resized_tensor
    # we need to cast to uint8 to compare with PIL image
    if resized_tensor_f.dtype == torch.uint8:
        resized_tensor_f = resized_tensor_f.to(torch.float)

587
    _assert_approx_equal_tensor_to_pil(resized_tensor_f, resized_pil_img, tol=0.5, msg=f"{size}, {interpolation}, {dt}")
588
589
590
591
592
593
594
595
596

    accepted_tol = 1.0 + 1e-5
    if interpolation == BICUBIC:
        # this overall mean value to make the tests pass
        # High value is mostly required for test cases with
        # downsampling and upsampling where we can not exactly
        # match PIL implementation.
        accepted_tol = 15.0

Nicolas Hug's avatar
Nicolas Hug committed
597
    _assert_approx_equal_tensor_to_pil(
598
        resized_tensor_f, resized_pil_img, tol=accepted_tol, agg_method="max", msg=f"{size}, {interpolation}, {dt}"
599
600
601
    )

    if isinstance(size, int):
602
603
604
        script_size = [
            size,
        ]
605
606
607
608
    else:
        script_size = size

    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation, antialias=True)
Nicolas Hug's avatar
Nicolas Hug committed
609
    assert_equal(resized_tensor, resize_result)
610
611


612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
def test_resize_antialias_default_warning():

    img = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8)

    match = "The default value of the antialias"
    with pytest.warns(UserWarning, match=match):
        F.resize(img, size=(20, 20))
    with pytest.warns(UserWarning, match=match):
        F.resized_crop(img, 0, 0, 10, 10, size=(20, 20))

    # For modes that aren't bicubic or bilinear, don't throw a warning
    with warnings.catch_warnings():
        warnings.simplefilter("error")
        F.resize(img, size=(20, 20), interpolation=NEAREST)
        F.resized_crop(img, 0, 0, 10, 10, size=(20, 20), interpolation=NEAREST)


629
630
631
def check_functional_vs_PIL_vs_scripted(
    fn, fn_pil, fn_t, config, device, dtype, channels=3, tol=2.0 + 1e-10, agg_method="max"
):
632
633
634

    script_fn = torch.jit.script(fn)
    torch.manual_seed(15)
635
636
    tensor, pil_img = _create_data(26, 34, channels=channels, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, channels=channels, device=device)
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

    if dtype is not None:
        tensor = F.convert_image_dtype(tensor, dtype)
        batch_tensors = F.convert_image_dtype(batch_tensors, dtype)

    out_fn_t = fn_t(tensor, **config)
    out_pil = fn_pil(pil_img, **config)
    out_scripted = script_fn(tensor, **config)
    assert out_fn_t.dtype == out_scripted.dtype
    assert out_fn_t.size()[1:] == out_pil.size[::-1]

    rbg_tensor = out_fn_t

    if out_fn_t.dtype != torch.uint8:
        rbg_tensor = F.convert_image_dtype(out_fn_t, torch.uint8)

    # Check that max difference does not exceed 2 in [0, 255] range
    # Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
Nicolas Hug's avatar
Nicolas Hug committed
655
    _assert_approx_equal_tensor_to_pil(rbg_tensor.float(), out_pil, tol=tol, agg_method=agg_method)
656
657
658
659
660
661
662

    atol = 1e-6
    if out_fn_t.dtype == torch.uint8 and "cuda" in torch.device(device).type:
        atol = 1.0
    assert out_fn_t.allclose(out_scripted, atol=atol)

    # FIXME: fn will be scripted again in _test_fn_on_batch. We could avoid that.
Nicolas Hug's avatar
Nicolas Hug committed
663
    _test_fn_on_batch(batch_tensors, fn, scripted_fn_atol=atol, **config)
664
665


