main.rs 47.3 KB
Newer Older
1
use clap::{Parser, ValueEnum};
2
3
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
4
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
5
use std::env;
6
use std::ffi::OsString;
7
use std::io::{BufRead, BufReader, Lines};
8
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
9
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
10
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
11
12
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
13
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
14
15
16
17
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
18
use tracing_subscriber::EnvFilter;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
19

20
21
mod env_runtime;

22
23
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Quantization {
24
    /// 4 bit quantization. Requires a specific AWQ quantized model:
25
    ///   https://hf.co/models?search=awq.
26
    /// Should replace GPTQ models wherever possible because of the better latency
27
28
29
30
31
32
    Awq,
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
    /// Kernels are from https://github.com/NetEase-FuXi/EETQ.git
    Eetq,
    /// 4 bit quantization. Requires a specific GTPQ quantized model: https://hf.co/models?search=gptq.
33
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
34
35
36
37
38
39
40
41
42
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
    #[deprecated(
        since = "1.1.0",
        note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    )]
43
    Bitsandbytes,
44
45
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
Nicolas Patry's avatar
Nicolas Patry committed
46
    BitsandbytesNF4,
47
48
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
Nicolas Patry's avatar
Nicolas Patry committed
49
    BitsandbytesFP4,
50
51
52
53
54
55
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
56
57
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
58
59
60
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
Nicolas Patry's avatar
Nicolas Patry committed
61
62
63
64
65
66
            Quantization::BitsandbytesNF4 => {
                write!(f, "bitsandbytes-nf4")
            }
            Quantization::BitsandbytesFP4 => {
                write!(f, "bitsandbytes-fp4")
            }
67
68
69
            Quantization::Gptq => {
                write!(f, "gptq")
            }
70
71
72
            Quantization::Awq => {
                write!(f, "awq")
            }
73
74
75
            Quantization::Eetq => {
                write!(f, "eetq")
            }
76
77
78
79
        }
    }
}

80
81
82
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
83
    #[clap(name = "bfloat16")]
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
121
122
123
124
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
125
126
127
128
129
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
130
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
131
    model_id: String,
132
133
134

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
135
    #[clap(long, env)]
136
    revision: Option<String>,
137

138
139
140
141
142
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

143
    /// Whether to shard the model across multiple GPUs
144
145
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
146
147
    #[clap(long, env)]
    sharded: Option<bool>,
148
149

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
150
151
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
152
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
153
154
    #[clap(long, env)]
    num_shard: Option<usize>,
155

156
    /// Whether you want the model to be quantized.
157
158
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
159

Nicolas Patry's avatar
Nicolas Patry committed
160
161
162
163
164
165
166
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

167
168
169
170
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

171
172
173
174
175
176
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

177
178
179
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
180
181
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
182
183
184
185

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
186
187
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
188
189
190
191
192
193

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
194
195
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
196

Nicolas Patry's avatar
Nicolas Patry committed
197
198
199
200
201
202
203
204
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
    /// `top_n_tokens is used to return information about the the `n` most likely
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

205
206
207
208
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
209
    #[clap(default_value = "1024", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
210
    max_input_length: usize,
211
212
213
214
215
216
217
218
219

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
220
    #[clap(default_value = "2048", long, env)]
221
    max_total_tokens: usize,
222
223
224
225
226
227
228
229
230
231
232

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
233
234
    #[clap(default_value = "1.2", long, env)]
    waiting_served_ratio: f32,
235

236
237
238
239
240
241
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
    #[clap(default_value = "4096", long, env)]
    max_batch_prefill_tokens: u32,

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
259
260
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
279
280
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
281

282
283
284
285
286
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

287
288
289
290
291
292
293
294
295
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
    #[clap(
        long,
        env,
        value_delimiter = ',',
        default_value = "1,2,4,8,16,32,64,96,128"
    )]
    cuda_graphs: Vec<usize>,
296

297
298
299
300
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

301
    /// The port to listen on.
302
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
303
    port: u16,
304
305
306

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
307
308
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
309
310

    /// The address the master shard will listen on. (setting used by torch distributed)
311
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
312
    master_addr: String,
313
314

