lib.rs 43.2 KB
Newer Older
1
/// Text Generation Inference Webserver
OlivierDehaene's avatar
OlivierDehaene committed
2
pub mod config;
3
mod infer;
Olivier Dehaene's avatar
Olivier Dehaene committed
4
pub mod server;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
5
mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
6

7
8
9
#[cfg(feature = "kserve")]
mod kserve;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
10
use serde::{Deserialize, Serialize};
Nicolas Patry's avatar
Nicolas Patry committed
11
use tracing::warn;
12
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
13
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
14

drbh's avatar
drbh committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#[derive(Clone, Deserialize, ToSchema)]
pub(crate) struct VertexInstance {
    #[schema(example = "What is Deep Learning?")]
    pub inputs: String,
    #[schema(nullable = true, default = "null", example = "null")]
    pub parameters: Option<GenerateParameters>,
}

#[derive(Deserialize, ToSchema)]
pub(crate) struct VertexRequest {
    #[serde(rename = "instances")]
    pub instances: Vec<VertexInstance>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct VertexResponse {
    pub predictions: Vec<String>,
}

34
35
/// Hub type
#[derive(Clone, Debug, Deserialize)]
36
pub struct HubModelInfo {
37
38
39
40
41
42
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

43
44
45
46
47
48
49
50
51
52
53
54
55
#[derive(Debug, Clone, Deserialize, PartialEq)]
pub struct ChatTemplate {
    name: String,
    template: String,
}

#[derive(Debug, Clone, Deserialize, PartialEq)]
#[serde(untagged)]
pub enum ChatTemplateVersions {
    Single(String),
    Multiple(Vec<ChatTemplate>),
}

56
57
use std::path::Path;

58
#[derive(Debug, Clone, Deserialize, Default)]
59
pub struct HubTokenizerConfig {
60
    pub chat_template: Option<ChatTemplateVersions>,
61
    pub completion_template: Option<String>,
62
63
    pub bos_token: Option<TokenizerConfigToken>,
    pub eos_token: Option<TokenizerConfigToken>,
64
65
66
    pub tokenizer_class: Option<String>,
    pub add_bos_token: Option<bool>,
    pub add_eos_token: Option<bool>,
67
68
69
}

impl HubTokenizerConfig {
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> {
        std::fs::read_to_string(filename)
            .ok()
            .and_then(|content| serde_json::from_str(&content).ok())
    }
}

#[derive(Debug, Clone, Deserialize, Serialize, PartialEq)]
#[serde(untagged)]
pub enum TokenizerConfigToken {
    String(String),
    Object { content: String },
}

impl TokenizerConfigToken {
    pub fn as_str(&self) -> &str {
        match self {
            TokenizerConfigToken::String(s) => s,
            TokenizerConfigToken::Object { content } => content,
        }
90
91
92
    }
}

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(tag = "processor_class")]
pub enum HubPreprocessorConfig {
    Idefics2Processor(Idefics2Preprocessor),
}

impl HubPreprocessorConfig {
    pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
        let content = std::fs::read_to_string(filename).ok()?;
        serde_json::from_str(&content).ok()
    }
}

#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Idefics2Preprocessor {
    #[serde(default)]
    do_image_splitting: bool,
}

drbh's avatar
drbh committed
112
113
114
115
116
117
118
119
#[derive(Debug, Clone, Deserialize, Default)]
pub struct HubProcessorConfig {
    pub chat_template: Option<ChatTemplateVersions>,
    pub image_seq_len: usize,
    pub processor_class: Option<String>,
}

impl HubProcessorConfig {
120
121
122
123
    pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> {
        std::fs::read_to_string(filename)
            .ok()
            .and_then(|content| serde_json::from_str(&content).ok())
drbh's avatar
drbh committed
124
125
126
    }
}