666
@pytest.mark.parametrize("device", cpu_and_cuda())
667
668
669
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"brightness_factor": f} for f in (0.1, 0.5, 1.0, 1.34, 2.5)])
@pytest.mark.parametrize("channels", [1, 3])
670
def test_adjust_brightness(device, dtype, config, channels):
671
672
673
674
675
676
677
    check_functional_vs_PIL_vs_scripted(
        F.adjust_brightness,
        F_pil.adjust_brightness,
        F_t.adjust_brightness,
        config,
        device,
        dtype,
678
        channels,
679
680
681
    )


682
@pytest.mark.parametrize("device", cpu_and_cuda())
683
684
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
685
def test_invert(device, dtype, channels):
686
    check_functional_vs_PIL_vs_scripted(
687
        F.invert, F_pil.invert, F_t.invert, {}, device, dtype, channels, tol=1.0, agg_method="max"
688
689
690
    )


691
@pytest.mark.parametrize("device", cpu_and_cuda())
692
693
@pytest.mark.parametrize("config", [{"bits": bits} for bits in range(0, 8)])
@pytest.mark.parametrize("channels", [1, 3])
694
def test_posterize(device, config, channels):
695
696
697
698
699
700
701
    check_functional_vs_PIL_vs_scripted(
        F.posterize,
        F_pil.posterize,
        F_t.posterize,
        config,
        device,
        dtype=None,
702
        channels=channels,
703
704
705
706
707
        tol=1.0,
        agg_method="max",
    )


708
@pytest.mark.parametrize("device", cpu_and_cuda())
709
710
@pytest.mark.parametrize("config", [{"threshold": threshold} for threshold in [0, 64, 128, 192, 255]])
@pytest.mark.parametrize("channels", [1, 3])
711
def test_solarize1(device, config, channels):
712
713
714
715
716
717
718
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        F_pil.solarize,
        F_t.solarize,
        config,
        device,
        dtype=None,
719
        channels=channels,
720
721
722
723
724
        tol=1.0,
        agg_method="max",
    )


725
@pytest.mark.parametrize("device", cpu_and_cuda())
726
727
728
@pytest.mark.parametrize("dtype", (torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"threshold": threshold} for threshold in [0.0, 0.25, 0.5, 0.75, 1.0]])
@pytest.mark.parametrize("channels", [1, 3])
729
def test_solarize2(device, dtype, config, channels):
730
731
732
733
734
735
736
    check_functional_vs_PIL_vs_scripted(
        F.solarize,
        lambda img, threshold: F_pil.solarize(img, 255 * threshold),
        F_t.solarize,
        config,
        device,
        dtype,
737
        channels,
738
739
740
741
742
        tol=1.0,
        agg_method="max",
    )


Philip Meier's avatar
Philip Meier committed
743
744
745
746
747
748
749
750
751
752
753
754
755
756
@pytest.mark.parametrize(
    ("dtype", "threshold"),
    [
        *[
            (dtype, threshold)
            for dtype, threshold in itertools.product(
                [torch.float32, torch.float16],
                [0.0, 0.25, 0.5, 0.75, 1.0],
            )
        ],
        *[(torch.uint8, threshold) for threshold in [0, 64, 128, 192, 255]],
        *[(torch.int64, threshold) for threshold in [0, 2**32, 2**63 - 1]],
    ],
)
757
@pytest.mark.parametrize("device", cpu_and_cuda())
Philip Meier's avatar
Philip Meier committed
758
759
760
def test_solarize_threshold_within_bound(threshold, dtype, device):
    make_img = torch.rand if dtype.is_floating_point else partial(torch.randint, 0, torch.iinfo(dtype).max)
    img = make_img((3, 12, 23), dtype=dtype, device=device)
puhuk's avatar
puhuk committed
761
762
763
    F_t.solarize(img, threshold)