    /// The address the master port will listen on. (setting used by torch distributed)
315
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
316
    master_port: usize,
317
318
319

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
320
    #[clap(long, env)]
321
    huggingface_hub_cache: Option<String>,
322
323
324

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
325
326
    #[clap(long, env)]
    weights_cache_override: Option<String>,
327
328
329
330
331

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
332
    #[clap(long, env)]
333
    disable_custom_kernels: bool,
334

335
336
337
338
339
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

360
    /// Outputs the logs in JSON format (useful for telemetry)
361
    #[clap(long, env)]
362
    json_output: bool,
363

364
365
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
366

367
368
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
369
370
371
372
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
373

374
375
376
377
378
379
380
381
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

382
    /// ngrok edge
383
    #[clap(long, env)]
384
    ngrok_edge: Option<String>,
385

386
387
388
389
390
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
391
392
393
394
395
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

396
397
398
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
399
400
}

401
402
403
#[derive(Debug)]
enum ShardStatus {
    Ready,
404
    Failed(usize),
405
}
406

407
408
409
410
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
411
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
412
    speculate: Option<usize>,
413
    dtype: Option<Dtype>,
414
    trust_remote_code: bool,
415
416
417
418
419
420
421
422
423
424
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
425
    cuda_graphs: Vec<usize>,
426
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
427
428
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
429
430
    otlp_endpoint: Option<String>,
    status_sender: mpsc::Sender<ShardStatus>,
431
    shutdown: Arc<AtomicBool>,
432
433
    _shutdown_sender: mpsc::Sender<()>,
) {
434
435
436
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

437
438
439
440
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
441
442
443
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
444
445

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
446
    let mut shard_args = vec![
447
448
449
450
451
452
453
454
455
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];

456
457
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
458
        shard_args.push("--trust-remote-code".to_string());
459
460
    }

461
462
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
463
        shard_args.push("--sharded".to_string());
464
465
    }

466
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
467
468
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
469
    }
470

Nicolas Patry's avatar
Nicolas Patry committed
471
472
473
474
475
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

476
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
477
478
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
479
480
    }

481
482
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
483
484
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
485
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
486

Nicolas Patry's avatar
Nicolas Patry committed
487
488
489
490
491
492
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
493
494
    // OpenTelemetry
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
495
496
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
497
498
499
    }

    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
500
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
501

502
503
504
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

505
    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
506
507
508
509
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
510
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
511

512
513
514
515
516
517
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

518
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
519
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
520

521
522
523
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

524
525
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
526
    envs.push((
527
528
529
530
531
532
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
533
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
534
535
    };

Nicolas Patry's avatar
Nicolas Patry committed
536
537
538
539
540
541
542
543
544
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

545
546
547
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
548
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
549
550
551
552
553
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
554
        envs.push((
555
556
557
558
559
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

560
    // Enable experimental support for cuda graphs
561
562
563
564
565
566
567
568
569
570
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
571
572
    }

573
574
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
575
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
576
577
578
579
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
580
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
581
582
583
584
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
585
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
586
587
588
    }

    // Start process
589
    tracing::info!("Starting shard");
590
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
591
        .args(shard_args)
592
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
593
        .envs(envs)
594
595
596
597
598
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
599
600
        Ok(p) => p,
        Err(err) => {
601
602
603
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
604
605
            }
            {
606
                tracing::error!("{}", err);
607
            }
608

609
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
610
611
612
613
614
            return;
        }
    };

    // Redirect STDOUT to the console
615
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
616
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
617

618
    //stdout tracing thread
619
    thread::spawn(move || {
620
        log_lines(shard_stdout_reader.lines());
621
    });
622
623
624
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
625
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
626
627
628
            err_sender.send(line).unwrap_or(());
        }
    });
629
630
631
632
633
634

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
635
        if let Some(exit_status) = p.try_wait().unwrap() {
636
637
638
639
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
640

641
            tracing::error!("Shard complete standard error output:\n{err}");
642

643
            if let Some(signal) = exit_status.signal() {
644
645
646
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