127
#[derive(Clone, Debug, Deserialize, ToSchema, Serialize)]
drbh's avatar
drbh committed
128
129
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
130
131
132
133
134
    /// A string that represents a [JSON Schema](https://json-schema.org/).
    ///
    /// JSON Schema is a declarative language that allows to annotate JSON documents
    /// with types and descriptions.
    #[serde(rename = "json")]
drbh's avatar
drbh committed
135
    #[serde(alias = "json_object")]
136
137
    #[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))]
    Json(serde_json::Value),
drbh's avatar
drbh committed
138
139
140
141
    #[serde(rename = "regex")]
    Regex(String),
}

142
143
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
144
    /// Model info
145
146
147
148
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
149
150
151
152
    #[schema(example = "torch.float16")]
    pub model_dtype: String,
    #[schema(example = "cuda")]
    pub model_device_type: String,
153
154
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
155
156
157
158
159
160
161
162
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
OlivierDehaene's avatar
OlivierDehaene committed
163
    pub max_input_tokens: usize,
164
165
166
167
168
169
170
171
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "1.2")]
    pub waiting_served_ratio: f32,
    #[schema(example = "32000")]
    pub max_batch_total_tokens: u32,
    #[schema(example = "20")]
    pub max_waiting_tokens: usize,
172
173
    #[schema(nullable = true, example = "null")]
    pub max_batch_size: Option<usize>,
174
175
    #[schema(example = "2")]
    pub validation_workers: usize,
176
177
    #[schema(example = "32")]
    pub max_client_batch_size: usize,
178
    /// Router Info
179
180
    #[schema(example = "text-generation-router")]
    pub router: &'static str,
181
182
183
184
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
185
186
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
187
188
}

drbh's avatar
drbh committed
189
#[derive(Clone, Debug, Deserialize, ToSchema, Default)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
190
pub(crate) struct GenerateParameters {
191
    /// Generate best_of sequences and return the one if the highest token logprobs.
192
193
194
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
195
196

    /// The value used to module the logits distribution.
197
198
199
200
201
202
203
204
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
205
206
207

    /// The parameter for repetition penalty. 1.0 means no penalty.
    /// See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
208
209
210
211
212
213
214
215
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
216
217
218
219

    /// The parameter for frequency penalty. 1.0 means no penalty
    /// Penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
220
    #[serde(default)]
221
222
223
224
225
226
227
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,
228
229

    /// The number of highest probability vocabulary tokens to keep for top-k-filtering.
230
    #[serde(default)]
231
232
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
233
234

    /// Top-p value for nucleus sampling.
235
236
237
238
239
240
241
242
243
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
244
245
246

    /// Typical Decoding mass
    /// See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.
247
    #[serde(default)]
248
249
250
251
252
253
254
255
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
256
257

    /// Activate logits sampling.
258
    #[serde(default)]
259
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
260
    pub do_sample: bool,
261
262

    /// Maximum number of tokens to generate.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
263
    #[serde(default = "default_max_new_tokens")]
264
    #[schema(nullable = true, default = "100", example = "20")]
265
    pub max_new_tokens: Option<u32>,
266
267

    /// Whether to prepend the prompt to the generated text
OlivierDehaene's avatar
OlivierDehaene committed
268
    #[serde(default)]
269
    #[schema(nullable = true, default = "null", example = false)]
270
    pub return_full_text: Option<bool>,
271
272

    /// Stop generating tokens if a member of `stop` is generated.
273
    #[serde(default)]
274
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
275
    pub stop: Vec<String>,
276
277

    /// Truncate inputs tokens to the given size.
OlivierDehaene's avatar
OlivierDehaene committed
278
    #[serde(default)]
279
    #[schema(nullable = true, default = "null", example = "null")]
280
    pub truncate: Option<usize>,
281
282

    /// Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226).
283
    #[serde(default)]
284
285
    #[schema(default = "false", example = true)]
    pub watermark: bool,
286
287

    /// Whether to return generation details.
288
    #[serde(default)]
289
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
290
    pub details: bool,
291
292

    /// Whether to return decoder input token logprobs and ids.
293
    #[serde(default)]
294
    #[schema(default = "false")]
295
    pub decoder_input_details: bool,
296
297

    /// Random sampling seed.
298
    #[serde(default)]
299
300
301
302
303
304
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
305
    pub seed: Option<u64>,
306
307