Philip Meier's avatar
Philip Meier committed
764
765
766
767
768
769
770
771
772
@pytest.mark.parametrize(
    ("dtype", "threshold"),
    [
        (torch.float32, 1.5),
        (torch.float16, 1.5),
        (torch.uint8, 260),
        (torch.int64, 2**64),
    ],
)
773
@pytest.mark.parametrize("device", cpu_and_cuda())
Philip Meier's avatar
Philip Meier committed
774
775
776
def test_solarize_threshold_above_bound(threshold, dtype, device):
    make_img = torch.rand if dtype.is_floating_point else partial(torch.randint, 0, torch.iinfo(dtype).max)
    img = make_img((3, 12, 23), dtype=dtype, device=device)
puhuk's avatar
puhuk committed
777
778
779
780
    with pytest.raises(TypeError, match="Threshold should be less than bound of img."):
        F_t.solarize(img, threshold)


781
@pytest.mark.parametrize("device", cpu_and_cuda())
782
783
784
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"sharpness_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
785
def test_adjust_sharpness(device, dtype, config, channels):
786
787
788
789
790
791
792
    check_functional_vs_PIL_vs_scripted(
        F.adjust_sharpness,
        F_pil.adjust_sharpness,
        F_t.adjust_sharpness,
        config,
        device,
        dtype,
793
        channels,
794
795
796
    )


797
@pytest.mark.parametrize("device", cpu_and_cuda())
798
799
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
800
def test_autocontrast(device, dtype, channels):
801
    check_functional_vs_PIL_vs_scripted(
802
        F.autocontrast, F_pil.autocontrast, F_t.autocontrast, {}, device, dtype, channels, tol=1.0, agg_method="max"
803
804
805
    )


806
@pytest.mark.parametrize("device", cpu_and_cuda())
807
808
809
810
811
812
813
814
815
816
817
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("channels", [1, 3])
def test_autocontrast_equal_minmax(device, dtype, channels):
    a = _create_data_batch(32, 32, num_samples=1, channels=channels, device=device)
    a = a / 2.0 + 0.3
    assert (F.autocontrast(a)[0] == F.autocontrast(a[0])).all()

    a[0, 0] = 0.7
    assert (F.autocontrast(a)[0] == F.autocontrast(a[0])).all()


818
@pytest.mark.parametrize("device", cpu_and_cuda())
819
@pytest.mark.parametrize("channels", [1, 3])
820
def test_equalize(device, channels):
821
    torch.use_deterministic_algorithms(False)
822
823
824
825
826
827
828
    check_functional_vs_PIL_vs_scripted(
        F.equalize,
        F_pil.equalize,
        F_t.equalize,
        {},
        device,
        dtype=None,
829
        channels=channels,
830
831
832
833
834
        tol=1.0,
        agg_method="max",
    )


835
@pytest.mark.parametrize("device", cpu_and_cuda())
836
837
838
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"contrast_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
839
def test_adjust_contrast(device, dtype, config, channels):
840
    check_functional_vs_PIL_vs_scripted(
841
        F.adjust_contrast, F_pil.adjust_contrast, F_t.adjust_contrast, config, device, dtype, channels
842
843
844
    )


845
@pytest.mark.parametrize("device", cpu_and_cuda())
846
847
848
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"saturation_factor": f} for f in [0.5, 0.75, 1.0, 1.5, 2.0]])
@pytest.mark.parametrize("channels", [1, 3])
849
def test_adjust_saturation(device, dtype, config, channels):
850
    check_functional_vs_PIL_vs_scripted(
851
        F.adjust_saturation, F_pil.adjust_saturation, F_t.adjust_saturation, config, device, dtype, channels
852
853
854
    )


855
@pytest.mark.parametrize("device", cpu_and_cuda())
856
857
858
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"hue_factor": f} for f in [-0.45, -0.25, 0.0, 0.25, 0.45]])
@pytest.mark.parametrize("channels", [1, 3])
859
def test_adjust_hue(device, dtype, config, channels):
860
    check_functional_vs_PIL_vs_scripted(
861
        F.adjust_hue, F_pil.adjust_hue, F_t.adjust_hue, config, device, dtype, channels, tol=16.1, agg_method="max"
862
863
864
    )