647
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
648
649
650
651
            return;
        }

        // We received a shutdown signal
652
        if shutdown.load(Ordering::SeqCst) {
653
            p.kill().unwrap();
654
            let _ = p.wait();
655
            tracing::info!("Shard terminated");
656
657
658
659
660
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
661
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
662
663
664
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
665
            tracing::info!("Waiting for shard to be ready...");
666
667
668
669
670
671
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

672
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
673
674
675
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
676
    shutdown.store(true, Ordering::SeqCst);
677
678
679
680
681
682
683

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
684
685
686
687
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
        Err(_) => env::var("NVIDIA_VISIBLE_DEVICES").ok()?,
    };
688
689
    let n_devices = devices.split(',').count();
    Some(n_devices)
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text),
        }
    }
}

734
735
736
737
738
739
740
741
742
impl TryFrom<&String> for PythonLogMessage {
    type Error = serde_json::Error;

    fn try_from(value: &String) -> Result<Self, Self::Error> {
        serde_json::from_str::<Self>(value)
    }
}

fn log_lines<S: Sized + BufRead>(lines: Lines<S>) {
OlivierDehaene's avatar
OlivierDehaene committed
743
    for line in lines.map_while(Result::ok) {
744
745
746
747
748
749
750
        match PythonLogMessage::try_from(&line) {
            Ok(log) => log.trace(),
            Err(_) => tracing::debug!("{line}"),
        }
    }
}

751
752
753
754
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
755
756
757
758
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
759
760
761
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES");
            let n_devices = num_cuda_devices()
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES are not set");
762
            if n_devices <= 1 {
763
764
765
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
766
            }
767
            n_devices
768
        }
769
770
771
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
772
773
774
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
775
776
            }
            num_shard
777
        }
778
779
780
781
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
782
    };
783
    if num_shard < 1 {
784
785
786
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
787
    }
788
    Ok(num_shard)
789
}
790

791
792
#[derive(Debug)]
enum LauncherError {
793
794
    ArgumentValidation(String),
    NotEnoughCUDADevices(String),
795
796
797
798
799
800
801
    DownloadError,
    ShardCannotStart,
    ShardDisconnected,
    ShardFailed,
    WebserverFailed,
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
802

803
fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
804
805
806
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
807
    let mut download_args = vec![
808
809
810
811
812
813
814
815
        "download-weights".to_string(),
        args.model_id.to_string(),
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
816

817
818
    // Model optional revision
    if let Some(revision) = &args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
819
820
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
821
    }
822

823
824
825
826
827
    // Trust remote code for automatic peft fusion
    if args.trust_remote_code {
        download_args.push("--trust-remote-code".to_string());
    }

828
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
829
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
830

831
832
833
    // Remove LOG_LEVEL if present
    envs.retain(|(name, _)| name != "LOG_LEVEL");

834
835
836
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

837
    // If huggingface_hub_cache is set, pass it to the download process
838
839
    // Useful when running inside a docker container
    if let Some(ref huggingface_hub_cache) = args.huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
840
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
841
    };
842

843
844
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
845
    envs.push((
846
847
848
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
849

850
851
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
852
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
853
    };
854

855
856
857
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = &args.weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
858
        envs.push((
859
860
861
862
863
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

864
865
    // Start process
    tracing::info!("Starting download process.");
866
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
867
        .args(download_args)
868
        .env_clear()
OlivierDehaene's avatar
OlivierDehaene committed
869
        .envs(envs)
870
871
872
873
874
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
875
876
        Ok(p) => p,
        Err(err) => {
877
878
879
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
880
881
            } else {
                tracing::error!("{}", err);
882
            }
883

884
885
886
            return Err(LauncherError::DownloadError);
        }
    };
887

888
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
889

890
    thread::spawn(move || {
891
892
893
894
895
896
897
898
        log_lines(download_stdout.lines());
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
899
        for line in download_stderr.lines().map_while(Result::ok) {
900
901
            err_sender.send(line).unwrap_or(());
        }
902
    });
903