    /// The number of highest probability vocabulary tokens to keep for top-n-filtering.
Nicolas Patry's avatar
Nicolas Patry committed
308
309
310
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
311
312

    /// Grammar constraints for the generation.
drbh's avatar
drbh committed
313
    #[serde(default)]
314
    #[schema(nullable = true, default = "null", example = "null")]
drbh's avatar
drbh committed
315
    pub grammar: Option<GrammarType>,
drbh's avatar
drbh committed
316
317
318
319
320

    /// Lora adapter id
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub adapter_id: Option<String>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
321
322
}

323
fn default_max_new_tokens() -> Option<u32> {
324
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
325
326
327
328
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
329
        best_of: None,
330
331
        temperature: None,
        repetition_penalty: None,
332
        frequency_penalty: None,
333
334
        top_k: None,
        top_p: None,
335
        typical_p: None,
336
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
337
        max_new_tokens: default_max_new_tokens(),
338
        return_full_text: None,
339
        stop: Vec::new(),
340
        truncate: None,
341
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
342
        details: false,
343
        decoder_input_details: false,
344
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
345
        top_n_tokens: None,
drbh's avatar
drbh committed
346
        grammar: None,
drbh's avatar
drbh committed
347
        adapter_id: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
348
349
350
    }
}

351
352
353
354
355
356
357
358
359
360
361
362
363
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
#[serde(try_from = "PromptDeserializer")]
pub struct Prompt(pub Vec<String>);

#[derive(Deserialize)]
#[serde(untagged)]
enum PromptDeserializer {
    Single(String),
    Multiple(Vec<String>),
}

impl TryFrom<PromptDeserializer> for Prompt {
    type Error = String;
364

365
    fn try_from(value: PromptDeserializer) -> Result<Self, Self::Error> {
366
        match value {
367
368
369
370
371
372
373
374
375
376
377
            PromptDeserializer::Single(s) => Ok(Prompt(vec![s])),
            PromptDeserializer::Multiple(v) => {
                if v.is_empty() {
                    Err(
                        "Empty array detected. Do not use an empty array for the prompt."
                            .to_string(),
                    )
                } else {
                    Ok(Prompt(v))
                }
            }
378
379
380
381
        }
    }
}

382
383
384
385
386
387
388
389
390
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub struct CompletionRequest {
    /// UNUSED
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
    pub model: String,

    /// The prompt to generate completions for.
    #[schema(example = "What is Deep Learning?")]
391
    pub prompt: Prompt,
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(default = "32")]
    pub max_tokens: Option<u32>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.
    /// please see the completion_template field in the model's tokenizer_config.json file for completion template.
    #[serde(default)]
    pub suffix: Option<String>,

    #[serde(default)]
    pub repetition_penalty: Option<f32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,
429
430
431
432
433

    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
pub(crate) struct Completion {
    pub id: String,
    #[schema(example = "1706270835")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<CompletionComplete>,
    pub usage: Usage,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionComplete {
    pub index: u32,
    pub text: String,
    pub logprobs: Option<Vec<f32>>,
    pub finish_reason: String,
}

456
#[derive(Clone, Deserialize, Serialize, ToSchema)]
457
458
pub(crate) struct ChatCompletion {
    pub id: String,
459
    #[schema(example = "1706270835")]
460
    pub created: u64,
461
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
462
463
464
465
466
467
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

468
#[derive(Clone, Deserialize, Serialize, ToSchema)]
469
470
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
Nicolas Patry's avatar
Nicolas Patry committed
471
    pub message: OutputMessage,
472
    pub logprobs: Option<ChatCompletionLogprobs>,
473
474
475
    pub finish_reason: String,
}

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

        // Create an iterator that produces None for top_tokens once it's exhausted
        let top_tokens_iter = top_tokens
            .into_iter()
            .map(Some)
            .chain(std::iter::repeat(None));

        let content = tokens
            .into_iter()
            .zip(top_tokens_iter)
            .map(|(t, top_t_option)| ChatCompletionLogprob {
                token: t.text,
                logprob: t.logprob,
                top_logprobs: match top_t_option {
                    Some(top_t) => top_t
519
520
521
522
523
524
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
525
526
527
528
529
530
                    None => vec![], // Handle the case where there are no top tokens
                },
            })
            .collect();