865
@pytest.mark.parametrize("device", cpu_and_cuda())
866
867
868
@pytest.mark.parametrize("dtype", (None, torch.float32, torch.float64))
@pytest.mark.parametrize("config", [{"gamma": g1, "gain": g2} for g1, g2 in zip([0.8, 1.0, 1.2], [0.7, 1.0, 1.3])])
@pytest.mark.parametrize("channels", [1, 3])
869
def test_adjust_gamma(device, dtype, config, channels):
870
871
872
873
874
875
876
    check_functional_vs_PIL_vs_scripted(
        F.adjust_gamma,
        F_pil.adjust_gamma,
        F_t.adjust_gamma,
        config,
        device,
        dtype,
877
        channels,
878
879
880
    )


881
@pytest.mark.parametrize("device", cpu_and_cuda())
882
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
883
@pytest.mark.parametrize("pad", [2, [3], [0, 3], (3, 3), [4, 2, 4, 3]])
884
885
886
887
888
@pytest.mark.parametrize(
    "config",
    [
        {"padding_mode": "constant", "fill": 0},
        {"padding_mode": "constant", "fill": 10},
889
        {"padding_mode": "constant", "fill": 20.2},
890
891
892
893
894
        {"padding_mode": "edge"},
        {"padding_mode": "reflect"},
        {"padding_mode": "symmetric"},
    ],
)
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
def test_pad(device, dt, pad, config):
    script_fn = torch.jit.script(F.pad)
    tensor, pil_img = _create_data(7, 8, device=device)
    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if dt is not None:
        # This is a trivial cast to float of uint8 data to test all cases
        tensor = tensor.to(dt)
        batch_tensors = batch_tensors.to(dt)

    pad_tensor = F_t.pad(tensor, pad, **config)
    pad_pil_img = F_pil.pad(pil_img, pad, **config)

    pad_tensor_8b = pad_tensor
    # we need to cast to uint8 to compare with PIL image
    if pad_tensor_8b.dtype != torch.uint8:
        pad_tensor_8b = pad_tensor_8b.to(torch.uint8)

917
    _assert_equal_tensor_to_pil(pad_tensor_8b, pad_pil_img, msg=f"{pad}, {config}")
918
919

    if isinstance(pad, int):
920
921
922
        script_pad = [
            pad,
        ]
923
924
925
    else:
        script_pad = pad
    pad_tensor_script = script_fn(tensor, script_pad, **config)
926
    assert_equal(pad_tensor, pad_tensor_script, msg=f"{pad}, {config}")
927
928
929
930

    _test_fn_on_batch(batch_tensors, F.pad, padding=script_pad, **config)


931
@pytest.mark.parametrize("device", cpu_and_cuda())
932
@pytest.mark.parametrize("mode", [NEAREST, NEAREST_EXACT, BILINEAR, BICUBIC])
933
934
935
936
937
def test_resized_crop(device, mode):
    # test values of F.resized_crop in several cases:
    # 1) resize to the same size, crop to the same size => should be identity
    tensor, _ = _create_data(26, 36, device=device)

938
939
940
    out_tensor = F.resized_crop(
        tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=mode, antialias=True
    )
941
    assert_equal(tensor, out_tensor, msg=f"{out_tensor[0, :5, :5]} vs {tensor[0, :5, :5]}")
942
943
944
945
946
947
948
949

    # 2) resize by half and crop a TL corner
    tensor, _ = _create_data(26, 36, device=device)
    out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=NEAREST)
    expected_out_tensor = tensor[:, :20:2, :30:2]
    assert_equal(
        expected_out_tensor,
        out_tensor,
950
        msg=f"{expected_out_tensor[0, :10, :10]} vs {out_tensor[0, :10, :10]}",
951
952
953
954
    )

    batch_tensors = _create_data_batch(26, 36, num_samples=4, device=device)
    _test_fn_on_batch(
955
956
957
958
959
960
961
962
        batch_tensors,
        F.resized_crop,
        top=1,
        left=2,
        height=20,
        width=30,
        size=[10, 15],
        interpolation=NEAREST,
963
964
965
    )


