lib.rs 43.6 KB
Newer Older
1
/// Text Generation Inference Webserver
OlivierDehaene's avatar
OlivierDehaene committed
2
pub mod config;
Nicolas Patry's avatar
Nicolas Patry committed
3
pub mod infer;
Olivier Dehaene's avatar
Olivier Dehaene committed
4
pub mod server;
Nicolas Patry's avatar
Nicolas Patry committed
5
pub mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
6

7
8
#[cfg(feature = "kserve")]
mod kserve;
Nicolas Patry's avatar
Nicolas Patry committed
9
pub mod logging;
10

11
12
pub mod usage_stats;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
13
use serde::{Deserialize, Serialize};
Nicolas Patry's avatar
Nicolas Patry committed
14
use tracing::warn;
15
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
16
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
17

drbh's avatar
drbh committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#[derive(Clone, Deserialize, ToSchema)]
pub(crate) struct VertexInstance {
    #[schema(example = "What is Deep Learning?")]
    pub inputs: String,
    #[schema(nullable = true, default = "null", example = "null")]
    pub parameters: Option<GenerateParameters>,
}

#[derive(Deserialize, ToSchema)]
pub(crate) struct VertexRequest {
    #[serde(rename = "instances")]
    pub instances: Vec<VertexInstance>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct VertexResponse {
    pub predictions: Vec<String>,
}

37
38
/// Hub type
#[derive(Clone, Debug, Deserialize)]
39
pub struct HubModelInfo {
40
41
42
43
44
45
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

46
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
47
48
49
50
51
pub struct ChatTemplate {
    name: String,
    template: String,
}

52
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
53
54
55
56
57
58
#[serde(untagged)]
pub enum ChatTemplateVersions {
    Single(String),
    Multiple(Vec<ChatTemplate>),
}

59
60
use std::path::Path;

61
#[derive(Debug, Clone, Serialize, Deserialize, Default)]
62
pub struct HubTokenizerConfig {
63
    pub chat_template: Option<ChatTemplateVersions>,
64
    pub completion_template: Option<String>,
65
66
    pub bos_token: Option<TokenizerConfigToken>,
    pub eos_token: Option<TokenizerConfigToken>,
67
68
69
    pub tokenizer_class: Option<String>,
    pub add_bos_token: Option<bool>,
    pub add_eos_token: Option<bool>,
70
71
72
}

impl HubTokenizerConfig {
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> {
        std::fs::read_to_string(filename)
            .ok()
            .and_then(|content| serde_json::from_str(&content).ok())
    }
}

#[derive(Debug, Clone, Deserialize, Serialize, PartialEq)]
#[serde(untagged)]
pub enum TokenizerConfigToken {
    String(String),
    Object { content: String },
}

impl TokenizerConfigToken {
    pub fn as_str(&self) -> &str {
        match self {
            TokenizerConfigToken::String(s) => s,
            TokenizerConfigToken::Object { content } => content,
        }
93
94
95
    }
}

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(tag = "processor_class")]
pub enum HubPreprocessorConfig {
    Idefics2Processor(Idefics2Preprocessor),
}

impl HubPreprocessorConfig {
    pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
        let content = std::fs::read_to_string(filename).ok()?;
        serde_json::from_str(&content).ok()
    }
}

#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Idefics2Preprocessor {
    #[serde(default)]
    do_image_splitting: bool,
}

drbh's avatar
drbh committed
115
116
117
118
119
120
121
122
#[derive(Debug, Clone, Deserialize, Default)]
pub struct HubProcessorConfig {
    pub chat_template: Option<ChatTemplateVersions>,
    pub image_seq_len: usize,
    pub processor_class: Option<String>,
}

impl HubProcessorConfig {
123
124
125
126
    pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> {
        std::fs::read_to_string(filename)
            .ok()
            .and_then(|content| serde_json::from_str(&content).ok())
drbh's avatar
drbh committed
127
128
129
    }
}

130
#[derive(Clone, Debug, Deserialize, ToSchema, Serialize)]
drbh's avatar
drbh committed
131
132
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
133
134
135
136
137
    /// A string that represents a [JSON Schema](https://json-schema.org/).
    ///
    /// JSON Schema is a declarative language that allows to annotate JSON documents
    /// with types and descriptions.
    #[serde(rename = "json")]
drbh's avatar
drbh committed
138
    #[serde(alias = "json_object")]
139
140
    #[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))]
    Json(serde_json::Value),
drbh's avatar
drbh committed
141
142
143
144
    #[serde(rename = "regex")]
    Regex(String),
}