        Self { content }
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

547
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
548
549
550
551
552
553
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

554
555
556
557
558
559
560
561
562
#[derive(Clone, Serialize, ToSchema)]
#[serde(tag = "object")]
enum CompletionType {
    #[serde(rename = "chat.completion.chunk")]
    ChatCompletionChunk(ChatCompletionChunk),
    #[serde(rename = "chat.completion")]
    ChatCompletion(ChatCompletion),
}

563
564
565
566
impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
567
        output: Option<String>,
568
569
570
        created: u64,
        details: Details,
        return_logprobs: bool,
571
        tool_calls: Option<Vec<ToolCall>>,
572
    ) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
        let message = match (output, tool_calls) {
            (Some(content), None) => OutputMessage::ChatMessage(TextMessage {
                role: "assistant".into(),
                content,
            }),
            (None, Some(tool_calls)) => OutputMessage::ToolCall(ToolCallMessage {
                role: "assistant".to_string(),
                tool_calls,
            }),
            (Some(output), Some(_)) => {
                warn!("Received both chat and tool call");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: output,
                })
            }
            (None, None) => {
                warn!("Didn't receive an answer");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: "".to_string(),
                })
            }
        };
597
598
599
600
601
602
603
        Self {
            id: String::new(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
Nicolas Patry's avatar
Nicolas Patry committed
604
                message,
605
                logprobs: return_logprobs
606
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
607
608
609
610
611
612
613
614
615
616
                finish_reason: details.finish_reason.to_string(),
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}
617
618
619
620
621
622
623
624
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionCompleteChunk {
    pub id: String,
    pub created: u64,
    pub choices: Vec<CompletionComplete>,
    pub model: String,
    pub system_fingerprint: String,
}
Nicolas Patry's avatar
Nicolas Patry committed
625

626
#[derive(Clone, Serialize, ToSchema)]
627
628
pub(crate) struct ChatCompletionChunk {
    pub id: String,
629
    #[schema(example = "1706270978")]
630
    pub created: u64,
631
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
632
633
634
635
636
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
}

637
#[derive(Clone, Serialize, ToSchema)]
638
639
640
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
641
    pub logprobs: Option<ChatCompletionLogprobs>,
642
643
644
    pub finish_reason: Option<String>,
}

Nicolas Patry's avatar
Nicolas Patry committed
645
646
647
648
649
650
651
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallDelta {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: DeltaToolCall,
}

652
653
#[derive(Clone, Debug, Serialize, ToSchema)]
#[serde(untagged)]
Nicolas Patry's avatar
Nicolas Patry committed
654
655
656
enum ChatCompletionDelta {
    Chat(TextMessage),
    Tool(ToolCallDelta),
drbh's avatar
drbh committed
657
658
}

Nicolas Patry's avatar
Nicolas Patry committed
659
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
660
661
662
663
664
665
666
pub(crate) struct DeltaToolCall {
    pub index: u32,
    pub id: String,
    pub r#type: String,
    pub function: Function,
}

Nicolas Patry's avatar
Nicolas Patry committed
667
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
668
669
670
pub(crate) struct Function {
    pub name: Option<String>,
    pub arguments: String,
671
672
}

drbh's avatar
drbh committed
673
#[allow(clippy::too_many_arguments)]
674
675
676
677
impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
678
679
        delta: Option<String>,
        tool_calls: Option<Vec<String>>,
680
        created: u64,
681
        logprobs: Option<ChatCompletionLogprobs>,
682
683
        finish_reason: Option<String>,
    ) -> Self {
684
        let delta = match (delta, tool_calls) {
Nicolas Patry's avatar
Nicolas Patry committed
685
686
687
688
689
690
691
            (Some(delta), _) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: delta,
            }),
            (None, Some(tool_calls)) => ChatCompletionDelta::Tool(ToolCallDelta {
                role: "assistant".to_string(),
                tool_calls: DeltaToolCall {
692
693
694
695
696
697
698
                    index: 0,
                    id: String::new(),
                    r#type: "function".to_string(),
                    function: Function {
                        name: None,
                        arguments: tool_calls[0].to_string(),
                    },
Nicolas Patry's avatar
Nicolas Patry committed
699
700
701
702
703
704
                },
            }),
            (None, None) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: "".to_string(),
            }),
705
        };
706
707
708
709
710
711
        Self {
            id: String::new(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
712
                index: 0,
713
                delta,
714
715
716
717
718
719
720
721
722
                logprobs,
                finish_reason,
            }],
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct ChatRequest {
723
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
drbh's avatar
drbh committed
724
    /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
725
    pub model: String,
drbh's avatar
drbh committed
726

