"3rdparty/core-r22.12/src/instance_queue.cc" did not exist on "e38ee081a0495769e25766b894abe19bc8a6209e"
lib.rs 43.1 KB
Newer Older
1
/// Text Generation Inference Webserver
OlivierDehaene's avatar
OlivierDehaene committed
2
pub mod config;
3
mod infer;
Olivier Dehaene's avatar
Olivier Dehaene committed
4
pub mod server;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
5
mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
6

7
8
9
#[cfg(feature = "kserve")]
mod kserve;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
10
use serde::{Deserialize, Serialize};
Nicolas Patry's avatar
Nicolas Patry committed
11
use tracing::warn;
12
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
13
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
14

drbh's avatar
drbh committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#[derive(Clone, Deserialize, ToSchema)]
pub(crate) struct VertexInstance {
    #[schema(example = "What is Deep Learning?")]
    pub inputs: String,
    #[schema(nullable = true, default = "null", example = "null")]
    pub parameters: Option<GenerateParameters>,
}

#[derive(Deserialize, ToSchema)]
pub(crate) struct VertexRequest {
    #[serde(rename = "instances")]
    pub instances: Vec<VertexInstance>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct VertexResponse {
    pub predictions: Vec<String>,
}

34
35
/// Hub type
#[derive(Clone, Debug, Deserialize)]
36
pub struct HubModelInfo {
37
38
39
40
41
42
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

43
44
45
46
47
48
49
50
51
52
53
54
55
56
#[derive(Debug, Clone, Deserialize, PartialEq)]
pub struct ChatTemplate {
    name: String,
    template: String,
}

#[derive(Debug, Clone, Deserialize, PartialEq)]
#[serde(untagged)]
pub enum ChatTemplateVersions {
    Single(String),
    Multiple(Vec<ChatTemplate>),
}

#[derive(Debug, Clone, Deserialize, Default)]
57
pub struct HubTokenizerConfig {
58
    pub chat_template: Option<ChatTemplateVersions>,
59
    pub completion_template: Option<String>,
60
    #[serde(deserialize_with = "token_serde::deserialize")]
61
    pub bos_token: Option<String>,
62
    #[serde(deserialize_with = "token_serde::deserialize")]
63
    pub eos_token: Option<String>,
64
65
66
}

impl HubTokenizerConfig {
67
68
69
    pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
        let content = std::fs::read_to_string(filename).ok()?;
        serde_json::from_str(&content).ok()
70
71
72
    }
}

drbh's avatar
drbh committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#[derive(Debug, Clone, Deserialize, Default)]
pub struct HubProcessorConfig {
    pub chat_template: Option<ChatTemplateVersions>,
    pub image_seq_len: usize,
    pub processor_class: Option<String>,
}

impl HubProcessorConfig {
    pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
        let content = std::fs::read_to_string(filename).ok()?;
        serde_json::from_str(&content).ok()
    }
}

87
#[derive(Clone, Debug, Deserialize, ToSchema, Serialize)]
drbh's avatar
drbh committed
88
89
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
90
91
92
93
94
    /// A string that represents a [JSON Schema](https://json-schema.org/).
    ///
    /// JSON Schema is a declarative language that allows to annotate JSON documents
    /// with types and descriptions.
    #[serde(rename = "json")]
drbh's avatar
drbh committed
95
    #[serde(alias = "json_object")]
96
97
    #[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))]
    Json(serde_json::Value),
drbh's avatar
drbh committed
98
99
100
101
    #[serde(rename = "regex")]
    Regex(String),
}

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
mod token_serde {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<String>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => Ok(Some(s)),
            Value::Object(map) => {
                if let Some(content) = map.get("content").and_then(|v| v.as_str()) {
                    Ok(Some(content.to_string()))
                } else {
                    Err(de::Error::custom(
                        "content key not found in structured token",
                    ))
                }
            }
125
            Value::Null => Ok(None),
126
127
128
129
130
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