145
146
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
147
    /// Model info
148
149
150
151
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
152
153
154
155
    // #[schema(example = "torch.float16")]
    // pub model_dtype: String,
    // #[schema(example = "cuda")]
    // pub model_device_type: String,
156
157
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
Nicolas Patry's avatar
Nicolas Patry committed
158

159
160
161
162
163
164
165
166
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
OlivierDehaene's avatar
OlivierDehaene committed
167
    pub max_input_tokens: usize,
168
169
170
171
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "2")]
    pub validation_workers: usize,
172
173
    #[schema(example = "32")]
    pub max_client_batch_size: usize,
Nicolas Patry's avatar
Nicolas Patry committed
174

175
    /// Router Info
176
177
    #[schema(example = "text-generation-router")]
    pub router: &'static str,
178
179
180
181
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
182
183
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
184
185
}

drbh's avatar
drbh committed
186
#[derive(Clone, Debug, Deserialize, ToSchema, Default)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
187
pub(crate) struct GenerateParameters {
188
    /// Generate best_of sequences and return the one if the highest token logprobs.
189
190
191
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
192
193

    /// The value used to module the logits distribution.
194
195
196
197
198
199
200
201
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
202
203
204

    /// The parameter for repetition penalty. 1.0 means no penalty.
    /// See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
205
206
207
208
209
210
211
212
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
213
214
215
216

    /// The parameter for frequency penalty. 1.0 means no penalty
    /// Penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
217
    #[serde(default)]
218
219
220
221
222
223
224
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,
225
226

    /// The number of highest probability vocabulary tokens to keep for top-k-filtering.
227
    #[serde(default)]
228
229
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
230
231

    /// Top-p value for nucleus sampling.
232
233
234
235
236
237
238
239
240
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
241
242
243

    /// Typical Decoding mass
    /// See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.
244
    #[serde(default)]
245
246
247
248
249
250
251
252
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
253
254

    /// Activate logits sampling.
255
    #[serde(default)]
256
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
257
    pub do_sample: bool,
258
259

    /// Maximum number of tokens to generate.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
260
    #[serde(default = "default_max_new_tokens")]
261
    #[schema(nullable = true, default = "100", example = "20")]
262
    pub max_new_tokens: Option<u32>,
263
264

    /// Whether to prepend the prompt to the generated text
OlivierDehaene's avatar
OlivierDehaene committed
265
    #[serde(default)]
266
    #[schema(nullable = true, default = "null", example = false)]
267
    pub return_full_text: Option<bool>,
268
269

    /// Stop generating tokens if a member of `stop` is generated.
270
    #[serde(default)]
271
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
272
    pub stop: Vec<String>,
273
274

    /// Truncate inputs tokens to the given size.
OlivierDehaene's avatar
OlivierDehaene committed
275
    #[serde(default)]
276
    #[schema(nullable = true, default = "null", example = "null")]
277
    pub truncate: Option<usize>,
278
279

    /// Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226).
280
    #[serde(default)]
281
282
    #[schema(default = "false", example = true)]
    pub watermark: bool,
283
284

    /// Whether to return generation details.
285
    #[serde(default)]
286
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
287
    pub details: bool,
288
289

    /// Whether to return decoder input token logprobs and ids.
290
    #[serde(default)]
291
    #[schema(default = "false")]
292
    pub decoder_input_details: bool,
293
294

    /// Random sampling seed.
295
    #[serde(default)]
296
297
298
299
300
301
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
302
    pub seed: Option<u64>,
303
304

    /// The number of highest probability vocabulary tokens to keep for top-n-filtering.
Nicolas Patry's avatar
Nicolas Patry committed
305
306
307
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
308
309

    /// Grammar constraints for the generation.
drbh's avatar
drbh committed
310
    #[serde(default)]
311
    #[schema(nullable = true, default = "null", example = "null")]
drbh's avatar
drbh committed
312
    pub grammar: Option<GrammarType>,
drbh's avatar
drbh committed
313
314
315
316
317

    /// Lora adapter id
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub adapter_id: Option<String>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
318
319
}