727
    /// A list of messages comprising the conversation so far.
drbh's avatar
drbh committed
728
    #[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")]
729
730
731
732
733
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
734
    #[schema(example = "1.0")]
735
736
737
738
739
740
741
742
743
744
745
746
747
748
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
749
    #[schema(example = "false")]
750
751
752
753
754
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
755
    #[schema(example = "5")]
756
757
758
759
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
760
    #[schema(example = "32")]
761
762
763
764
765
766
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
767
    #[schema(nullable = true, example = "2")]
768
769
770
771
772
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
773
    #[schema(nullable = true, example = 0.1)]
774
775
    pub presence_penalty: Option<f32>,

776
777
778
779
780
    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,

781
782
783
784
785
    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
786
787
788
789
790
791

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
792
    #[schema(nullable = true, example = 1.0)]
793
794
795
796
797
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
798
    #[schema(nullable = true, example = 0.95)]
799
    pub top_p: Option<f32>,
drbh's avatar
drbh committed
800
801
802
803
804
805
806
807
808
809
810

    /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
    /// functions the model may generate JSON inputs for.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tools: Option<Vec<Tool>>,

    /// A prompt to be appended before the tools
    #[serde(default = "default_tool_prompt")]
    #[schema(
        nullable = true,
811
        example = "\"You will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n\""
drbh's avatar
drbh committed
812
813
814
815
816
817
818
    )]
    pub tool_prompt: Option<String>,

    /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tool_choice: Option<ToolType>,
drbh's avatar
drbh committed
819
820
821
822
823
824
825

    /// Response format constraints for the generation.
    ///
    /// NOTE: A request can use `response_format` OR `tools` but not both.
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub response_format: Option<GrammarType>,
drbh's avatar
drbh committed
826
827
828
829
}

fn default_tool_prompt() -> Option<String> {
    Some(
830
        "\nYou will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n".to_string(),
drbh's avatar
drbh committed
831
832
    )
}
833
834
835
836

#[derive(Clone, Debug, Deserialize, PartialEq, Serialize, ToSchema)]
#[serde(untagged)]
pub enum ToolType {
drbh's avatar
drbh committed
837
    OneOf,
838
839
    FunctionName(String),
    Function { function: FunctionName },
drbh's avatar
drbh committed
840
841
}

842
843
844
845
846
847
848
849
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct FunctionName {
    pub name: String,
}

#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
#[serde(from = "ToolTypeDeserializer")]
pub struct ToolChoice(pub Option<ToolType>);
drbh's avatar
drbh committed
850

851
852
853
854
855
856
#[derive(Deserialize)]
#[serde(untagged)]
enum ToolTypeDeserializer {
    None(Option<String>),
    Some(ToolType),
}
drbh's avatar
drbh committed
857

858
859
impl From<ToolTypeDeserializer> for ToolChoice {
    fn from(value: ToolTypeDeserializer) -> Self {
drbh's avatar
drbh committed
860
        match value {
861
862
863
864
865
            ToolTypeDeserializer::None(opt) => match opt.as_deref() {
                Some("none") => ToolChoice(None),
                Some("auto") => ToolChoice(Some(ToolType::OneOf)),
                Some(s) => ToolChoice(Some(ToolType::FunctionName(s.to_string()))),
                None => ToolChoice(Some(ToolType::OneOf)),
drbh's avatar
drbh committed
866
            },
867
            ToolTypeDeserializer::Some(tool_type) => ToolChoice(Some(tool_type)),
drbh's avatar
drbh committed
868
869
870
871
        }
    }
}