966
@pytest.mark.parametrize("device", cpu_and_cuda())
967
968
969
@pytest.mark.parametrize(
    "func, args",
    [
970
        (F_t.get_dimensions, ()),
971
        (F_t.get_image_size, ()),
972
        (F_t.get_image_num_channels, ()),
973
974
975
976
977
978
979
        (F_t.vflip, ()),
        (F_t.hflip, ()),
        (F_t.crop, (1, 2, 4, 5)),
        (F_t.adjust_brightness, (0.0,)),
        (F_t.adjust_contrast, (1.0,)),
        (F_t.adjust_hue, (-0.5,)),
        (F_t.adjust_saturation, (2.0,)),
980
        (F_t.pad, ([2], 2, "constant")),
981
        (F_t.resize, ([10, 11],)),
982
        (F_t.perspective, ([0.2])),
983
984
985
986
987
988
989
990
991
        (F_t.gaussian_blur, ((2, 2), (0.7, 0.5))),
        (F_t.invert, ()),
        (F_t.posterize, (0,)),
        (F_t.solarize, (0.3,)),
        (F_t.adjust_sharpness, (0.3,)),
        (F_t.autocontrast, ()),
        (F_t.equalize, ()),
    ],
)
992
993
994
995
996
997
998
def test_assert_image_tensor(device, func, args):
    shape = (100,)
    tensor = torch.rand(*shape, dtype=torch.float, device=device)
    with pytest.raises(Exception, match=r"Tensor is not a torch image."):
        func(tensor, *args)


999
@pytest.mark.parametrize("device", cpu_and_cuda())
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
def test_vflip(device):
    script_vflip = torch.jit.script(F.vflip)

    img_tensor, pil_img = _create_data(16, 18, device=device)
    vflipped_img = F.vflip(img_tensor)
    vflipped_pil_img = F.vflip(pil_img)
    _assert_equal_tensor_to_pil(vflipped_img, vflipped_pil_img)

    # scriptable function test
    vflipped_img_script = script_vflip(img_tensor)
    assert_equal(vflipped_img, vflipped_img_script)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.vflip)


1016
@pytest.mark.parametrize("device", cpu_and_cuda())
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
def test_hflip(device):
    script_hflip = torch.jit.script(F.hflip)

    img_tensor, pil_img = _create_data(16, 18, device=device)
    hflipped_img = F.hflip(img_tensor)
    hflipped_pil_img = F.hflip(pil_img)
    _assert_equal_tensor_to_pil(hflipped_img, hflipped_pil_img)

    # scriptable function test
    hflipped_img_script = script_hflip(img_tensor)
    assert_equal(hflipped_img, hflipped_img_script)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.hflip)


1033
@pytest.mark.parametrize("device", cpu_and_cuda())
1034
1035
1036
1037
1038
1039
1040
@pytest.mark.parametrize(
    "top, left, height, width",
    [
        (1, 2, 4, 5),  # crop inside top-left corner
        (2, 12, 3, 4),  # crop inside top-right corner
        (8, 3, 5, 6),  # crop inside bottom-left corner
        (8, 11, 4, 3),  # crop inside bottom-right corner
1041
1042
        (50, 50, 10, 10),  # crop outside the image
        (-50, -50, 10, 10),  # crop outside the image
1043
1044
    ],
)
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
def test_crop(device, top, left, height, width):
    script_crop = torch.jit.script(F.crop)

    img_tensor, pil_img = _create_data(16, 18, device=device)

    pil_img_cropped = F.crop(pil_img, top, left, height, width)

    img_tensor_cropped = F.crop(img_tensor, top, left, height, width)
    _assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)

    img_tensor_cropped = script_crop(img_tensor, top, left, height, width)
    _assert_equal_tensor_to_pil(img_tensor_cropped, pil_img_cropped)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.crop, top=top, left=left, height=height, width=width)


