lib.rs 19.4 KB
Newer Older
1
mod health;
2
/// Text Generation Inference Webserver
3
mod infer;
4
mod queue;
Olivier Dehaene's avatar
Olivier Dehaene committed
5
pub mod server;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
6
mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
7

8
use infer::{Infer, InferError, InferStreamResponse};
9
use queue::{Entry, Queue};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
10
use serde::{Deserialize, Serialize};
11
12
use tokio::sync::OwnedSemaphorePermit;
use tokio_stream::wrappers::UnboundedReceiverStream;
13
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
14
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15

16
17
18
19
20
21
22
/// Type alias for generation responses
pub(crate) type GenerateStreamResponse = (
    OwnedSemaphorePermit,
    u32, // input_length
    UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
);

23
24
/// Hub type
#[derive(Clone, Debug, Deserialize)]
25
pub struct HubModelInfo {
26
27
28
29
30
31
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

32
33
34
#[derive(Clone, Deserialize, Default)]
pub struct HubTokenizerConfig {
    pub chat_template: Option<String>,
35
36
    pub bos_token: Option<String>,
    pub eos_token: Option<String>,
37
38
39
}

impl HubTokenizerConfig {
40
    pub fn from_file(filename: &std::path::Path) -> Self {
41
42
43
44
45
        let content = std::fs::read_to_string(filename).unwrap();
        serde_json::from_str(&content).unwrap_or_default()
    }
}

46
47
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
48
    /// Model info
49
50
51
52
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
53
54
55
56
    #[schema(example = "torch.float16")]
    pub model_dtype: String,
    #[schema(example = "cuda")]
    pub model_device_type: String,
57
58
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
    pub max_input_length: usize,
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "1.2")]
    pub waiting_served_ratio: f32,
    #[schema(example = "32000")]
    pub max_batch_total_tokens: u32,
    #[schema(example = "20")]
    pub max_waiting_tokens: usize,
    #[schema(example = "2")]
    pub validation_workers: usize,
    /// Router Info
79
80
81
82
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
83
84
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
85
86
}

87
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
88
pub(crate) struct GenerateParameters {
89
90
91
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
    #[serde(default)]
109
110
111
112
113
114
115
116
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,
    #[serde(default)]
117
118
119
120
121
122
123
124
125
126
127
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
128
    #[serde(default)]
129
130
131
132
133
134
135
136
137
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
    #[serde(default)]
138
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
139
140
    pub do_sample: bool,
    #[serde(default = "default_max_new_tokens")]
141
    #[schema(nullable = true, default = "100", example = "20")]
142
    pub max_new_tokens: Option<u32>,
OlivierDehaene's avatar
OlivierDehaene committed
143
    #[serde(default)]
144
    #[schema(nullable = true, default = "null", example = false)]
145
146
    pub return_full_text: Option<bool>,
    #[serde(default)]
147
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
148
    pub stop: Vec<String>,
OlivierDehaene's avatar
OlivierDehaene committed
149
    #[serde(default)]
150
    #[schema(nullable = true, default = "null", example = "null")]
151
152
    pub truncate: Option<usize>,
    #[serde(default)]
153
154
155
    #[schema(default = "false", example = true)]
    pub watermark: bool,
    #[serde(default)]
156
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
157
    pub details: bool,
158
    #[serde(default)]
159
160
161
    #[schema(default = "true")]
    pub decoder_input_details: bool,
    #[serde(default)]
162
163
164
165
166
167
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
168
    pub seed: Option<u64>,
Nicolas Patry's avatar
Nicolas Patry committed
169
170
171
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
172
173
}

174
fn default_max_new_tokens() -> Option<u32> {
175
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
176
177
178
179
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
180
        best_of: None,
181
182
        temperature: None,
        repetition_penalty: None,
183
        frequency_penalty: None,
184
185
        top_k: None,
        top_p: None,
186
        typical_p: None,
187
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
188
        max_new_tokens: default_max_new_tokens(),
189
        return_full_text: None,
190
        stop: Vec::new(),
191
        truncate: None,
192
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
193
        details: false,
194
        decoder_input_details: false,
195
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
196
        top_n_tokens: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
197
198
199
    }
}

200
#[derive(Clone, Deserialize, Serialize, ToSchema)]
201
202
203
pub(crate) struct ChatCompletion {
    pub id: String,
    pub object: String,
204
    #[schema(example = "1706270835")]
205
    pub created: u64,
206
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
207
208
209
210
211
212
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

213
#[derive(Clone, Deserialize, Serialize, ToSchema)]
214
215
216
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
    pub message: Message,
217
    pub logprobs: Option<ChatCompletionLogprobs>,
218
219
220
    pub finish_reason: String,
}

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;
        Self {
            content: tokens
                .into_iter()
                .zip(top_tokens)
                .map(|(t, top_t)| ChatCompletionLogprob {
                    token: t.text,
                    logprob: t.logprob,
                    top_logprobs: top_t
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
                })
                .collect(),
        }
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#[derive(Clone, Deserialize, Serialize)]
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
        output: String,
        created: u64,
        details: Details,
        return_logprobs: bool,
    ) -> Self {
        Self {
            id: String::new(),
            object: "text_completion".into(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
                message: Message {
                    role: "assistant".into(),
                    content: output,
                },
                logprobs: return_logprobs
311
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
312
313
314
315
316
317
318
319
320
321
322
                finish_reason: details.finish_reason.to_string(),
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}