320
fn default_max_new_tokens() -> Option<u32> {
321
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
322
323
324
325
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
326
        best_of: None,
327
328
        temperature: None,
        repetition_penalty: None,
329
        frequency_penalty: None,
330
331
        top_k: None,
        top_p: None,
332
        typical_p: None,
333
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
334
        max_new_tokens: default_max_new_tokens(),
335
        return_full_text: None,
336
        stop: Vec::new(),
337
        truncate: None,
338
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
339
        details: false,
340
        decoder_input_details: false,
341
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
342
        top_n_tokens: None,
drbh's avatar
drbh committed
343
        grammar: None,
drbh's avatar
drbh committed
344
        adapter_id: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
345
346
347
    }
}

348
349
350
351
352
353
354
355
356
357
358
359
360
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
#[serde(try_from = "PromptDeserializer")]
pub struct Prompt(pub Vec<String>);

#[derive(Deserialize)]
#[serde(untagged)]
enum PromptDeserializer {
    Single(String),
    Multiple(Vec<String>),
}

impl TryFrom<PromptDeserializer> for Prompt {
    type Error = String;
361

362
    fn try_from(value: PromptDeserializer) -> Result<Self, Self::Error> {
363
        match value {
364
365
366
367
368
369
370
371
372
373
374
            PromptDeserializer::Single(s) => Ok(Prompt(vec![s])),
            PromptDeserializer::Multiple(v) => {
                if v.is_empty() {
                    Err(
                        "Empty array detected. Do not use an empty array for the prompt."
                            .to_string(),
                    )
                } else {
                    Ok(Prompt(v))
                }
            }
375
376
377
378
        }
    }
}

379
380
381
382
383
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub struct CompletionRequest {
    /// UNUSED
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
384
    pub model: Option<String>,
385
386
387

    /// The prompt to generate completions for.
    #[schema(example = "What is Deep Learning?")]
388
    pub prompt: Prompt,
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(default = "32")]
    pub max_tokens: Option<u32>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.
    /// please see the completion_template field in the model's tokenizer_config.json file for completion template.
    #[serde(default)]
    pub suffix: Option<String>,

    #[serde(default)]
    pub repetition_penalty: Option<f32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,
426
427
428
429
430

    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,
431
432
}

433
434
435
436
437
438
439
440
441
#[derive(Clone, Serialize, ToSchema)]
#[serde(tag = "object")]
enum Completion {
    #[serde(rename = "text_completion")]
    Chunk(Chunk),
    #[serde(rename = "text_completion")]
    Final(CompletionFinal),
}

442
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
443
pub(crate) struct CompletionFinal {
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    pub id: String,
    #[schema(example = "1706270835")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<CompletionComplete>,
    pub usage: Usage,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionComplete {
    pub index: u32,
    pub text: String,
    pub logprobs: Option<Vec<f32>>,
    pub finish_reason: String,
}

462
463
464
465
466
467
468
469
470
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct Chunk {
    pub id: String,
    pub created: u64,
    pub choices: Vec<CompletionComplete>,
    pub model: String,
    pub system_fingerprint: String,
}

471
#[derive(Clone, Deserialize, Serialize, ToSchema)]
472
473
pub(crate) struct ChatCompletion {
    pub id: String,
474
    #[schema(example = "1706270835")]
475
    pub created: u64,
476
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
477
478
479
480
481
482
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

483
#[derive(Clone, Deserialize, Serialize, ToSchema)]
484
485
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
Nicolas Patry's avatar
Nicolas Patry committed
486
    pub message: OutputMessage,
487
    pub logprobs: Option<ChatCompletionLogprobs>,
488
489
490
    pub finish_reason: String,
}

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

        // Create an iterator that produces None for top_tokens once it's exhausted
        let top_tokens_iter = top_tokens
            .into_iter()
            .map(Some)
            .chain(std::iter::repeat(None));

        let content = tokens
            .into_iter()
            .zip(top_tokens_iter)
            .map(|(t, top_t_option)| ChatCompletionLogprob {
                token: t.text,
                logprob: t.logprob,
                top_logprobs: match top_t_option {
                    Some(top_t) => top_t
534
535
536
537
538
539
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
540
541
542
543
544
545
                    None => vec![], // Handle the case where there are no top tokens
                },
            })
            .collect();