131
132
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
133
    /// Model info
134
135
136
137
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
138
139
140
141
    #[schema(example = "torch.float16")]
    pub model_dtype: String,
    #[schema(example = "cuda")]
    pub model_device_type: String,
142
143
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
144
145
146
147
148
149
150
151
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
OlivierDehaene's avatar
OlivierDehaene committed
152
    pub max_input_tokens: usize,
153
154
155
156
157
158
159
160
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "1.2")]
    pub waiting_served_ratio: f32,
    #[schema(example = "32000")]
    pub max_batch_total_tokens: u32,
    #[schema(example = "20")]
    pub max_waiting_tokens: usize,
161
162
    #[schema(nullable = true, example = "null")]
    pub max_batch_size: Option<usize>,
163
164
    #[schema(example = "2")]
    pub validation_workers: usize,
165
166
    #[schema(example = "32")]
    pub max_client_batch_size: usize,
167
    /// Router Info
168
169
    #[schema(example = "text-generation-router")]
    pub router: &'static str,
170
171
172
173
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
174
175
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
176
177
}

drbh's avatar
drbh committed
178
#[derive(Clone, Debug, Deserialize, ToSchema, Default)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
179
pub(crate) struct GenerateParameters {
180
    /// Generate best_of sequences and return the one if the highest token logprobs.
181
182
183
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
184
185

    /// The value used to module the logits distribution.
186
187
188
189
190
191
192
193
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
194
195
196

    /// The parameter for repetition penalty. 1.0 means no penalty.
    /// See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
197
198
199
200
201
202
203
204
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
205
206
207
208

    /// The parameter for frequency penalty. 1.0 means no penalty
    /// Penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
209
    #[serde(default)]
210
211
212
213
214
215
216
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,
217
218

    /// The number of highest probability vocabulary tokens to keep for top-k-filtering.
219
    #[serde(default)]
220
221
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
222
223

    /// Top-p value for nucleus sampling.
224
225
226
227
228
229
230
231
232
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
233
234
235

    /// Typical Decoding mass
    /// See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.
236
    #[serde(default)]
237
238
239
240
241
242
243
244
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
245
246

    /// Activate logits sampling.
247
    #[serde(default)]
248
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
249
    pub do_sample: bool,
250
251

    /// Maximum number of tokens to generate.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
252
    #[serde(default = "default_max_new_tokens")]
253
    #[schema(nullable = true, default = "100", example = "20")]
254
    pub max_new_tokens: Option<u32>,
255
256

    /// Whether to prepend the prompt to the generated text
OlivierDehaene's avatar
OlivierDehaene committed
257
    #[serde(default)]
258
    #[schema(nullable = true, default = "null", example = false)]
259
    pub return_full_text: Option<bool>,
260
261

    /// Stop generating tokens if a member of `stop` is generated.
262
    #[serde(default)]
263
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
264
    pub stop: Vec<String>,
265
266

    /// Truncate inputs tokens to the given size.
OlivierDehaene's avatar
OlivierDehaene committed
267
    #[serde(default)]
268
    #[schema(nullable = true, default = "null", example = "null")]
269
    pub truncate: Option<usize>,
270
271

    /// Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226).
272
    #[serde(default)]
273
274
    #[schema(default = "false", example = true)]
    pub watermark: bool,
275
276

    /// Whether to return generation details.
277
    #[serde(default)]
278
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
279
    pub details: bool,
280
281

    /// Whether to return decoder input token logprobs and ids.
282
    #[serde(default)]
283
    #[schema(default = "false")]
284
    pub decoder_input_details: bool,
285
286

    /// Random sampling seed.
287
    #[serde(default)]
288
289
290
291
292
293
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
294
    pub seed: Option<u64>,
295
296

    /// The number of highest probability vocabulary tokens to keep for top-n-filtering.
Nicolas Patry's avatar
Nicolas Patry committed
297
298
299
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
300
301

    /// Grammar constraints for the generation.
drbh's avatar
drbh committed
302
    #[serde(default)]
303
    #[schema(nullable = true, default = "null", example = "null")]
drbh's avatar
drbh committed
304
    pub grammar: Option<GrammarType>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
305
306
}

307
fn default_max_new_tokens() -> Option<u32> {
308
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
309
310
311
312
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
313
        best_of: None,
314
315
        temperature: None,
        repetition_penalty: None,
316
        frequency_penalty: None,
317
318
        top_k: None,
        top_p: None,
319
        typical_p: None,
320
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
321
        max_new_tokens: default_max_new_tokens(),
322
        return_full_text: None,
323
        stop: Vec::new(),
324
        truncate: None,
325
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
326
        details: false,
327
        decoder_input_details: false,
328
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
329
        top_n_tokens: None,
drbh's avatar
drbh committed
330
        grammar: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
331
332
333
    }
}