1062
@pytest.mark.parametrize("device", cpu_and_cuda())
1063
1064
1065
1066
1067
@pytest.mark.parametrize("image_size", ("small", "large"))
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize("ksize", [(3, 3), [3, 5], (23, 23)])
@pytest.mark.parametrize("sigma", [[0.5, 0.5], (0.5, 0.5), (0.8, 0.8), (1.7, 1.7)])
@pytest.mark.parametrize("fn", [F.gaussian_blur, torch.jit.script(F.gaussian_blur)])
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
def test_gaussian_blur(device, image_size, dt, ksize, sigma, fn):

    # true_cv2_results = {
    #     # np_img = np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
    #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.8)
    #     "3_3_0.8": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.5)
    #     "3_3_0.5": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.8)
    #     "3_5_0.8": ...
    #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.5)
    #     "3_5_0.5": ...
    #     # np_img2 = np.arange(26 * 28, dtype="uint8").reshape((26, 28))
    #     # cv2.GaussianBlur(np_img2, ksize=(23, 23), sigmaX=1.7)
    #     "23_23_1.7": ...
    # }
1084
    p = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets", "gaussian_blur_opencv_results.pt")
1085
1086
    true_cv2_results = torch.load(p)

1087
1088
1089
1090
    if image_size == "small":
        tensor = (
            torch.from_numpy(np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))).permute(2, 0, 1).to(device)
        )
1091
    else:
1092
        tensor = torch.from_numpy(np.arange(26 * 28, dtype="uint8").reshape((1, 26, 28))).to(device)
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103

    if dt == torch.float16 and device == "cpu":
        # skip float16 on CPU case
        return

    if dt is not None:
        tensor = tensor.to(dtype=dt)

    _ksize = (ksize, ksize) if isinstance(ksize, int) else ksize
    _sigma = sigma[0] if sigma is not None else None
    shape = tensor.shape
1104
    gt_key = f"{shape[-2]}_{shape[-1]}_{shape[-3]}__{_ksize[0]}_{_ksize[1]}_{_sigma}"
1105
1106
1107
    if gt_key not in true_cv2_results:
        return

1108
1109
1110
    true_out = (
        torch.tensor(true_cv2_results[gt_key]).reshape(shape[-2], shape[-1], shape[-3]).permute(2, 0, 1).to(tensor)
    )
1111
1112

    out = fn(tensor, kernel_size=ksize, sigma=sigma)
1113
    torch.testing.assert_close(out, true_out, rtol=0.0, atol=1.0, msg=f"{ksize}, {sigma}")
1114
1115


1116
@pytest.mark.parametrize("device", cpu_and_cuda())
1117
1118
1119
1120
1121
1122
1123
1124
def test_hsv2rgb(device):
    scripted_fn = torch.jit.script(F_t._hsv2rgb)
    shape = (3, 100, 150)
    for _ in range(10):
        hsv_img = torch.rand(*shape, dtype=torch.float, device=device)
        rgb_img = F_t._hsv2rgb(hsv_img)
        ft_img = rgb_img.permute(1, 2, 0).flatten(0, 1)

1125
1126
1127
1128
1129
        (
            h,
            s,
            v,
        ) = hsv_img.unbind(0)
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
        h = h.flatten().cpu().numpy()
        s = s.flatten().cpu().numpy()
        v = v.flatten().cpu().numpy()

        rgb = []
        for h1, s1, v1 in zip(h, s, v):
            rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))
        colorsys_img = torch.tensor(rgb, dtype=torch.float32, device=device)
        torch.testing.assert_close(ft_img, colorsys_img, rtol=0.0, atol=1e-5)

        s_rgb_img = scripted_fn(hsv_img)
        torch.testing.assert_close(rgb_img, s_rgb_img)

    batch_tensors = _create_data_batch(120, 100, num_samples=4, device=device).float()
    _test_fn_on_batch(batch_tensors, F_t._hsv2rgb)