        Self { content }
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

562
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
563
564
565
566
567
568
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

569
570
571
572
573
574
575
576
577
#[derive(Clone, Serialize, ToSchema)]
#[serde(tag = "object")]
enum CompletionType {
    #[serde(rename = "chat.completion.chunk")]
    ChatCompletionChunk(ChatCompletionChunk),
    #[serde(rename = "chat.completion")]
    ChatCompletion(ChatCompletion),
}

578
579
580
581
impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
582
        output: Option<String>,
583
584
585
        created: u64,
        details: Details,
        return_logprobs: bool,
586
        tool_calls: Option<Vec<ToolCall>>,
587
    ) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
        let message = match (output, tool_calls) {
            (Some(content), None) => OutputMessage::ChatMessage(TextMessage {
                role: "assistant".into(),
                content,
            }),
            (None, Some(tool_calls)) => OutputMessage::ToolCall(ToolCallMessage {
                role: "assistant".to_string(),
                tool_calls,
            }),
            (Some(output), Some(_)) => {
                warn!("Received both chat and tool call");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: output,
                })
            }
            (None, None) => {
                warn!("Didn't receive an answer");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: "".to_string(),
                })
            }
        };
612
613
614
615
616
617
618
        Self {
            id: String::new(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
Nicolas Patry's avatar
Nicolas Patry committed
619
                message,
620
                logprobs: return_logprobs
621
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
622
                finish_reason: details.finish_reason.format(true),
623
624
625
626
627
628
629
630
631
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}
632
#[derive(Clone, Serialize, ToSchema)]
633
634
pub(crate) struct ChatCompletionChunk {
    pub id: String,
635
    #[schema(example = "1706270978")]
636
    pub created: u64,
637
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
638
639
640
641
642
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
}

643
#[derive(Clone, Serialize, ToSchema)]
644
645
646
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
647
    pub logprobs: Option<ChatCompletionLogprobs>,
648
649
650
    pub finish_reason: Option<String>,
}

Nicolas Patry's avatar
Nicolas Patry committed
651
652
653
654
655
656
657
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallDelta {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: DeltaToolCall,
}

658
659
#[derive(Clone, Debug, Serialize, ToSchema)]
#[serde(untagged)]
Nicolas Patry's avatar
Nicolas Patry committed
660
661
662
enum ChatCompletionDelta {
    Chat(TextMessage),
    Tool(ToolCallDelta),
drbh's avatar
drbh committed
663
664
}

Nicolas Patry's avatar
Nicolas Patry committed
665
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
666
667
668
669
670
671
672
pub(crate) struct DeltaToolCall {
    pub index: u32,
    pub id: String,
    pub r#type: String,
    pub function: Function,
}

Nicolas Patry's avatar
Nicolas Patry committed
673
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
674
675
676
pub(crate) struct Function {
    pub name: Option<String>,
    pub arguments: String,
677
678
}

drbh's avatar
drbh committed
679
#[allow(clippy::too_many_arguments)]
680
681
682
683
impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
684
685
        delta: Option<String>,
        tool_calls: Option<Vec<String>>,
686
        created: u64,
687
        logprobs: Option<ChatCompletionLogprobs>,
688
689
        finish_reason: Option<String>,
    ) -> Self {
690
        let delta = match (delta, tool_calls) {
Nicolas Patry's avatar
Nicolas Patry committed
691
692
693
694
695
696
697
            (Some(delta), _) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: delta,
            }),
            (None, Some(tool_calls)) => ChatCompletionDelta::Tool(ToolCallDelta {
                role: "assistant".to_string(),
                tool_calls: DeltaToolCall {
698
699
700
701
702
703
704
                    index: 0,
                    id: String::new(),
                    r#type: "function".to_string(),
                    function: Function {
                        name: None,
                        arguments: tool_calls[0].to_string(),
                    },
Nicolas Patry's avatar
Nicolas Patry committed
705
706
707
708
709
710
                },
            }),
            (None, None) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: "".to_string(),
            }),
711
        };
712
713
714
715
716
717
        Self {
            id: String::new(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
718
                index: 0,
719
                delta,
720
721
722
723
724
725
726
727
728
                logprobs,
                finish_reason,
            }],
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct ChatRequest {
729
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
drbh's avatar
drbh committed
730
    /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
731
    pub model: Option<String>,
drbh's avatar
drbh committed
732