872
#[derive(Debug, Deserialize, Serialize, ToSchema, PartialEq)]
drbh's avatar
drbh committed
873
874
875
876
877
878
pub struct Tools {
    #[serde(flatten)]
    functions_map: FunctionsMap,
    properties: Properties,
}

879
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
880
881
882
883
884
struct FunctionsMap {
    #[serde(rename = "$functions")]
    functions: std::collections::HashMap<String, serde_json::Value>,
}

885
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
886
887
888
889
890
struct FunctionRef {
    #[serde(rename = "$ref")]
    ref_path: String,
}

891
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
struct Properties {
    #[serde(serialize_with = "serialize_function")]
    function: Vec<FunctionRef>,
}

fn serialize_function<S>(functions: &Vec<FunctionRef>, serializer: S) -> Result<S::Ok, S::Error>
where
    S: serde::Serializer,
{
    use serde::ser::SerializeStruct;
    let mut state = serializer.serialize_struct("Function", 1)?;
    state.serialize_field("anyOf", functions)?;
    state.end()
}

Nicolas Patry's avatar
Nicolas Patry committed
907
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default, PartialEq)]
drbh's avatar
drbh committed
908
909
910
911
pub(crate) struct FunctionDefinition {
    #[serde(default)]
    pub description: Option<String>,
    pub name: String,
912
913
    #[serde(alias = "parameters")]
    pub arguments: serde_json::Value,
drbh's avatar
drbh committed
914
915
916
917
918
919
920
921
922
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
pub(crate) struct Tool {
    // The type of the tool. Currently, only 'function' is supported.
    #[schema(example = "function")]
    pub r#type: String,
    // Grab the tool as generic JSON for debugging purposes.
    pub function: FunctionDefinition,
923
924
}

925
#[derive(Clone, Serialize, Deserialize, Default)]
926
pub(crate) struct ChatTemplateInputs<'a> {
Nicolas Patry's avatar
Nicolas Patry committed
927
    messages: Vec<TextMessage>,
928
929
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
930
    add_generation_prompt: bool,
931
932
    tools: Option<&'a str>,
    tools_prompt: Option<&'a str>,
933
934
}

Nicolas Patry's avatar
Nicolas Patry committed
935
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug, PartialEq)]
drbh's avatar
drbh committed
936
pub(crate) struct ToolCall {
937
    pub id: String,
drbh's avatar
drbh committed
938
939
940
941
    pub r#type: String,
    pub function: FunctionDefinition,
}

Nicolas Patry's avatar
Nicolas Patry committed
942
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
943
pub struct Url {
Nicolas Patry's avatar
Nicolas Patry committed
944
    url: String,
drbh's avatar
drbh committed
945
946
}

Nicolas Patry's avatar
Nicolas Patry committed
947
948
949
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(tag = "type")]
#[serde(rename_all = "snake_case")]
950
951
952
pub enum MessageChunk {
    Text { text: String },
    ImageUrl { image_url: Url },
Nicolas Patry's avatar
Nicolas Patry committed
953
954
955
956
957
958
959
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct Message {
    #[schema(example = "user")]
    role: String,
    #[schema(example = "My name is David and I")]
960
    pub content: MessageContent,
drbh's avatar
drbh committed
961
    #[serde(default, skip_serializing_if = "Option::is_none")]
Nicolas Patry's avatar
Nicolas Patry committed
962
963
    #[schema(example = "\"David\"")]
    name: Option<String>,
drbh's avatar
drbh committed
964
965
}

966
967
968
969
970
971
972
973
974
975
976
977
978
979
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
#[serde(untagged)]
pub enum MessageContent {
    SingleText(String),
    MultipleChunks(Vec<MessageChunk>),
}