1147
@pytest.mark.parametrize("device", cpu_and_cuda())
1148
1149
1150
1151
1152
1153
1154
1155
def test_rgb2hsv(device):
    scripted_fn = torch.jit.script(F_t._rgb2hsv)
    shape = (3, 150, 100)
    for _ in range(10):
        rgb_img = torch.rand(*shape, dtype=torch.float, device=device)
        hsv_img = F_t._rgb2hsv(rgb_img)
        ft_hsv_img = hsv_img.permute(1, 2, 0).flatten(0, 1)

1156
1157
1158
1159
1160
        (
            r,
            g,
            b,
        ) = rgb_img.unbind(dim=-3)
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
        r = r.flatten().cpu().numpy()
        g = g.flatten().cpu().numpy()
        b = b.flatten().cpu().numpy()

        hsv = []
        for r1, g1, b1 in zip(r, g, b):
            hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))

        colorsys_img = torch.tensor(hsv, dtype=torch.float32, device=device)

        ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
        colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)

        max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
        max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
        max_diff = max(max_diff_h, max_diff_sv)
        assert max_diff < 1e-5

        s_hsv_img = scripted_fn(rgb_img)
        torch.testing.assert_close(hsv_img, s_hsv_img, rtol=1e-5, atol=1e-7)

    batch_tensors = _create_data_batch(120, 100, num_samples=4, device=device).float()
    _test_fn_on_batch(batch_tensors, F_t._rgb2hsv)


1186
@pytest.mark.parametrize("device", cpu_and_cuda())
1187
@pytest.mark.parametrize("num_output_channels", (3, 1))
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
def test_rgb_to_grayscale(device, num_output_channels):
    script_rgb_to_grayscale = torch.jit.script(F.rgb_to_grayscale)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    gray_pil_image = F.rgb_to_grayscale(pil_img, num_output_channels=num_output_channels)
    gray_tensor = F.rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)

    _assert_approx_equal_tensor_to_pil(gray_tensor.float(), gray_pil_image, tol=1.0 + 1e-10, agg_method="max")

    s_gray_tensor = script_rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)
    assert_equal(s_gray_tensor, gray_tensor)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.rgb_to_grayscale, num_output_channels=num_output_channels)


1205
@pytest.mark.parametrize("device", cpu_and_cuda())
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
def test_center_crop(device):
    script_center_crop = torch.jit.script(F.center_crop)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    cropped_pil_image = F.center_crop(pil_img, [10, 11])

    cropped_tensor = F.center_crop(img_tensor, [10, 11])
    _assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)

    cropped_tensor = script_center_crop(img_tensor, [10, 11])
    _assert_equal_tensor_to_pil(cropped_tensor, cropped_pil_image)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    _test_fn_on_batch(batch_tensors, F.center_crop, output_size=[10, 11])


1223
@pytest.mark.parametrize("device", cpu_and_cuda())
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
def test_five_crop(device):
    script_five_crop = torch.jit.script(F.five_crop)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    cropped_pil_images = F.five_crop(pil_img, [10, 11])

    cropped_tensors = F.five_crop(img_tensor, [10, 11])
    for i in range(5):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    cropped_tensors = script_five_crop(img_tensor, [10, 11])
    for i in range(5):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    tuple_transformed_batches = F.five_crop(batch_tensors, [10, 11])
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        tuple_transformed_imgs = F.five_crop(img_tensor, [10, 11])
        assert len(tuple_transformed_imgs) == len(tuple_transformed_batches)

        for j in range(len(tuple_transformed_imgs)):
            true_transformed_img = tuple_transformed_imgs[j]
            transformed_img = tuple_transformed_batches[j][i, ...]
            assert_equal(true_transformed_img, transformed_img)