733
    /// A list of messages comprising the conversation so far.
drbh's avatar
drbh committed
734
    #[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")]
735
736
737
738
739
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
740
    #[schema(example = "1.0")]
741
742
743
744
745
746
747
748
749
750
751
752
753
754
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
755
    #[schema(example = "false")]
756
757
758
759
760
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
761
    #[schema(example = "5")]
762
763
764
765
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
766
    #[schema(example = "32")]
767
768
769
770
771
772
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
773
    #[schema(nullable = true, example = "2")]
774
775
776
777
778
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
779
    #[schema(nullable = true, example = 0.1)]
780
781
    pub presence_penalty: Option<f32>,

782
783
784
785
786
    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,

787
788
789
790
791
    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
792
793
794
795
796
797

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
798
    #[schema(nullable = true, example = 1.0)]
799
800
801
802
803
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
804
    #[schema(nullable = true, example = 0.95)]
805
    pub top_p: Option<f32>,
drbh's avatar
drbh committed
806
807
808
809
810
811
812
813
814
815
816

    /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
    /// functions the model may generate JSON inputs for.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tools: Option<Vec<Tool>>,

    /// A prompt to be appended before the tools
    #[serde(default = "default_tool_prompt")]
    #[schema(
        nullable = true,
817
        example = "\"You will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n\""
drbh's avatar
drbh committed
818
819
820
821
822
823
    )]
    pub tool_prompt: Option<String>,

    /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
drbh's avatar
drbh committed
824
    pub tool_choice: ToolChoice,
drbh's avatar
drbh committed
825
826
827
828
829
830
831

    /// Response format constraints for the generation.
    ///
    /// NOTE: A request can use `response_format` OR `tools` but not both.
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub response_format: Option<GrammarType>,
drbh's avatar
drbh committed
832
833
834
835
}

fn default_tool_prompt() -> Option<String> {
    Some(
836
        "\nYou will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n".to_string(),
drbh's avatar
drbh committed
837
838
    )
}
839
840
841
842

#[derive(Clone, Debug, Deserialize, PartialEq, Serialize, ToSchema)]
#[serde(untagged)]
pub enum ToolType {
drbh's avatar
drbh committed
843
    OneOf,
844
845
    FunctionName(String),
    Function { function: FunctionName },
drbh's avatar
drbh committed
846
    NoTool,
drbh's avatar
drbh committed
847
848
}

849
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, ToSchema)]
850
851
852
853
pub struct FunctionName {
    pub name: String,
}

drbh's avatar
drbh committed
854
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Default, ToSchema)]
855
856
#[serde(from = "ToolTypeDeserializer")]
pub struct ToolChoice(pub Option<ToolType>);
drbh's avatar
drbh committed
857

858
859
860
#[derive(Deserialize)]
#[serde(untagged)]
enum ToolTypeDeserializer {
drbh's avatar
drbh committed
861
862
    String(String),
    ToolType(ToolType),
863
}
drbh's avatar
drbh committed
864

865
866
impl From<ToolTypeDeserializer> for ToolChoice {
    fn from(value: ToolTypeDeserializer) -> Self {
drbh's avatar
drbh committed
867
        match value {
drbh's avatar
drbh committed
868
869
870
871
            ToolTypeDeserializer::String(s) => match s.as_str() {
                "none" => ToolChoice(Some(ToolType::NoTool)),
                "auto" => ToolChoice(Some(ToolType::OneOf)),
                _ => ToolChoice(Some(ToolType::FunctionName(s))),
drbh's avatar
drbh committed
872
            },
drbh's avatar
drbh committed
873
            ToolTypeDeserializer::ToolType(tool_type) => ToolChoice(Some(tool_type)),
drbh's avatar
drbh committed
874
875
876
877
        }
    }
}

878
#[derive(Debug, Deserialize, Serialize, ToSchema, PartialEq)]
drbh's avatar
drbh committed
879
880
881
882
883
884
pub struct Tools {
    #[serde(flatten)]
    functions_map: FunctionsMap,
    properties: Properties,
}

885
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
886
887
888
889
890
struct FunctionsMap {
    #[serde(rename = "$functions")]
    functions: std::collections::HashMap<String, serde_json::Value>,
}