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
mod prompt_serde {
    use serde::{self, Deserialize, Deserializer};
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Vec<String>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;
        match value {
            Value::String(s) => Ok(vec![s]),
            Value::Array(arr) if arr.is_empty() => Err(serde::de::Error::custom(
                "Empty array detected. Do not use an empty array for the prompt.",
            )),
            Value::Array(arr) => arr
                .iter()
                .map(|v| match v {
                    Value::String(s) => Ok(s.to_owned()),
                    _ => Err(serde::de::Error::custom("Expected a string")),
                })
                .collect(),
            _ => Err(serde::de::Error::custom(
                "Expected a string or an array of strings",
            )),
        }
    }
}

362
363
364
365
366
367
368
369
370
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub struct CompletionRequest {
    /// UNUSED
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
    pub model: String,

    /// The prompt to generate completions for.
    #[schema(example = "What is Deep Learning?")]
371
372
    #[serde(deserialize_with = "prompt_serde::deserialize")]
    pub prompt: Vec<String>,
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(default = "32")]
    pub max_tokens: Option<u32>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.
    /// please see the completion_template field in the model's tokenizer_config.json file for completion template.
    #[serde(default)]
    pub suffix: Option<String>,

    #[serde(default)]
    pub repetition_penalty: Option<f32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,
410
411
412
413
414

    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
pub(crate) struct Completion {
    pub id: String,
    pub object: String,
    #[schema(example = "1706270835")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<CompletionComplete>,
    pub usage: Usage,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionComplete {
    pub index: u32,
    pub text: String,
    pub logprobs: Option<Vec<f32>>,
    pub finish_reason: String,
}

438
#[derive(Clone, Deserialize, Serialize, ToSchema)]
439
440
441
pub(crate) struct ChatCompletion {
    pub id: String,
    pub object: String,
442
    #[schema(example = "1706270835")]
443
    pub created: u64,
444
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
445
446
447
448
449
450
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

451
#[derive(Clone, Deserialize, Serialize, ToSchema)]
452
453
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
Nicolas Patry's avatar
Nicolas Patry committed
454
    pub message: OutputMessage,
455
    pub logprobs: Option<ChatCompletionLogprobs>,
456
457
458
    pub finish_reason: String,
}

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

        // Create an iterator that produces None for top_tokens once it's exhausted
        let top_tokens_iter = top_tokens
            .into_iter()
            .map(Some)
            .chain(std::iter::repeat(None));

        let content = tokens
            .into_iter()
            .zip(top_tokens_iter)
            .map(|(t, top_t_option)| ChatCompletionLogprob {
                token: t.text,
                logprob: t.logprob,
                top_logprobs: match top_t_option {
                    Some(top_t) => top_t
502
503
504
505
506
507
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
508
509
510
511
512
513
                    None => vec![], // Handle the case where there are no top tokens
                },
            })
            .collect();

        Self { content }
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

530
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
531
532
533
534
535
536
537
538
539
540
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
541
        output: Option<String>,
542
543
544
        created: u64,
        details: Details,
        return_logprobs: bool,
545
        tool_calls: Option<Vec<ToolCall>>,
546
    ) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
        let message = match (output, tool_calls) {
            (Some(content), None) => OutputMessage::ChatMessage(TextMessage {
                role: "assistant".into(),
                content,
            }),
            (None, Some(tool_calls)) => OutputMessage::ToolCall(ToolCallMessage {
                role: "assistant".to_string(),
                tool_calls,
            }),
            (Some(output), Some(_)) => {
                warn!("Received both chat and tool call");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: output,
                })
            }
            (None, None) => {
                warn!("Didn't receive an answer");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: "".to_string(),
                })
            }
        };
571
572
573
574
575
576
577
578
        Self {
            id: String::new(),
            object: "text_completion".into(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
Nicolas Patry's avatar
Nicolas Patry committed
579
                message,
580
                logprobs: return_logprobs
581
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
582
583
584
585
586
587
588
589
590
591
                finish_reason: details.finish_reason.to_string(),
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}
592
593
594
595
596
597
598
599
600
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionCompleteChunk {
    pub id: String,
    pub object: String,
    pub created: u64,
    pub choices: Vec<CompletionComplete>,
    pub model: String,
    pub system_fingerprint: String,
}
Nicolas Patry's avatar
Nicolas Patry committed
601