904
    loop {
905
906
907
908
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
                tracing::info!("Successfully downloaded weights.");
                break;
909
            }
910
911

            let mut err = String::new();
912
913
914
915
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

916
917
918
919
920
921
922
923
924
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
925
        }
926
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
927
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
928
929
930
            return Ok(());
        }
        sleep(Duration::from_millis(100));
931
    }
932
933
    Ok(())
}
934

935
#[allow(clippy::too_many_arguments)]
936
937
938
fn spawn_shards(
    num_shard: usize,
    args: &Args,
939
    shutdown: Arc<AtomicBool>,
940
941
942
943
944
945
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
946
947
    // Start shard processes
    for rank in 0..num_shard {
948
949
950
951
952
953
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
954
955
956
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
957
        let otlp_endpoint = args.otlp_endpoint.clone();
958
        let quantize = args.quantize;
Nicolas Patry's avatar
Nicolas Patry committed
959
        let speculate = args.speculate;
960
        let dtype = args.dtype;
961
        let trust_remote_code = args.trust_remote_code;
962
963
964
965
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
966
967
968
969
970
        let cuda_graphs: Vec<usize> = args
            .cuda_graphs
            .iter()
            .filter_map(|&c| if c > 0 { Some(c) } else { None })
            .collect();
971
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
972
973
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
974
975
        thread::spawn(move || {
            shard_manager(
976
                model_id,
977
                revision,
978
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
979
                speculate,
980
                dtype,
981
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
982
983
984
985
986
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
987
988
                huggingface_hub_cache,
                weights_cache_override,
989
                disable_custom_kernels,
990
991
                watermark_gamma,
                watermark_delta,
992
                cuda_graphs,
993
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
994
995
                rope_scaling,
                rope_factor,
996
                otlp_endpoint,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1018
            Ok(ShardStatus::Failed(rank)) => {
1019
                tracing::error!("Shard {rank} failed to start");
1020
                shutdown_shards(shutdown, shutdown_receiver);
1021
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1022
1023
1024
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1025
                shutdown_shards(shutdown, shutdown_receiver);
1026
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1027
1028
1029
            }
        }
    }
1030
1031
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1032

1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1045
fn spawn_webserver(
1046
    num_shard: usize,
1047
    args: Args,
1048
    shutdown: Arc<AtomicBool>,
1049
    shutdown_receiver: &mpsc::Receiver<()>,
1050
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1051
1052
1053
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1054
    let mut router_args = vec![
1055
        "--max-concurrent-requests".to_string(),
1056
        args.max_concurrent_requests.to_string(),
1057
        "--max-best-of".to_string(),
1058
        args.max_best_of.to_string(),
1059
        "--max-stop-sequences".to_string(),
1060
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1061
1062
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1063
        "--max-input-length".to_string(),
1064
        args.max_input_length.to_string(),
1065
        "--max-total-tokens".to_string(),
1066
        args.max_total_tokens.to_string(),
1067
1068
        "--max-batch-prefill-tokens".to_string(),
        args.max_batch_prefill_tokens.to_string(),
1069
        "--waiting-served-ratio".to_string(),
1070
        args.waiting_served_ratio.to_string(),
1071
        "--max-waiting-tokens".to_string(),
1072
        args.max_waiting_tokens.to_string(),
1073
1074
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1075
1076
        "--hostname".to_string(),
        args.hostname.to_string(),
1077
        "--port".to_string(),
1078
        args.port.to_string(),
1079
        "--master-shard-uds-path".to_string(),
1080
        format!("{}-0", args.shard_uds_path),
1081
        "--tokenizer-name".to_string(),
1082
        args.model_id,
1083
1084
    ];

drbh's avatar
drbh committed
1085
1086
1087
1088
1089
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1090
1091
1092
1093
1094
1095
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1096
1097
1098
1099
1100
1101
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1102
1103
1104
1105
1106
1107
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1108
1109
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1110
1111
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1112
1113
    }

1114
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1115
        router_args.push("--json-output".to_string());
1116
1117
    }

1118
    // OpenTelemetry
1119
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1120
1121
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1122
1123
1124
1125
    }

    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1126
1127
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1128
1129
    }