    # scriptable function test
    s_tuple_transformed_batches = script_five_crop(batch_tensors, [10, 11])
    for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
        assert_equal(transformed_batch, s_transformed_batch)


1257
@pytest.mark.parametrize("device", cpu_and_cuda())
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
def test_ten_crop(device):
    script_ten_crop = torch.jit.script(F.ten_crop)

    img_tensor, pil_img = _create_data(32, 34, device=device)

    cropped_pil_images = F.ten_crop(pil_img, [10, 11])

    cropped_tensors = F.ten_crop(img_tensor, [10, 11])
    for i in range(10):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    cropped_tensors = script_ten_crop(img_tensor, [10, 11])
    for i in range(10):
        _assert_equal_tensor_to_pil(cropped_tensors[i], cropped_pil_images[i])

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    tuple_transformed_batches = F.ten_crop(batch_tensors, [10, 11])
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        tuple_transformed_imgs = F.ten_crop(img_tensor, [10, 11])
        assert len(tuple_transformed_imgs) == len(tuple_transformed_batches)

        for j in range(len(tuple_transformed_imgs)):
            true_transformed_img = tuple_transformed_imgs[j]
            transformed_img = tuple_transformed_batches[j][i, ...]
            assert_equal(true_transformed_img, transformed_img)

    # scriptable function test
    s_tuple_transformed_batches = script_ten_crop(batch_tensors, [10, 11])
    for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
        assert_equal(transformed_batch, s_transformed_batch)


1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
def test_elastic_transform_asserts():
    with pytest.raises(TypeError, match="Argument displacement should be a Tensor"):
        _ = F.elastic_transform("abc", displacement=None)

    with pytest.raises(TypeError, match="img should be PIL Image or Tensor"):
        _ = F.elastic_transform("abc", displacement=torch.rand(1))

    img_tensor = torch.rand(1, 3, 32, 24)
    with pytest.raises(ValueError, match="Argument displacement shape should"):
        _ = F.elastic_transform(img_tensor, displacement=torch.rand(1, 2))


1303
@pytest.mark.parametrize("device", cpu_and_cuda())
1304
1305
1306
1307
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR, BICUBIC])
@pytest.mark.parametrize("dt", [None, torch.float32, torch.float64, torch.float16])
@pytest.mark.parametrize(
    "fill",
1308
    [None, [255, 255, 255], (2.0,)],
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
)
def test_elastic_transform_consistency(device, interpolation, dt, fill):
    script_elastic_transform = torch.jit.script(F.elastic_transform)
    img_tensor, _ = _create_data(32, 34, device=device)
    # As there is no PIL implementation for elastic_transform,
    # thus we do not run tests tensor vs pillow

    if dt is not None:
        img_tensor = img_tensor.to(dt)

    displacement = T.ElasticTransform.get_params([1.5, 1.5], [2.0, 2.0], [32, 34])
    kwargs = dict(
        displacement=displacement,
        interpolation=interpolation,
        fill=fill,
    )

    out_tensor1 = F.elastic_transform(img_tensor, **kwargs)
    out_tensor2 = script_elastic_transform(img_tensor, **kwargs)
    assert_equal(out_tensor1, out_tensor2)

    batch_tensors = _create_data_batch(16, 18, num_samples=4, device=device)
    displacement = T.ElasticTransform.get_params([1.5, 1.5], [2.0, 2.0], [16, 18])
    kwargs["displacement"] = displacement
    if dt is not None:
        batch_tensors = batch_tensors.to(dt)
    _test_fn_on_batch(batch_tensors, F.elastic_transform, **kwargs)


1338
if __name__ == "__main__":
1339
    pytest.main([__file__])