602
#[derive(Clone, Serialize, ToSchema)]
603
604
605
pub(crate) struct ChatCompletionChunk {
    pub id: String,
    pub object: String,
606
    #[schema(example = "1706270978")]
607
    pub created: u64,
608
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
609
610
611
612
613
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
}

614
#[derive(Clone, Serialize, ToSchema)]
615
616
617
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
618
    pub logprobs: Option<ChatCompletionLogprobs>,
619
620
621
    pub finish_reason: Option<String>,
}

Nicolas Patry's avatar
Nicolas Patry committed
622
623
624
625
626
627
628
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallDelta {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: DeltaToolCall,
}

629
630
#[derive(Clone, Debug, Serialize, ToSchema)]
#[serde(untagged)]
Nicolas Patry's avatar
Nicolas Patry committed
631
632
633
enum ChatCompletionDelta {
    Chat(TextMessage),
    Tool(ToolCallDelta),
drbh's avatar
drbh committed
634
635
}

Nicolas Patry's avatar
Nicolas Patry committed
636
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
637
638
639
640
641
642
643
pub(crate) struct DeltaToolCall {
    pub index: u32,
    pub id: String,
    pub r#type: String,
    pub function: Function,
}

Nicolas Patry's avatar
Nicolas Patry committed
644
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
645
646
647
pub(crate) struct Function {
    pub name: Option<String>,
    pub arguments: String,
648
649
}

drbh's avatar
drbh committed
650
#[allow(clippy::too_many_arguments)]
651
652
653
654
impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
655
656
        delta: Option<String>,
        tool_calls: Option<Vec<String>>,
657
        created: u64,
658
        logprobs: Option<ChatCompletionLogprobs>,
659
660
        finish_reason: Option<String>,
    ) -> Self {
661
        let delta = match (delta, tool_calls) {
Nicolas Patry's avatar
Nicolas Patry committed
662
663
664
665
666
667
668
            (Some(delta), _) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: delta,
            }),
            (None, Some(tool_calls)) => ChatCompletionDelta::Tool(ToolCallDelta {
                role: "assistant".to_string(),
                tool_calls: DeltaToolCall {
669
670
671
672
673
674
675
                    index: 0,
                    id: String::new(),
                    r#type: "function".to_string(),
                    function: Function {
                        name: None,
                        arguments: tool_calls[0].to_string(),
                    },
Nicolas Patry's avatar
Nicolas Patry committed
676
677
678
679
680
681
                },
            }),
            (None, None) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: "".to_string(),
            }),
682
        };
683
684
685
686
687
688
689
        Self {
            id: String::new(),
            object: "text_completion".to_string(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
690
                index: 0,
691
                delta,
692
693
694
695
696
697
698
699
700
                logprobs,
                finish_reason,
            }],
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct ChatRequest {
701
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
drbh's avatar
drbh committed
702
    /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
703
    pub model: String,
drbh's avatar
drbh committed
704

705
    /// A list of messages comprising the conversation so far.
drbh's avatar
drbh committed
706
    #[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")]
707
708
709
710
711
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
712
    #[schema(example = "1.0")]
713
714
715
716
717
718
719
720
721
722
723
724
725
726
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
727
    #[schema(example = "false")]
728
729
730
731
732
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
733
    #[schema(example = "5")]
734
735
736
737
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
738
    #[schema(example = "32")]
739
740
741
742
743
744
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
745
    #[schema(nullable = true, example = "2")]
746
747
748
749
750
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
751
    #[schema(nullable = true, example = 0.1)]
752
753
    pub presence_penalty: Option<f32>,

754
755
756
757
758
    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,

759
760
761
762
763
    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
764
765
766
767
768
769

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
770
    #[schema(nullable = true, example = 1.0)]
771
772
773
774
775
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
776
    #[schema(nullable = true, example = 0.95)]
777
    pub top_p: Option<f32>,
drbh's avatar
drbh committed
778
779
780
781
782
783
784
785
786
787
788

    /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
    /// functions the model may generate JSON inputs for.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tools: Option<Vec<Tool>>,

    /// A prompt to be appended before the tools
    #[serde(default = "default_tool_prompt")]
    #[schema(
        nullable = true,
789
        example = "\"You will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n\""
drbh's avatar
drbh committed
790
791
792
793
794
795
796
797
    )]
    pub tool_prompt: Option<String>,