891
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
892
893
894
895
896
struct FunctionRef {
    #[serde(rename = "$ref")]
    ref_path: String,
}

897
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
struct Properties {
    #[serde(serialize_with = "serialize_function")]
    function: Vec<FunctionRef>,
}

fn serialize_function<S>(functions: &Vec<FunctionRef>, serializer: S) -> Result<S::Ok, S::Error>
where
    S: serde::Serializer,
{
    use serde::ser::SerializeStruct;
    let mut state = serializer.serialize_struct("Function", 1)?;
    state.serialize_field("anyOf", functions)?;
    state.end()
}

Nicolas Patry's avatar
Nicolas Patry committed
913
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default, PartialEq)]
drbh's avatar
drbh committed
914
915
916
917
pub(crate) struct FunctionDefinition {
    #[serde(default)]
    pub description: Option<String>,
    pub name: String,
918
919
    #[serde(alias = "parameters")]
    pub arguments: serde_json::Value,
drbh's avatar
drbh committed
920
921
922
923
924
925
926
927
928
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
pub(crate) struct Tool {
    // The type of the tool. Currently, only 'function' is supported.
    #[schema(example = "function")]
    pub r#type: String,
    // Grab the tool as generic JSON for debugging purposes.
    pub function: FunctionDefinition,
929
930
}

931
#[derive(Clone, Serialize, Deserialize, Default)]
932
pub(crate) struct ChatTemplateInputs<'a> {
Nicolas Patry's avatar
Nicolas Patry committed
933
    messages: Vec<TextMessage>,
934
935
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
936
    add_generation_prompt: bool,
937
938
    tools: Option<&'a str>,
    tools_prompt: Option<&'a str>,
939
940
}

Nicolas Patry's avatar
Nicolas Patry committed
941
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug, PartialEq)]
drbh's avatar
drbh committed
942
pub(crate) struct ToolCall {
943
    pub id: String,
drbh's avatar
drbh committed
944
945
946
947
    pub r#type: String,
    pub function: FunctionDefinition,
}

Nicolas Patry's avatar
Nicolas Patry committed
948
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
949
pub struct Url {
Nicolas Patry's avatar
Nicolas Patry committed
950
    url: String,
drbh's avatar
drbh committed
951
952
}

Nicolas Patry's avatar
Nicolas Patry committed
953
954
955
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(tag = "type")]
#[serde(rename_all = "snake_case")]
956
957
958
pub enum MessageChunk {
    Text { text: String },
    ImageUrl { image_url: Url },
Nicolas Patry's avatar
Nicolas Patry committed
959
960
961
962
963
964
965
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct Message {
    #[schema(example = "user")]
    role: String,
    #[schema(example = "My name is David and I")]
966
    pub content: MessageContent,
drbh's avatar
drbh committed
967
    #[serde(default, skip_serializing_if = "Option::is_none")]
Nicolas Patry's avatar
Nicolas Patry committed
968
969
    #[schema(example = "\"David\"")]
    name: Option<String>,
drbh's avatar
drbh committed
970
971
}

972
973
974
975
976
977
978
979
980
981
982
983
984
985
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
#[serde(untagged)]
pub enum MessageContent {
    SingleText(String),
    MultipleChunks(Vec<MessageChunk>),
}

// Pushing a chunk to a single text message will convert it to a multiple chunks message
impl MessageContent {
    pub fn push(&mut self, chunk: MessageChunk) {
        match self {
            MessageContent::SingleText(text) => {
                *self =
                    MessageContent::MultipleChunks(vec![MessageChunk::Text { text: text.clone() }]);
Nicolas Patry's avatar
Nicolas Patry committed
986
            }
987
988
989
990
            MessageContent::MultipleChunks(chunks) => {
                chunks.push(chunk);
            }
        }
drbh's avatar
drbh committed
991
992
993
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
994
995
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct TextMessage {
996
997
998
    #[schema(example = "user")]
    pub role: String,
    #[schema(example = "My name is David and I")]
Nicolas Patry's avatar
Nicolas Patry committed
999
1000
1001
1002
1003
1004
1005
    pub content: String,
}

impl From<Message> for TextMessage {
    fn from(value: Message) -> Self {
        TextMessage {
            role: value.role,
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
            content: match value.content {
                MessageContent::SingleText(text) => text,
                MessageContent::MultipleChunks(chunks) => chunks
                    .into_iter()
                    .map(|chunk| match chunk {
                        MessageChunk::Text { text } => text,
                        MessageChunk::ImageUrl { image_url } => format!("![]({})", image_url.url),
                    })
                    .collect::<Vec<_>>()
                    .join(""),
            },
Nicolas Patry's avatar
Nicolas Patry committed
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallMessage {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: Vec<ToolCall>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(untagged)]
pub(crate) enum OutputMessage {
    ChatMessage(TextMessage),
    ToolCall(ToolCallMessage),
1033
1034
}