// Pushing a chunk to a single text message will convert it to a multiple chunks message
impl MessageContent {
    pub fn push(&mut self, chunk: MessageChunk) {
        match self {
            MessageContent::SingleText(text) => {
                *self =
                    MessageContent::MultipleChunks(vec![MessageChunk::Text { text: text.clone() }]);
Nicolas Patry's avatar
Nicolas Patry committed
980
            }
981
982
983
984
            MessageContent::MultipleChunks(chunks) => {
                chunks.push(chunk);
            }
        }
drbh's avatar
drbh committed
985
986
987
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
988
989
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct TextMessage {
990
991
992
    #[schema(example = "user")]
    pub role: String,
    #[schema(example = "My name is David and I")]
Nicolas Patry's avatar
Nicolas Patry committed
993
994
995
996
997
998
999
    pub content: String,
}

impl From<Message> for TextMessage {
    fn from(value: Message) -> Self {
        TextMessage {
            role: value.role,
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
            content: match value.content {
                MessageContent::SingleText(text) => text,
                MessageContent::MultipleChunks(chunks) => chunks
                    .into_iter()
                    .map(|chunk| match chunk {
                        MessageChunk::Text { text } => text,
                        MessageChunk::ImageUrl { image_url } => format!("![]({})", image_url.url),
                    })
                    .collect::<Vec<_>>()
                    .join(""),
            },
Nicolas Patry's avatar
Nicolas Patry committed
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallMessage {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: Vec<ToolCall>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(untagged)]
pub(crate) enum OutputMessage {
    ChatMessage(TextMessage),
    ToolCall(ToolCallMessage),
1027
1028
}

1029
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1030
pub(crate) struct GenerateRequest {
1031
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1032
1033
1034
1035
1036
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
}

1037
1038
1039
1040
1041
1042
1043
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
1044
    #[schema(default = "false")]
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
            parameters: req.parameters,
        }
    }
}

1057
1058
1059
1060
1061
1062
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
1063
    #[schema(nullable = true, example = - 0.34)]
1064
1065
1066
    logprob: f32,
}

1067
#[derive(Debug, Serialize, ToSchema, Clone)]
1068
1069
1070
1071
1072
pub struct Token {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
1073
    #[schema(nullable = true, example = - 0.34)]
1074
    logprob: f32,
1075
1076
    #[schema(example = "false")]
    special: bool,
1077
1078
}

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

OlivierDehaene's avatar
OlivierDehaene committed
1091
#[derive(Debug, Serialize, ToSchema)]
1092
#[serde(rename_all(serialize = "snake_case"))]
1093
#[schema(example = "Length")]
1094
1095
1096
1097
1098
1099
1100
1101
1102
pub(crate) enum FinishReason {
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
1103

1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
1126
1127
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
1128
1129
}

1130
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
1131
pub(crate) struct Details {
1132
1133
1134
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
1135
    pub generated_tokens: u32,
1136
    #[schema(nullable = true, example = 42)]
1137
    pub seed: Option<u64>,
1138
1139
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
1140
1141
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
1142
1143
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
1144
1145
}

1146
#[derive(Serialize, ToSchema)]
1147
pub(crate) struct GenerateResponse {
1148
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1149
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
1150
1151
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1152
}
1153

1154
1155
1156
1157
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

1158
1159
1160
1161
1162
1163
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
1164
    #[schema(nullable = true, example = 42)]
1165
1166
1167
1168
    pub seed: Option<u64>,
}

#[derive(Serialize, ToSchema)]
1169
pub(crate) struct StreamResponse {
1170
    pub index: u32,
1171
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
1172
1173
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
1174
    #[schema(nullable = true, default = "null", example = "test")]
1175
    pub generated_text: Option<String>,
1176
1177
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
1178
1179
}

1180
#[derive(Serialize, ToSchema)]
1181
1182
pub(crate) struct ErrorResponse {
    pub error: String,
1183
    pub error_type: String,
1184
}
1185
1186

#[cfg(test)]
1187
mod tests {
1188
    use super::*;
Nicolas Patry's avatar
Nicolas Patry committed
1189
    use serde_json::json;
1190
1191
    use tokenizers::Tokenizer;

1192
    pub(crate) async fn get_tokenizer() -> Tokenizer {
1193
1194
1195
1196
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
        Tokenizer::from_file(filename).unwrap()
1197
    }
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211