    /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    #[serde(deserialize_with = "deserialize_tool_choice::deserialize")]
    pub tool_choice: Option<ToolType>,
drbh's avatar
drbh committed
798
799
800
801
802
803
804

    /// Response format constraints for the generation.
    ///
    /// NOTE: A request can use `response_format` OR `tools` but not both.
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub response_format: Option<GrammarType>,
drbh's avatar
drbh committed
805
806
807
808
}

fn default_tool_prompt() -> Option<String> {
    Some(
809
        "\nYou will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n".to_string(),
drbh's avatar
drbh committed
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
    )
}
#[derive(Clone, Deserialize, ToSchema, Serialize)]
enum ToolType {
    FunctionName(String),
    OneOf,
}

/// Deserialize the tool choice from the JSON input or from the function name ("none" is allowed but mapped to None)
mod deserialize_tool_choice {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<ToolType>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => match s.as_str() {
                "none" => Ok(None),
                "auto" => Ok(Some(ToolType::OneOf)),
                _ => Ok(Some(ToolType::FunctionName(s))),
            },
            Value::Object(map) => {
                if let Some(content) = map
                    .get("function")
                    .and_then(|v| v.get("name"))
                    .and_then(|v| v.as_str())
                {
                    Ok(Some(ToolType::FunctionName(content.to_string())))
                } else {
                    Err(de::Error::custom("function key not found in tool choice"))
                }
            }
            Value::Null => Ok(Some(ToolType::OneOf)),
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

854
#[derive(Debug, Deserialize, Serialize, ToSchema, PartialEq)]
drbh's avatar
drbh committed
855
856
857
858
859
860
pub struct Tools {
    #[serde(flatten)]
    functions_map: FunctionsMap,
    properties: Properties,
}

861
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
862
863
864
865
866
struct FunctionsMap {
    #[serde(rename = "$functions")]
    functions: std::collections::HashMap<String, serde_json::Value>,
}

867
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
868
869
870
871
872
struct FunctionRef {
    #[serde(rename = "$ref")]
    ref_path: String,
}

873
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
struct Properties {
    #[serde(serialize_with = "serialize_function")]
    function: Vec<FunctionRef>,
}

fn serialize_function<S>(functions: &Vec<FunctionRef>, serializer: S) -> Result<S::Ok, S::Error>
where
    S: serde::Serializer,
{
    use serde::ser::SerializeStruct;
    let mut state = serializer.serialize_struct("Function", 1)?;
    state.serialize_field("anyOf", functions)?;
    state.end()
}

Nicolas Patry's avatar
Nicolas Patry committed
889
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default, PartialEq)]
drbh's avatar
drbh committed
890
891
892
893
pub(crate) struct FunctionDefinition {
    #[serde(default)]
    pub description: Option<String>,
    pub name: String,
894
895
    #[serde(alias = "parameters")]
    pub arguments: serde_json::Value,
drbh's avatar
drbh committed
896
897
898
899
900
901
902
903
904
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
pub(crate) struct Tool {
    // The type of the tool. Currently, only 'function' is supported.
    #[schema(example = "function")]
    pub r#type: String,
    // Grab the tool as generic JSON for debugging purposes.
    pub function: FunctionDefinition,
905
906
}

907
#[derive(Clone, Serialize, Deserialize, Default)]
908
pub(crate) struct ChatTemplateInputs<'a> {
Nicolas Patry's avatar
Nicolas Patry committed
909
    messages: Vec<TextMessage>,
910
911
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
912
    add_generation_prompt: bool,
913
914
    tools: Option<&'a str>,
    tools_prompt: Option<&'a str>,
915
916
}

Nicolas Patry's avatar
Nicolas Patry committed
917
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug, PartialEq)]
drbh's avatar
drbh committed
918
pub(crate) struct ToolCall {
919
    pub id: String,
drbh's avatar
drbh committed
920
921
922
923
    pub r#type: String,
    pub function: FunctionDefinition,
}

Nicolas Patry's avatar
Nicolas Patry committed
924
925
926
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
struct Url {
    url: String,
drbh's avatar
drbh committed
927
928
}