1035
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1036
pub(crate) struct GenerateRequest {
1037
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1038
1039
1040
1041
1042
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
}

1043
1044
1045
1046
1047
1048
1049
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
1050
    #[schema(default = "false")]
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
            parameters: req.parameters,
        }
    }
}

1063
1064
1065
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
Nicolas Patry's avatar
Nicolas Patry committed
1066
    pub id: u32,
1067
    #[schema(example = "test")]
Nicolas Patry's avatar
Nicolas Patry committed
1068
    pub text: String,
1069
    #[schema(nullable = true, example = - 0.34)]
Nicolas Patry's avatar
Nicolas Patry committed
1070
    pub logprob: f32,
1071
1072
}

1073
#[derive(Debug, Serialize, ToSchema, Clone)]
1074
1075
pub struct Token {
    #[schema(example = 0)]
Nicolas Patry's avatar
Nicolas Patry committed
1076
    pub id: u32,
1077
    #[schema(example = "test")]
Nicolas Patry's avatar
Nicolas Patry committed
1078
    pub text: String,
1079
    #[schema(nullable = true, example = - 0.34)]
Nicolas Patry's avatar
Nicolas Patry committed
1080
    pub logprob: f32,
1081
    #[schema(example = "false")]
Nicolas Patry's avatar
Nicolas Patry committed
1082
    pub special: bool,
1083
1084
}

1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

OlivierDehaene's avatar
OlivierDehaene committed
1097
#[derive(Debug, Serialize, ToSchema)]
1098
#[serde(rename_all(serialize = "snake_case"))]
1099
#[schema(example = "Length")]
Nicolas Patry's avatar
Nicolas Patry committed
1100
pub enum FinishReason {
1101
1102
1103
1104
1105
1106
1107
1108
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
1109

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

1120
1121
1122
1123
1124
1125
1126
1127
1128
impl FinishReason {
    pub fn format(&self, use_stop: bool) -> String {
        match self {
            FinishReason::EndOfSequenceToken if use_stop => "stop".to_string(),
            _ => self.to_string(),
        }
    }
}

1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
1141
1142
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
1143
1144
}

1145
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
1146
pub(crate) struct Details {
1147
1148
1149
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
1150
    pub generated_tokens: u32,
1151
    #[schema(nullable = true, example = 42)]
1152
    pub seed: Option<u64>,
1153
1154
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
1155
1156
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
1157
1158
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
1159
1160
}

1161
#[derive(Serialize, ToSchema)]
1162
pub(crate) struct GenerateResponse {
1163
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1164
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
1165
1166
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1167
}
1168

1169
1170
1171
1172
1173
1174
#[derive(Serialize, ToSchema)]
pub(crate) struct ChatTokenizeResponse {
    pub(crate) tokenize_response: TokenizeResponse,
    pub(crate) templated_text: String,
}

1175
1176
1177
1178
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

1179
1180
1181
1182
1183
1184
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
1185
    #[schema(nullable = true, example = 42)]
1186
1187
1188
1189
    pub seed: Option<u64>,
}

#[derive(Serialize, ToSchema)]
1190
pub(crate) struct StreamResponse {
1191
    pub index: u32,
1192
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
1193
1194
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
1195
    #[schema(nullable = true, default = "null", example = "test")]
1196
    pub generated_text: Option<String>,
1197
1198
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
1199
1200
}

1201
#[derive(Serialize, ToSchema)]
1202
1203
pub(crate) struct ErrorResponse {
    pub error: String,
1204
    pub error_type: String,
1205
}
1206
1207

#[cfg(test)]
1208
mod tests {
1209
    use super::*;
Nicolas Patry's avatar
Nicolas Patry committed
1210
    use serde_json::json;
1211
1212
    use tokenizers::Tokenizer;