    #[test]
    fn test_hub_nested_tokens_tokenizer_config() {
        // this is a subset of the tokenizer.json file
        // in this case we expect the tokens to be encoded as simple strings
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": "<|begin▁of▁sentence|>",
            "eos_token": "<|end▁of▁sentence|>"
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1212
1213
1214
1215
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1216
1217
        assert_eq!(
            config.bos_token,
1218
1219
1220
1221
1222
1223
1224
1225
1226
            Some(TokenizerConfigToken::String(
                "<|begin▁of▁sentence|>".to_string()
            ))
        );
        assert_eq!(
            config.eos_token,
            Some(TokenizerConfigToken::String(
                "<|end▁of▁sentence|>".to_string()
            ))
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
        );

        // in this case we expect the tokens to be encoded as structured tokens
        // we want the content of the structured token
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": {
              "__type": "AddedToken",
              "content": "<|begin▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            },
            "eos_token": {
              "__type": "AddedToken",
              "content": "<|end▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            }
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1254
1255
1256
1257
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1258
1259
        assert_eq!(
            config.bos_token,
1260
1261
1262
1263
1264
1265
1266
1267
1268
            Some(TokenizerConfigToken::Object {
                content: "<|begin▁of▁sentence|>".to_string()
            })
        );
        assert_eq!(
            config.eos_token,
            Some(TokenizerConfigToken::Object {
                content: "<|end▁of▁sentence|>".to_string()
            })
1269
1270
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1271
1272
1273

    #[test]
    fn test_chat_simple_string() {
Nicolas Patry's avatar
Nicolas Patry committed
1274
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1275
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1276
1277
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1278
                "content": "What is Deep Learning?"
Nicolas Patry's avatar
Nicolas Patry committed
1279
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1280
1281
1282
1283
1284
1285
1286
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message {
                role: "user".to_string(),
1287
                content: MessageContent::SingleText("What is Deep Learning?".to_string()),
Nicolas Patry's avatar
Nicolas Patry committed
1288
1289
1290
1291
1292
1293
1294
                name: None
            }
        );
    }

    #[test]
    fn test_chat_request() {
Nicolas Patry's avatar
Nicolas Patry committed
1295
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1296
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1297
1298
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1299
1300
                "content": [
                    {"type": "text", "text": "Whats in this image?"},
Nicolas Patry's avatar
Nicolas Patry committed
1301
                    {"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"}},
Nicolas Patry's avatar
Nicolas Patry committed
1302
                ]
Nicolas Patry's avatar
Nicolas Patry committed
1303
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1304
1305
1306
1307
1308
1309
1310
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message{
                role: "user".to_string(),
1311
1312
1313
1314
                content: MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: "Whats in this image?".to_string() },
                    MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() }},
                ]),
Nicolas Patry's avatar
Nicolas Patry committed
1315
1316
1317
1318
                name: None
            }
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1319
1320
1321
1322
1323

    #[test]
    fn text_message_convert() {
        let message = Message{
                role: "user".to_string(),
1324
1325
1326
1327
                content: MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: "Whats in this image?".to_string() },
                    MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } }
                ]),
Nicolas Patry's avatar
Nicolas Patry committed
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
                name: None
            };
        let textmsg: TextMessage = message.into();
        assert_eq!(textmsg.content, "Whats in this image?![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)");
    }
    #[test]
    fn openai_output() {
        let message = OutputMessage::ChatMessage(TextMessage {
            role: "assistant".to_string(),
            content: "This is the answer".to_string(),
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","content":"This is the answer"}"#
        );

        let message = OutputMessage::ToolCall(ToolCallMessage {
            role: "assistant".to_string(),
            tool_calls: vec![ToolCall {
                id: "0".to_string(),
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
                    name: "myfn".to_string(),
                    arguments: json!({
                        "format": "csv"
                    }),
                },
            }],
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","tool_calls":[{"id":"0","type":"function","function":{"description":null,"name":"myfn","arguments":{"format":"csv"}}}]}"#
        );
    }
1365
}