Nicolas Patry's avatar
Nicolas Patry committed
929
930
931
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
struct ImageUrl {
    image_url: Url,
drbh's avatar
drbh committed
932
933
}

Nicolas Patry's avatar
Nicolas Patry committed
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
struct Text {
    text: String,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(tag = "type")]
#[serde(rename_all = "snake_case")]
enum MessageChunk {
    Text(Text),
    ImageUrl(ImageUrl),
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct Message {
    #[schema(example = "user")]
    role: String,
    #[schema(example = "My name is David and I")]
    #[serde(deserialize_with = "message_content_serde::deserialize")]
    content: Vec<MessageChunk>,
drbh's avatar
drbh committed
954
    #[serde(default, skip_serializing_if = "Option::is_none")]
Nicolas Patry's avatar
Nicolas Patry committed
955
956
    #[schema(example = "\"David\"")]
    name: Option<String>,
drbh's avatar
drbh committed
957
958
959
960
}

mod message_content_serde {
    use super::*;
Nicolas Patry's avatar
Nicolas Patry committed
961
    use serde::{Deserialize, Deserializer};
drbh's avatar
drbh committed
962

Nicolas Patry's avatar
Nicolas Patry committed
963
    pub fn deserialize<'de, D>(deserializer: D) -> Result<Vec<MessageChunk>, D::Error>
drbh's avatar
drbh committed
964
965
966
    where
        D: Deserializer<'de>,
    {
Nicolas Patry's avatar
Nicolas Patry committed
967
968
969
970
971
        #[derive(Deserialize)]
        #[serde(untagged)]
        enum Message {
            Text(String),
            Chunks(Vec<MessageChunk>),
drbh's avatar
drbh committed
972
        }
Nicolas Patry's avatar
Nicolas Patry committed
973
974
975
976
977
978
979
980
        let message: Message = Deserialize::deserialize(deserializer)?;
        let chunks = match message {
            Message::Text(text) => {
                vec![MessageChunk::Text(Text { text })]
            }
            Message::Chunks(s) => s,
        };
        Ok(chunks)
drbh's avatar
drbh committed
981
982
983
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
984
985
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct TextMessage {
986
987
988
    #[schema(example = "user")]
    pub role: String,
    #[schema(example = "My name is David and I")]
Nicolas Patry's avatar
Nicolas Patry committed
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
    pub content: String,
}

impl From<Message> for TextMessage {
    fn from(value: Message) -> Self {
        TextMessage {
            role: value.role,
            content: value
                .content
                .into_iter()
                .map(|c| match c {
                    MessageChunk::Text(Text { text }) => text,
                    MessageChunk::ImageUrl(image) => {
                        let url = image.image_url.url;
                        format!("![]({url})")
                    }
                })
                .collect::<Vec<_>>()
                .join(""),
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallMessage {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: Vec<ToolCall>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(untagged)]
pub(crate) enum OutputMessage {
    ChatMessage(TextMessage),
    ToolCall(ToolCallMessage),
1024
1025
}

1026
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1027
pub(crate) struct GenerateRequest {
1028
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1029
1030
1031
1032
1033
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
}

1034
1035
1036
1037
1038
1039
1040
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
1041
    #[schema(default = "false")]
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
            parameters: req.parameters,
        }
    }
}

1054
1055
1056
1057
1058
1059
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
1060
    #[schema(nullable = true, example = - 0.34)]
1061
1062
1063
    logprob: f32,
}

1064
#[derive(Debug, Serialize, ToSchema, Clone)]
1065
1066
1067
1068
1069
pub struct Token {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
1070
    #[schema(nullable = true, example = - 0.34)]
1071
    logprob: f32,
1072
1073
    #[schema(example = "false")]
    special: bool,
1074
1075
}

1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

OlivierDehaene's avatar
OlivierDehaene committed
1088
#[derive(Debug, Serialize, ToSchema)]
1089
#[serde(rename_all(serialize = "snake_case"))]
1090
#[schema(example = "Length")]
1091
1092
1093
1094
1095
1096
1097
1098
1099
pub(crate) enum FinishReason {
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
1100

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
1123
1124
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
1125
1126
}

1127
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
1128
pub(crate) struct Details {
1129
1130
1131
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
1132
    pub generated_tokens: u32,
1133
    #[schema(nullable = true, example = 42)]
1134
    pub seed: Option<u64>,
1135
1136
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
1137
1138
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
1139
1140
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
1141
1142
}