1213
    pub(crate) async fn get_tokenizer() -> Tokenizer {
1214
1215
1216
1217
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
        Tokenizer::from_file(filename).unwrap()
1218
    }
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232

    #[test]
    fn test_hub_nested_tokens_tokenizer_config() {
        // this is a subset of the tokenizer.json file
        // in this case we expect the tokens to be encoded as simple strings
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": "<|begin▁of▁sentence|>",
            "eos_token": "<|end▁of▁sentence|>"
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1233
1234
1235
1236
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1237
1238
        assert_eq!(
            config.bos_token,
1239
1240
1241
1242
1243
1244
1245
1246
1247
            Some(TokenizerConfigToken::String(
                "<|begin▁of▁sentence|>".to_string()
            ))
        );
        assert_eq!(
            config.eos_token,
            Some(TokenizerConfigToken::String(
                "<|end▁of▁sentence|>".to_string()
            ))
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
        );

        // in this case we expect the tokens to be encoded as structured tokens
        // we want the content of the structured token
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": {
              "__type": "AddedToken",
              "content": "<|begin▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            },
            "eos_token": {
              "__type": "AddedToken",
              "content": "<|end▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            }
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1275
1276
1277
1278
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1279
1280
        assert_eq!(
            config.bos_token,
1281
1282
1283
1284
1285
1286
1287
1288
1289
            Some(TokenizerConfigToken::Object {
                content: "<|begin▁of▁sentence|>".to_string()
            })
        );
        assert_eq!(
            config.eos_token,
            Some(TokenizerConfigToken::Object {
                content: "<|end▁of▁sentence|>".to_string()
            })
1290
1291
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1292
1293
1294

    #[test]
    fn test_chat_simple_string() {
Nicolas Patry's avatar
Nicolas Patry committed
1295
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1296
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1297
1298
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1299
                "content": "What is Deep Learning?"
Nicolas Patry's avatar
Nicolas Patry committed
1300
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1301
1302
1303
1304
1305
1306
1307
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message {
                role: "user".to_string(),
1308
                content: MessageContent::SingleText("What is Deep Learning?".to_string()),
Nicolas Patry's avatar
Nicolas Patry committed
1309
1310
1311
1312
1313
1314
1315
                name: None
            }
        );
    }

    #[test]
    fn test_chat_request() {
Nicolas Patry's avatar
Nicolas Patry committed
1316
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1317
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1318
1319
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1320
1321
                "content": [
                    {"type": "text", "text": "Whats in this image?"},
Nicolas Patry's avatar
Nicolas Patry committed
1322
                    {"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"}},
Nicolas Patry's avatar
Nicolas Patry committed
1323
                ]
Nicolas Patry's avatar
Nicolas Patry committed
1324
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1325
1326
1327
1328
1329
1330
1331
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message{
                role: "user".to_string(),
1332
1333
1334
1335
                content: MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: "Whats in this image?".to_string() },
                    MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() }},
                ]),
Nicolas Patry's avatar
Nicolas Patry committed
1336
1337
1338
1339
                name: None
            }
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1340
1341
1342
1343
1344

    #[test]
    fn text_message_convert() {
        let message = Message{
                role: "user".to_string(),
1345
1346
1347
1348
                content: MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: "Whats in this image?".to_string() },
                    MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } }
                ]),
Nicolas Patry's avatar
Nicolas Patry committed
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
                name: None
            };
        let textmsg: TextMessage = message.into();
        assert_eq!(textmsg.content, "Whats in this image?![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)");
    }
    #[test]
    fn openai_output() {
        let message = OutputMessage::ChatMessage(TextMessage {
            role: "assistant".to_string(),
            content: "This is the answer".to_string(),
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","content":"This is the answer"}"#
        );

        let message = OutputMessage::ToolCall(ToolCallMessage {
            role: "assistant".to_string(),
            tool_calls: vec![ToolCall {
                id: "0".to_string(),
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
                    name: "myfn".to_string(),
                    arguments: json!({
                        "format": "csv"
                    }),
                },
            }],
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","tool_calls":[{"id":"0","type":"function","function":{"description":null,"name":"myfn","arguments":{"format":"csv"}}}]}"#
        );
    }
1386
}