323
#[derive(Clone, Deserialize, Serialize, ToSchema)]
324
325
326
pub(crate) struct ChatCompletionChunk {
    pub id: String,
    pub object: String,
327
    #[schema(example = "1706270978")]
328
    pub created: u64,
329
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
330
331
332
333
334
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
}

335
#[derive(Clone, Deserialize, Serialize, ToSchema)]
336
337
338
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
339
    pub logprobs: Option<ChatCompletionLogprobs>,
340
341
342
    pub finish_reason: Option<String>,
}

343
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
344
pub(crate) struct ChatCompletionDelta {
345
    #[schema(example = "user")]
346
    pub role: String,
347
    #[schema(example = "What is Deep Learning?")]
348
349
350
351
352
353
354
355
356
357
    pub content: String,
}

impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
        delta: String,
        created: u64,
        index: u32,
358
        logprobs: Option<ChatCompletionLogprobs>,
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        finish_reason: Option<String>,
    ) -> Self {
        Self {
            id: String::new(),
            object: "text_completion".to_string(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
                index,
                delta: ChatCompletionDelta {
                    role: "assistant".to_string(),
                    content: delta,
                },
                logprobs,
                finish_reason,
            }],
        }
    }
}

fn default_request_messages() -> Vec<Message> {
    vec![Message {
        role: "user".to_string(),
        content: "My name is David and I".to_string(),
    }]
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct ChatRequest {
    /// UNUSED
390
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
391
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
392
393
    pub model: String,
    /* NOTE: UNUSED */
394
395
396
397
398
399
400
    /// A list of messages comprising the conversation so far.
    #[serde(default = "default_request_messages")]
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
401
    #[schema(example = "1.0")]
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
416
    #[schema(example = "false")]
417
418
419
420
421
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
422
    #[schema(example = "5")]
423
424
425
426
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
427
    #[schema(example = "32")]
428
429
430
431
432
433
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
434
    #[schema(nullable = true, example = "2")]
435
436
437
438
439
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
440
    #[schema(nullable = true, example = 0.1)]
441
442
443
444
445
446
447
    pub presence_penalty: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
448
449
450
451
452
453

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
454
    #[schema(nullable = true, example = 1.0)]
455
456
457
458
459
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
460
    #[schema(nullable = true, example = 0.95)]
461
    pub top_p: Option<f32>,
462
463
}

464
465
466
467
468
#[derive(Clone, Serialize, Deserialize)]
pub(crate) struct ChatTemplateInputs<'a> {
    messages: Vec<Message>,
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
469
    add_generation_prompt: bool,
470
471
}

472
473
474
475
476
477
478
479
#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct Message {
    #[schema(example = "user")]
    pub role: String,
    #[schema(example = "My name is David and I")]
    pub content: String,
}

480
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
481
pub(crate) struct GenerateRequest {
482
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
483
484
485
486
487
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
}

488
489
490
491
492
493
494
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
495
    #[schema(default = "false")]
496
497
498
499
500
501
502
503
504
505
506
507
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
            parameters: req.parameters,
        }
    }
}

508
509
510
511
512
513
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
514
    #[schema(nullable = true, example = - 0.34)]
515
516
517
    logprob: f32,
}

518
#[derive(Debug, Serialize, ToSchema, Clone)]
519
520
521
522
523
pub struct Token {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
524
    #[schema(nullable = true, example = - 0.34)]
525
    logprob: f32,
526
527
    #[schema(example = "false")]
    special: bool,
528
529
}

530
531
532
533
534
535
536
537
538
539
540
541
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

542
543
#[derive(Serialize, ToSchema)]
#[serde(rename_all(serialize = "snake_case"))]
544
#[schema(example = "Length")]
545
546
547
548
549
550
551
552
553
pub(crate) enum FinishReason {
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
554

555
556
557
558
559
560
561
562
563
564
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

565
566
567
568
569
570
571
572
573
574
575
576
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
577
578
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
579
580
}

581
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
582
pub(crate) struct Details {
583
584
585
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
586
    pub generated_tokens: u32,
587
    #[schema(nullable = true, example = 42)]
588
    pub seed: Option<u64>,
589
590
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
591
592
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
593
594
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
595
596
}

597
#[derive(Serialize, ToSchema)]
598
pub(crate) struct GenerateResponse {
599
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
600
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
601
602
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
603
}
604

605
606
607
608
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

609
610
611
612
613
614
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
615
    #[schema(nullable = true, example = 42)]
616
617
618
619
    pub seed: Option<u64>,
}

#[derive(Serialize, ToSchema)]
620
pub(crate) struct StreamResponse {
621
    pub index: u32,
622
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
623
624
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
625
    #[schema(nullable = true, default = "null", example = "test")]
626
    pub generated_text: Option<String>,
627
628
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
629
630
}

631
#[derive(Serialize, ToSchema)]
632
633
pub(crate) struct ErrorResponse {
    pub error: String,
634
    pub error_type: String,
635
}
636
637

#[cfg(test)]
638
mod tests {
639
640
    use tokenizers::Tokenizer;

641
    pub(crate) async fn get_tokenizer() -> Tokenizer {
642
643
644
645
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
        Tokenizer::from_file(filename).unwrap()
646
647
    }
}