1143
#[derive(Serialize, ToSchema)]
1144
pub(crate) struct GenerateResponse {
1145
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1146
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
1147
1148
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1149
}
1150

1151
1152
1153
1154
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

1155
1156
1157
1158
1159
1160
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
1161
    #[schema(nullable = true, example = 42)]
1162
1163
1164
1165
    pub seed: Option<u64>,
}

#[derive(Serialize, ToSchema)]
1166
pub(crate) struct StreamResponse {
1167
    pub index: u32,
1168
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
1169
1170
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
1171
    #[schema(nullable = true, default = "null", example = "test")]
1172
    pub generated_text: Option<String>,
1173
1174
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
1175
1176
}

1177
#[derive(Serialize, ToSchema)]
1178
1179
pub(crate) struct ErrorResponse {
    pub error: String,
1180
    pub error_type: String,
1181
}
1182
1183

#[cfg(test)]
1184
mod tests {
1185
    use super::*;
Nicolas Patry's avatar
Nicolas Patry committed
1186
    use serde_json::json;
1187
1188
    use tokenizers::Tokenizer;

1189
    pub(crate) async fn get_tokenizer() -> Tokenizer {
1190
1191
1192
1193
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
        Tokenizer::from_file(filename).unwrap()
1194
    }
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208

    #[test]
    fn test_hub_nested_tokens_tokenizer_config() {
        // this is a subset of the tokenizer.json file
        // in this case we expect the tokens to be encoded as simple strings
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": "<|begin▁of▁sentence|>",
            "eos_token": "<|end▁of▁sentence|>"
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1209
1210
1211
1212
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));

        // in this case we expect the tokens to be encoded as structured tokens
        // we want the content of the structured token
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": {
              "__type": "AddedToken",
              "content": "<|begin▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            },
            "eos_token": {
              "__type": "AddedToken",
              "content": "<|end▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            }
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1244
1245
1246
1247
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1248
1249
1250
1251
1252
1253
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));
    }
Nicolas Patry's avatar
Nicolas Patry committed
1254
1255
1256

    #[test]
    fn test_chat_simple_string() {
Nicolas Patry's avatar
Nicolas Patry committed
1257
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1258
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1259
1260
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1261
                "content": "What is Deep Learning?"
Nicolas Patry's avatar
Nicolas Patry committed
1262
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message {
                role: "user".to_string(),
                content: vec![MessageChunk::Text(Text {
                    text: "What is Deep Learning?".to_string()
                }),],
                name: None
            }
        );
    }

    #[test]
    fn test_chat_request() {
Nicolas Patry's avatar
Nicolas Patry committed
1280
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1281
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1282
1283
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1284
1285
                "content": [
                    {"type": "text", "text": "Whats in this image?"},
Nicolas Patry's avatar
Nicolas Patry committed
1286
                    {"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"}},
Nicolas Patry's avatar
Nicolas Patry committed
1287
                ]
Nicolas Patry's avatar
Nicolas Patry committed
1288
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message{
                role: "user".to_string(),
                content: vec![
                    MessageChunk::Text(Text { text: "Whats in this image?".to_string() }),
                    MessageChunk::ImageUrl(ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } })
                ],
                name: None
            }
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

    #[test]
    fn text_message_convert() {
        let message = Message{
                role: "user".to_string(),
                content: vec![
                    MessageChunk::Text(Text { text: "Whats in this image?".to_string() }),
                    MessageChunk::ImageUrl(ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } })
                ],
                name: None
            };
        let textmsg: TextMessage = message.into();
        assert_eq!(textmsg.content, "Whats in this image?![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)");
    }
    #[test]
    fn openai_output() {
        let message = OutputMessage::ChatMessage(TextMessage {
            role: "assistant".to_string(),
            content: "This is the answer".to_string(),
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","content":"This is the answer"}"#
        );

        let message = OutputMessage::ToolCall(ToolCallMessage {
            role: "assistant".to_string(),
            tool_calls: vec![ToolCall {
                id: "0".to_string(),
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
                    name: "myfn".to_string(),
                    arguments: json!({
                        "format": "csv"
                    }),
                },
            }],
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","tool_calls":[{"id":"0","type":"function","function":{"description":null,"name":"myfn","arguments":{"format":"csv"}}}]}"#
        );
    }
1350
}