1130
1131
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1132
1133
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1134
1135
1136
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1137
1138
    }

1139
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1140
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1141

1142
1143
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
1144
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
1145
    };
1146

1147
1148
1149
1150
1151
1152
1153
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1154
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1155
1156
        .args(router_args)
        .envs(envs)
1157
1158
1159
1160
1161
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1162
1163
        Ok(p) => p,
        Err(err) => {
1164
            tracing::error!("Failed to start webserver: {}", err);
1165
1166
1167
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1168
1169
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1170
            }
1171

1172
            shutdown_shards(shutdown, shutdown_receiver);
1173
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1174
1175
1176
        }
    };

1177
1178
1179
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1180
1181

    thread::spawn(move || {
1182
1183
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1184
        for line in stdout.lines() {
1185
            println!("{}", line.unwrap());
1186
        }
1187
1188
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1189
        }
1190
1191
1192
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1193

OlivierDehaene's avatar
OlivierDehaene committed
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");

    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }

    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1219
fn main() -> Result<(), LauncherError> {
oOraph's avatar
oOraph committed
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
    match Command::new("ldconfig").spawn() {
        Ok(_) => {}
        Err(err) => {
            tracing::warn!(
                "Unable to refresh ldconfig cache. Skipping (useless in most cases). Details {:?}",
                err
            )
        }
    }

1230
    // Pattern match configuration
1231
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1232

1233
1234
1235
1236
    // Filter events with LOG_LEVEL
    let env_filter =
        EnvFilter::try_from_env("LOG_LEVEL").unwrap_or_else(|_| EnvFilter::new("info"));

1237
    if args.json_output {
1238
1239
1240
1241
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1242
    } else {
1243
1244
1245
1246
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1247
1248
    }

1249
1250
1251
1252
1253
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

1254
1255
    tracing::info!("{:?}", args);

1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
    // Validate args
    if args.max_input_length >= args.max_total_tokens {
        return Err(LauncherError::ArgumentValidation(
            "`max_input_length` must be < `max_total_tokens`".to_string(),
        ));
    }
    if args.max_input_length as u32 > args.max_batch_prefill_tokens {
        return Err(LauncherError::ArgumentValidation(format!(
            "`max_batch_prefill_tokens` must be >= `max_input_length`. Given: {} and {}",
            args.max_batch_prefill_tokens, args.max_input_length
        )));
    }
1268

1269
1270
1271
1272
1273
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1274
1275
1276
1277
1278
1279
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1280
1281

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1282
1283
    if num_shard > 1 {
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1284
1285
    }

1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
        if args.max_batch_prefill_tokens > *max_batch_total_tokens {
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
                args.max_batch_prefill_tokens, max_batch_total_tokens
            )));
        }
        if args.max_total_tokens as u32 > *max_batch_total_tokens {
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
                args.max_total_tokens, max_batch_total_tokens
            )));
        }
    }

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1315
1316
1317
1318
1319
1320
1321
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1322

1323
    // Download and convert model weights
1324
    download_convert_model(&args, running.clone())?;
1325

OlivierDehaene's avatar
OlivierDehaene committed
1326
1327
1328
1329
1330
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1331
    // Shared shutdown bool
1332
    let shutdown = Arc::new(AtomicBool::new(false));
1333
1334
1335
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1336

1337
1338
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1339

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
    spawn_shards(
        num_shard,
        &args,
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1350

1351
1352
1353
1354
1355
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1356

1357
1358
    let mut webserver = spawn_webserver(num_shard, args, shutdown.clone(), &shutdown_receiver)
        .map_err(|err| {
OlivierDehaene's avatar
OlivierDehaene committed
1359
1360
1361
            shutdown_shards(shutdown.clone(), &shutdown_receiver);
            err
        })?;
1362
1363
1364
1365
1366

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1367
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1368
            tracing::error!("Shard {rank} crashed");
1369
1370
1371
1372
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1373
        match webserver.try_wait().unwrap() {
1374
1375
1376
1377
1378
1379
1380
1381
1382
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1383
    }
1384
1385

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1386
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1387
1388
1389
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1390
}